Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulatory Networks

  • Muhammad Shahid
  • Natasha
  • Sana Khalid
  • Ghulam Abbas
  • Nabeel Khan Niazi
  • Behzad Murtaza
  • Muhammad Imtiaz Rashid
  • Irshad Bibi


Heavy metal contamination of environment is becoming increasingly serious with rapid and unchecked industrialization and urbanization. Soil contamination with heavy metals and their associated health risks have been reported in various areas globally. Plants accumulate heavy metals from soil under contaminated environments. Inside plants, heavy metals provoke numerous biochemical alterations via different metabolic processes. These biochemical alterations in plants are primarily via redox reactions which cause activation of different enzymes, modification of cell membrane permeability, replacement of essential ions, and reaction with functional groups of different molecules. Under heavy metal stress, plants have evolved numerous defense processes to tolerate heavy metal toxicity, such as sequestration into vacuoles, activation of several antioxidants, and chelation by phytochelatin/glutathione. All the biochemical changes, in plants, are mediated by a complex regulatory network of genes. The expression or overexpression of these genes and enzymes under metal stress has been revealed in some recent studies. Moreover, the heavy metal transporter proteins and transcription factors are involved in heavy metal acquisition/tolerance/homeostasis. In this chapter, we have presented an overall relation of redox mechanism and plant tolerance under heavy metal stress. We highlight the heavy metal contamination in environment, their sources in soil, accumulation by plants, their toxic effects on plants, and detoxification processes.


Heavy metal stress Plant physiology Redox reactions Plant defense Biochemical changes 



