Genomics and Physiological Evidence of Heavy Metal Tolerance in Plants

Effectiveness of Legume–PGPB Symbioses in Phytoremediation of Heavy Metal-Contaminated Soils and Defence Response Mechanisms
  • Salwa Harzalli Jebara
  • Imen Challougui Fatnassi
  • Manel Chiboub
  • Omar Saadani
  • Souhir Abdelkrim
  • Khedhiri Mannai
  • Moez Jebara


Heavy metals (HMs) contamination of soils poses a serious threat to plants and microorganisms in the environment and attacks human health via the food chain. Phytoremediation is an environmentally friendly approach that consists in the use of plants and microorganisms to alleviate HMs contamination. Currently, there is growing interest in the usefulness of legumes inoculated with HMs-resistant plant growth-promoting bacteria (PGPB) symbioses in phytoremediation. PGPB, including rhizobia and endophytes, stimulate legume plant growth through plant growth-promoting (PGP) traits, such as nitrogen fixation, phosphorus solubilization, phytohormone synthesis and siderophore release. Legumes–PGPB symbioses induce mobility of metals and nutrients by different manners, such as acidification, precipitation, bioaccumulation and chelation, and the formed complexes are transported into cell vacuoles via protein transporters. PGPB can enhance plant uptake of HMs in the phytoextraction process or reduce HMs accumulation in the aerial part of plants in the phytostabilization process.

Elevated HMs in soils cause generation of reactive oxygen species (ROS) in plant organs, which can cause oxidative stress, and inoculated legumes respond by stimulating several antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ascorbate peroxidise (APX). Furthermore, analysis of quantitative gene expressions involved in HMs tolerance, such as F-box, phytochelatin synthase (PCS) and metallothioneins (MTs), showed modulation of responses under HMs stress and co-inoculation with PGPB. Results suggest that certain antioxidant enzymes and genes can be involved in HMs tolerance mechanisms of legumes co-inoculated with HMs-resistant PGPB.


Heavy metals Legumes Plant growth-promoting bacteria (PGPB) Symbioses 


  1. Abdelkrim S, Harzalli Jebara S, Saadani O, Chiboub M, Abid G, Jebara M (2018) Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 58:579PubMedCrossRefGoogle Scholar
  2. Adamis PDB, Gomes DS, Pinto MLCC, Panek AD, Eleutherio ECA (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88PubMedCrossRefGoogle Scholar
  3. Ahemad M (2014) Remediation of metalliferous soils through the heavy