Ascorbate peroxidase




Cation diffusion facilitator


Ferritin Fe (III) binding


Guaiacol peroxidase


Glutathione reductase




Heavy metal ATPase


Iron-regulated transporter family


Nicotinamine synthase




Natural resistance-associated macrophage protein


Reactive oxygen species


S-adenosyl-methionine synthetase


Superoxide dismutase


Yellow-stripe-like transporter


ZRT, IRT-like protein


  1. Abbas G, Saqib M, Akhtar J, Murtaza G (2017) Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Can J For Res 47:1293–1301CrossRefGoogle Scholar
  2. Abbas G, Murtaza B, Bibi I, Shahid M, Niazi N, Khan M, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59PubMedCentralCrossRefPubMedGoogle Scholar
  3. Aborode FA, Raab A, Voigt M, Costa LM, Krupp EM, Feldmann J (2016) The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana. J Environ Sci 49:150–161CrossRefGoogle Scholar
  4. Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2015) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35(2):303–315. Scholar
  5. Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226PubMedCrossRefGoogle Scholar
  6. Al-Huqail AA, Al-Rashed SA, Ibrahim MM, El-Gaaly GA, Qureshi MI (2017) Arsenic induced eco-physiological changes in Chickpea (Cicer arietinum) and protection by gypsum, a source of sulphur and calcium. Sci Hortic 217:226–233. Scholar
  7. Amari T, Ghnaya T, Abdelly C (2017) Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot 111:99–110CrossRefGoogle Scholar
  8. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324Google Scholar
  9. Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M (2014) Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front Plant Sci 5:662. Scholar
  10. Anjum SA, Ashraf U, Imran K, Tanveer M, Shahid M, Shakoor A, Longchang W (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27:262–273CrossRefGoogle Scholar
  11. Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradère P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192PubMedCrossRefGoogle Scholar
  12. Arshad T, Maqbool N, Javed F, Wahid A, Arshad MU (2017) Enhancing the defensive mechanism of lead affected barley (Hordeum vulgare L.) genotypes by exogenously applied salicylic acid. J Agric Sci 9:139Google Scholar
  13. Ashfaque F, Inam A, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160. Scholar
  14. Ashraf U, Tang X (2017) Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176:141–155. Scholar
  15. Awoyemi OM (2017) Molecular toxicology of the use of coal fly ash as soil amendment for the production of bioenergy feedstock, switchgrass (Panicum virgatum L.). Tennessee State UniversityGoogle Scholar
  16. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. Journal of molecular evolution 46:84–101PubMedCrossRefGoogle Scholar
  17. Balakhnina T, Nadezhkina E (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 64:215–223CrossRefGoogle Scholar
  18. Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011PubMedCrossRefGoogle Scholar
  19. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120CrossRefGoogle Scholar
  20. Bozzi AT, Bane LB, Weihofen WA, Singharoy A, Guillen ER, Ploegh HL, Schulten K, Gaudet R (2016) Crystal structure and conformational change mechanism of a bacterial Nramp-family divalent metal transporter. Structure 24:2102–2114PubMedPubMedCentralCrossRefGoogle Scholar
  21. Breton CV, Kile ML, Catalano PJ, Hoffman E, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani DC (2007) GSTM1 and APE1 genotypes affect arsenic-induced oxidative stress: a repeated measures study. Environ Health 6:39PubMedPubMedCentralCrossRefGoogle Scholar
  22. Çanakci-Gülengül S, Yildiz T, Deveci D (2017) Some physiological and biochemical responses to copper of detached cucumber (Cucumis sativus L.) cotyledons pre-floated in salicylic acid. Pak J Bot 49:487–492Google Scholar
  23. Cao Y, Ma C, Chen G, Zhang J, Xing B (2017) Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environ Pollut 225:644–653PubMedCrossRefGoogle Scholar
  24. Chandrakar V, Naithani SC, Keshavkant S (2016a) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377CrossRefGoogle Scholar
  25. Chandrakar V, Dubey A, Keshavkant S (2016b) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662–676Google Scholar
  26. Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86PubMedCrossRefGoogle Scholar
  27. Chaudhary K, Jan S, Khan S (2015) Heavy metal ATPase (HMA2, HMA3, and HMA4) genes in hyperaccumulation mechanism of heavy metals. Plant Metal Interaction. Elsevier, pp 545–556Google Scholar
  28. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162. Scholar
  29. Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci 100:3525–3530PubMedCrossRefGoogle Scholar
  30. Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192. Scholar
  31. Chow YN, Lee LK, Zakaria NA, Foo KY (2018) Phytotoxic effects of trivalent chromium-enriched water irrigation in Vigna unguiculata seedling. J Clean Prod 202:101–108. Scholar
  32. Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99PubMedCrossRefGoogle Scholar
  33. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefGoogle Scholar
  34. Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257PubMedGoogle Scholar
  35. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214PubMedCrossRefGoogle Scholar
  36. Corpas FJ, Barroso JB (2017) Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O 2·-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 68:103–110PubMedCrossRefGoogle Scholar
  37. Corrêa Martins MN, de Souza VV, Souza TDS (2016) Genotoxic and mutagenic effects of sewage sludge on higher plants. Ecotoxicol Environ Saf 124:489–496. Scholar
  38. Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, Yan C (2017) Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicol Environ Saf 139:272–279. Scholar
  39. DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132PubMedCrossRefGoogle Scholar
  40. Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A (2011) Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta 234:139–156PubMedCrossRefGoogle Scholar
  41. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468. Scholar
  42. Deng Y, Li D, Huang Y, Huang S (2017a) Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Indust Crops Products 107:453–457. Scholar
  43. Deng Y, Li D, Huang Y, Huang S (2017b) Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Ind Crop Prod 107:453–457CrossRefGoogle Scholar
  44. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  45. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gad SC, Pham T (2014) Selenium A2—Wexler, Philip. Encyclopedia of toxicology, 3rd edn. Academic Press, Oxford, pp 232–235CrossRefGoogle Scholar
  47. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46CrossRefGoogle Scholar
  48. Gang W, Zhen-Kuan W, Yong-Xiang W, Li-Ye C, Hong-Bo S (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Colloids Surf B: Biointerfaces 59:113–119PubMedCrossRefGoogle Scholar
  49. Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15PubMedCrossRefGoogle Scholar
  50. Ghiani A, Fumagalli P, Van TN, Gentili R, Citterio S (2014) The combined toxic and genotoxic effects of Cd and As to plant bioindicator Trifolium repens L. PLoS One 9:e99239PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. Scholar
  52. Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23Google Scholar
  53. Golob A, Gadžo D, Stibilj V, Djikić M, Gavrić T, Kreft I, Germ M (2016) Sulphur interferes with selenium accumulation in Tartary buckwheat plants. Plant Physiol Biochem 108:32–36PubMedCrossRefGoogle Scholar
  54. Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11:e0160157PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gong B, Nie W, Yan Y, Gao Z, Shi Q (2017) Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: insight into regulatory mechanisms using proteomics. J Hazard Mater 336:202–213PubMedCrossRefGoogle Scholar
  56. Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28PubMedCrossRefGoogle Scholar
  58. Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516PubMedCrossRefGoogle Scholar
  59. Guo H, Chen H, Hong C, Jiang D, Zheng B (2017) Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Ecotoxicol Environ Saf 141:119–128. Scholar
  60. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466. Scholar
  61. He H, He L, Gu M (2014) The diversity of nitric oxide function in plant responses to metal stress. Biometals 27:219–228PubMedCrossRefGoogle Scholar
  62. He H, Huang W, Oo TL, Gu M, He L-F (2017) Nitric oxide inhibits aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips. J Hazard Mater 333:285–292PubMedCrossRefGoogle Scholar
  63. Hirata A, Corcoran GB, Hirata F (2011) Carcinogenic heavy metals, As 3+ and Cr 6+, increase affinity of nuclear mono-ubiquitinated annexin A1 for DNA containing 8-oxo-guanosine, and promote translesion DNA synthesis. Toxicol Appl Pharmacol 252:159–164PubMedCrossRefGoogle Scholar
  64. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012Google Scholar
  65. Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69PubMedCrossRefGoogle Scholar
  66. İşeri ÖD, Körpe DA, Yurtcu E, Sahin FI, Haberal M (2011) Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep 30:1713–1721PubMedCrossRefGoogle Scholar
  67. Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039PubMedPubMedCentralCrossRefGoogle Scholar
  68. Khairy AIH, Oh MJ, Lee SM, Roh KS (2016) Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase. Biochimie Open 2:41–51PubMedPubMedCentralCrossRefGoogle Scholar
  69. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2016) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268CrossRefGoogle Scholar
  70. Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017a) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Anjum N et al (eds) Enhancing cleanup of environmental pollutants: non biological approaches, vol 2. SpringerGoogle Scholar
  71. Khalid S, Shahid M, Dumat C, Niazi NK, Bibi I, Bakhat FS, Abbas G, Murtaza B, Javeed HMR (2017b) Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: implications for health risk assessment and phytoremediation. Int J Phytoremediation 19(11):1037–1046PubMedCrossRefGoogle Scholar
  72. Kim Y-O, Bae H-J, Cho E, Kang H (2017) Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front Plant Sci 8:683. Scholar
  73. Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2017) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255(1):11–24PubMedCrossRefGoogle Scholar
  74. Kotapati KV, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5:240–250. Scholar
  75. Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res-Fund Mol M 570:149–161CrossRefGoogle Scholar
  76. Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354PubMedPubMedCentralCrossRefGoogle Scholar
  77. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272PubMedCrossRefGoogle Scholar
  78. Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931PubMedCrossRefGoogle Scholar
  79. Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in alpha-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089. Scholar
  80. Kumar A, Dhingra G, Gupta S (2015) Genotoxicity due to chromium-mitotic effects in Vigna Angularis (L.) Gaertn. (Adzuki Bean). Int J Environ Rehab Conserv 2:161–168Google Scholar
  81. Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136PubMedCrossRefGoogle Scholar
  82. Lasswell J, Rogg LE, Nelson DC, Rongey C, Bartel B (2000) Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 12:2395–2408PubMedPubMedCentralCrossRefGoogle Scholar
  83. Li Z, Keasling JD, Niyogi KK (2012) Overlapping photoprotective function of vitamin E and carotenoids in chlamydomonas. Plant Physiol 158:313–323. Scholar
  84. Li X, Ma L, Bu N, Li Y, Zhang L (2014a) Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biol Plant 58:195–199CrossRefGoogle Scholar
  85. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014b) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853PubMedCrossRefGoogle Scholar
  86. Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540PubMedCrossRefGoogle Scholar
  87. Liu Z, Ding Y, Wang F, Ye Y, Zhu C (2016) Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 35:719–731PubMedCrossRefGoogle Scholar
  88. Lou LQ, Shi GL, Wu JH, Zhu S, Qian M, Wang HZ, Cai QS (2015) The influence of phosphorus on arsenic uptake/efflux and as toxicity to wheat roots in comparison with sulfur and silicon. J Plant Growth Regul 34:242–250CrossRefGoogle Scholar
  89. Maleki M, Ghorbanpour M, Kariman K (2017) Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene 11:247–254CrossRefGoogle Scholar
  90. Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57:1795–1807PubMedCrossRefGoogle Scholar
  92. Matysik J, Alia B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532Google Scholar
  93. Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mishra A, Choudhuri M (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415CrossRefGoogle Scholar
  95. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  96. Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source, impact, and remedies. In: Khan MS et al (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, Netherlands, pp 1–28Google Scholar
  97. Moravcová Š, Tůma J, Dučaiová ZK, Waligórski P, Kula M, Saja D, Słomka A, Bąba W, Libik-Konieczny M (2018) Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol Biochem 122:19–30. Scholar
  98. Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973PubMedCrossRefGoogle Scholar
  100. Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran L-SP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223PubMedCrossRefGoogle Scholar
  101. Munne-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748PubMedCrossRefGoogle Scholar
  102. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  103. Namdjoyan S, Kermanian H, Soorki AA, Tabatabaei SM, Elyasi N (2017) Interactive effects of Salicylic acid and nitric oxide in alleviating zinc toxicity of Safflower (Carthamus tinctorius L.). Ecotoxicology 26(6):752–761PubMedCrossRefGoogle Scholar
  104. Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41CrossRefGoogle Scholar
  105. Natasha SM, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934PubMedCrossRefGoogle Scholar
  106. Negrin VL, Teixeira B, Godinho RM, Mendes R, Vale C (2017) Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance. Mar Pollut Bull 121:78–84. Scholar
  107. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1763:609–620Google Scholar
  108. Niazi NK, Bashir S, Bibi I, Murtaza B, Shahid M, Javed MT, Shakoor MB, Saqib ZA, Nawaz MF, Aslam Z (2016) Phytoremediation of arsenic-contaminated soils using arsenic hyperaccumulating ferns. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 521–545CrossRefGoogle Scholar
  109. Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Nawaz MF (2017) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651PubMedCrossRefGoogle Scholar
  110. Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41PubMedCrossRefGoogle Scholar
  111. Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442PubMedCrossRefGoogle Scholar
  112. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, MARQUEZ-GARCIA B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484PubMedCrossRefGoogle Scholar
  113. Pan J-W, Zheng K, Ye D, Yi H-L, Jiang Z-M, Jing C-T, Pan W-H, Zhu M-Y (2004) Aluminum-induced ultraweak luminescence changes and sister-chromatid exchanges in root tip cells of barley. Plant Sci 167:1391–1399CrossRefGoogle Scholar
  114. Panda BB, Panda KK (2002) Genotoxicity and mutagenicity of metals in plants. In: Prasad MNV, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer, Dordrecht, pp 395–414CrossRefGoogle Scholar
  115. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288PubMedCrossRefGoogle Scholar
  116. Per TS, Masood A, Khan NA (2017) Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide 68:111–124PubMedCrossRefGoogle Scholar
  117. Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci 98:9995–10000PubMedCrossRefGoogle Scholar
  118. Popova L, Maslenkova L, Yordanova R, Krantev A, Szalai G, Janda T (2008) Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Gen Appl Plant Physiol 34:133–148Google Scholar
  119. Potocki S, Valensin D, Kozlowski H (2014) The specificity of interaction of Zn 2+, Ni 2+ and Cu 2+ ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans 43:10215–10223PubMedCrossRefGoogle Scholar
  120. Pourrut B, Jean S, Silvestre J, Pinelli E (2011a) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res 726:123–128. Scholar
  121. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011b) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. Scholar
  122. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011c) Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 213. Springer, New York, NY, pp 113–136Google Scholar
  123. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011d) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. Scholar
  124. Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 121–147CrossRefGoogle Scholar
  125. Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181. Scholar
  126. Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C (2017a) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation 19(7):662–669. Scholar
  127. Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2017b) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments 18(6):2271–2281. Scholar
  128. Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2018) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments 18:2271–2281CrossRefGoogle Scholar
  129. Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101CrossRefGoogle Scholar
  130. Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284PubMedCrossRefGoogle Scholar
  131. Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144PubMedPubMedCentralGoogle Scholar
  132. Romè C, Huang X-Y, Danku J, Salt DE, Sebastiani L (2016) Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafranca clone. J Plant Physiol 202:83–91PubMedCrossRefGoogle Scholar
  133. Römheld V, Schaaf G (2004) Iron transport in plants: future research in view of a plant nutritionist and a molecular biologist. Soil Sci Plant Nutr 50:1003–1012CrossRefGoogle Scholar
  134. Rossman TG (2000) Cloning genes whose levels of expression are altered by metals: implications for human health research. Am J Ind Med 38:335–339PubMedCrossRefGoogle Scholar
  135. Ruíz-Torres C, Feriche-Linares R, Rodríguez-Ruíz M, Palma JM, Corpas FJ (2017) Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots. J Plant Physiol 211:27–35PubMedCrossRefGoogle Scholar
  136. Saeed MF, Shaheen M, Ahmad I, Zakir A, Nadeem M, Chishti AA, Shahid M, Bakhsh K, Damalas CA (2017) Pesticide exposure in the local community of Vehari District in Pakistan: an assessment of knowledge and residues in human blood. Sci Total Environ 587:137–144PubMedCrossRefGoogle Scholar
  137. Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52. Scholar
  138. Saidi I, Yousfi N, Borgi MA (2017) Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J Plant Nutr 40(16):2326–2335CrossRefGoogle Scholar
  139. Saleem M, Asghar HN, Zahir ZA, Shahid M (2018) Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195:606–614. Scholar
  140. Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355PubMedCrossRefGoogle Scholar
  141. Saxena I, Shekhawat G (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20PubMedCrossRefGoogle Scholar
  142. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine-chelated metals. J Biol Chem 279:9091–9096PubMedCrossRefGoogle Scholar
  143. Shabir R, Abbas G, Saqib M, Shahid M, Shah G, Akram M, Niazi N, Naeem M, Hussain M, Ashraf F (2018) Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. Int J Phytoremediation 20(7):739–746. Scholar
  144. Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR, Ahmad FD (2010) Heavy metal toxicity in plants. In: Ashraf M, Ozturk M, Ahmad M (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 71–97. Scholar
  145. Shahbaz AK, Iqbal M, Jabbar A, Hussain S, Ibrahim M (2018) Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: related changes in various parameters of red clover. Ecotoxicol Environ Saf 149:116–127. Scholar
  146. Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84PubMedCrossRefGoogle Scholar
  147. Shahid M, Dumat C, Silvestre J, Pinelli E (2012a) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697. Scholar
  148. Shahid M, Dumat C, Aslam M, Pinelli E (2012b) Assessment of lead speciation by organic ligands using speciation models. Chem Speciat Bioavailab 24:248–252. Scholar
  149. Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012c) Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation 14:493–505PubMedCrossRefGoogle Scholar
  150. Shahid M, Ferrand E, Schreck E, Dumat C (2013a) Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127PubMedGoogle Scholar
  151. Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C (2013b) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459CrossRefGoogle Scholar
  152. Shahid M, Pinelli E, Pourrut B, Dumat C (2014a) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor 144:282–289CrossRefGoogle Scholar
  153. Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014b) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144(Part B):290–297. Scholar
  154. Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014c) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments 14:835–843CrossRefGoogle Scholar
  155. Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014d) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44PubMedGoogle Scholar
  156. Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015a) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454. Scholar
  157. Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015b) Heavy metal stress and crop productivity. In: Hakeem K (ed) Crop production and global environmental issues. Springer, Cham, pp 1–25Google Scholar
  158. Shahid M, Ahmad A, Khalid S, Siddique HF, Saeed MF, Ashraf MR, Sabir M, Niazi NK, Bilal M, Naqvi STA (2016) Pesticides pollution in agricultural soils of Pakistan. In: Hakeem K, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, pp 199–229Google Scholar
  159. Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2017a) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137PubMedGoogle Scholar
  160. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017b) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. Scholar
  161. Shahid M, Rafiq M, Niazi NK, Dumat C, Shamshad S, Khalid S, Bibi I (2017c) Arsenic accumulation and physiological attributes of spinach in the presence of amendments: an implication to reduce health risk. Environ Sci Pollut Res 24:16097–16106CrossRefGoogle Scholar
  162. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017d) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533PubMedCrossRefGoogle Scholar
  163. Shahid M, Pinelli E, Dumat C (2018a) Tracing trends in plant physiology and biochemistry: need of databases from genetic to kingdom level. Plant Physiol Biochem 127:630–635PubMedCrossRefGoogle Scholar
  164. Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018b) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934PubMedCrossRefGoogle Scholar
  165. Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018c) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242:307–319PubMedCrossRefGoogle Scholar
  166. Shahid M, Shamshad S, Farooq ABU, Rafiq M, Khalid S, Dumat C, Zhang Y, Hussain I, Niazi NK (2018d) Comparative effect of organic amendments on physio-biochemical traits of young and old bean leaves grown under cadmium stress: a multivariate analysis. Environ Sci Pollut Res 26(12):11579–11590CrossRefGoogle Scholar
  167. Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390PubMedPubMedCentralCrossRefGoogle Scholar
  168. Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Shahid M, Ali S, Bolan NS, Ok YS (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46:467–499CrossRefGoogle Scholar
  169. Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A (2018a) The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 199:737–746PubMedCrossRefGoogle Scholar
  170. Shakoor MB, Niazi NK, Bibi I, Shahid M, Sharif F, Bashir S, Shaheen SM, Wang H, Tsang DC, Ok YS (2018b) Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci Total Environ 645:1444–1455PubMedCrossRefGoogle Scholar
  171. Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB—Arabidopsis stress responsive transcription factor database. Int J Plant Genomics 2009:583429PubMedPubMedCentralCrossRefGoogle Scholar
  172. Shamshad S, Shahid M, Rafiq M, Khalid S, Dumat C, Sabir M, Murtaza B, Farooq ABU, Shah NS (2018) Effect of organic amendments on cadmium stress to pea: a multivariate comparison of germinating vs young seedlings and younger vs older leaves. Ecotoxicol Environ Saf 151:91–97PubMedCrossRefGoogle Scholar
  173. Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefGoogle Scholar
  174. Sheng Z, Chaohai W, Chaodeng L, Haizhen W (2008) Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment. J Environ Sci 20:1514–1518CrossRefGoogle Scholar
  175. Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2018) Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere 205:234–243. Scholar
  176. Silva S, Silva P, Oliveira H, Gaivao I, Matos M, Pinto-Carnide O, Santos C (2017) Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiol Biochem 112:109–116. Scholar
  177. Silva VM, Boleta EHM, Lanza MGDB, Lavres J, Martins JT, Santos EF, dos Santos FLM, Putti FF, Junior EF, White PJ, Broadley MR, de Carvalho HWP, dos Reis AR (2018) Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environ Exp Bot 150:172–182. Scholar
  178. Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V (2015a) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272PubMedGoogle Scholar
  179. Singh M, Singh VP, Dubey G, Prasad SM (2015b) Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicol Environ Saf 117:164–173PubMedCrossRefGoogle Scholar
  180. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015c) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. Scholar
  181. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143PubMedPubMedCentralGoogle Scholar
  182. Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD (2017a) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173. Scholar
  183. Singh S, Sounderajan S, Kumar K, Fulzele D (2017b) Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicol Environ Saf 145:50–56PubMedCrossRefGoogle Scholar
  184. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847PubMedPubMedCentralCrossRefGoogle Scholar
  185. Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci 99:11640–11645PubMedCrossRefGoogle Scholar
  186. Ślusarczyk J, Wierzbicka M, Suchocki P, Kuraś M (2015) Ultrastructural changes in onion (Allium cepa L.) root tip meristem cells treated with Selol and sodium selenate (IV). Caryologia 68:306–316. Scholar
  187. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  188. Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125CrossRefGoogle Scholar
  189. Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107:21187–21192PubMedCrossRefPubMedCentralGoogle Scholar
  190. Song Y, Hudek L, Freestone D, Puhui J, Michalczyk A, Senlin Z, Ackland M (2014) Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ Chem 11:653–660Google Scholar
  191. Song Y, Zhang L-L, Li J, He X-J, Chen M, Deng Y (2018) High-potential accumulation and tolerance in the submerged hydrophyte Hydrilla verticillata (L.f.) Royle for nickel-contaminated water. Ecotoxicol Environ Saf 161:553–562. Scholar
  192. Sorrentino MC, Capozzi F, Giordano S, Spagnuolo V (2017) Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: an evaluation by ISSR markers. Chemosphere 181:208–215. Scholar
  193. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  194. Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S (2018) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res:1–12Google Scholar
  195. Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8PubMedCrossRefGoogle Scholar
  196. Tamás L, Mistrík I, Zelinová V (2017) Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environ Exp Bot 140:34–40CrossRefGoogle Scholar
  197. Téllez Vargas J, Rodríguez-Monroy M, López Meyer M, Montes-Belmont R, Sepúlveda-Jiménez G (2017) Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 136:85–93. Scholar
  198. Thakur S, Singh L, Zularisam A, Sakinah M, Din M (2017) Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biol Plant 61:595–598CrossRefGoogle Scholar
  199. Tiwari S, Sarangi BK (2017) Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecol Eng 100:211–218CrossRefGoogle Scholar
  200. Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397PubMedCrossRefGoogle Scholar
  201. Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) DC show differences in binding to heavy metals in vitro. Mol Gen Genomics 281:99–108CrossRefGoogle Scholar
  202. Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJ (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171:544–553PubMedCrossRefGoogle Scholar
  203. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefPubMedCentralGoogle Scholar
  204. Verkleij JA, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguébel J-P, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22CrossRefGoogle Scholar
  205. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312PubMedCrossRefGoogle Scholar
  206. Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515–1522PubMedCrossRefGoogle Scholar
  207. Wang L-H, Meng X-Y, Guo B, Duan G-L (2007) Reduction of arsenic oxidative toxicity by phosphate is not related to arsenate reductase activity in wheat plants. J Plant Nutr 30:2105–2117. Scholar
  208. Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H 2 O 2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306PubMedCrossRefGoogle Scholar
  209. Wang Z, Li Q, Wu W, Guo J, Yang Y (2017) Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. Ecotoxicol Environ Saf 135:75–81. Scholar
  210. Wang X, Zhi J, Liu X, Zhang H, Liu H, Xu J (2018) Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr.(PtoHMA5) demonstrate improved cadmium transport. Int J Biol Macromol 113:655–661PubMedCrossRefGoogle Scholar
  211. Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465:104–126CrossRefGoogle Scholar
  212. Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–11CrossRefGoogle Scholar
  213. Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C (2016) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci 46:16–27CrossRefGoogle Scholar
  214. Xiong T, Zhang T, Dumat C, Sobanska S, Dappe V, Shahid M, Xian Y, Li X, Li S (2018) Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility. Environ Sci Pollut Res:1–15. Scholar
  215. Xu Y, Yu W, Ma Q, Zhou H, Jiang C (2017) Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicol Environ Saf 142:250–256PubMedCrossRefGoogle Scholar
  216. Yang JL, Wang LC, Chang CY, Liu TY (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33:194–201PubMedCrossRefGoogle Scholar
  217. Yi H, Si L (2007) Vicia root-micronucleus and sister chromatid exchange assays on the genotoxicity of selenium compounds. Mutat Res Genet Toxicol Environ Mutagen 630:92–96CrossRefGoogle Scholar
  218. Yousefi Z, Kolahi M, Majd A, Jonoubi P (2018) Effect of cadmium on morphometric traits, antioxidant enzyme activity and phytochelatin synthase gene expression (SoPCS) of Saccharum officinarum var. cp48-103 in vitro. Ecotoxicol Environ Saf 157:472–481. Scholar
  219. Yu S, Chen N, Chi X, Pan L, Chen M, Wang T, Wang C, Yang Z, Wang M (2015) Transcription factors and salt stress tolerance in plants. In: Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, p 143Google Scholar
  220. Zhang X, Yu HJ, Zhang XM, Yang XY, Zhao WC, Li Q, Jiang WJ (2016) Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiol Biochem 108:222–230PubMedCrossRefGoogle Scholar
  221. Zhang J, Yu J, Hong H, Liu J, Lu H, Yan C (2017a) Identification of heavy metal pollutant tolerance-associated genes in Avicennia marina (Forsk.) by suppression subtractive hybridization. Mar Pollut Bull 119:81–91PubMedCrossRefGoogle Scholar
  222. Zhang LL, Zhu XM, Kuang YW (2017b) Responses of Pinus massoniana seedlings to lead stress. Biol Plant 61(4):785–790. Scholar
  223. Zhang T, Lu Q, Su C, Yang Y, Hu D, Xu Q (2017c) Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicol Environ Saf 143:46–56PubMedCrossRefGoogle Scholar
  224. Zhang H, Ding Y, Zhi J, Li X, Liu H, Xu J (2018) Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. Int J Biol Macromol 116:676–682PubMedCrossRefGoogle Scholar
  225. Zhiguo E, Tingting L, Chen C, Lei W (2018) Genome-wide survey and expression analysis of P 1B-ATPases in rice, maize and sorghum. Rice Sci 25:208–217CrossRefGoogle Scholar
  226. Zhou X, Gu Z, Xu H, Chen L, Tao G, Yu Y, Li K (2016) The effects of exogenous ascorbic acid on the mechanism of physiological and biochemical responses to nitrate uptake in two rice cultivars (Oryza sativa L.) under aluminum stress. J Plant Growth Regul 35:1013–1024. Scholar
  227. Zhu Z, Chen Y, Shi G, Zhang X (2017) Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem 219:179–184PubMedCrossRefGoogle Scholar
  228. Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18:83. Scholar
  229. Zhuo Y, Qiu S, Amombo E, Zhu Q, Tang D, Huang M, Han X, Chen L, Wang S, Chen K (2017) Nitric oxide alleviates cadmium toxicity in tall fescue photosystem II on the electron donor side. Environ Exp Bot 137:110–118CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Shahid
    • 1
  • Natasha
    • 1
  • Sana Khalid
    • 1
  • Ghulam Abbas
    • 1
  • Nabeel Khan Niazi
    • 2
    • 3
  • Behzad Murtaza
    • 1
  • Muhammad Imtiaz Rashid
    • 4
  • Irshad Bibi
    • 3
  1. 1.Department of Environmental SciencesCOMSATS University IslamabadVehariPakistan
  2. 2.School of Civil Engineering and SurveyingUniversity of Southern QueenslandToowoombaAustralia
  3. 3.Institute of Soil and Environmental SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
  4. 4.Center of Excellence in Environmental StudiesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations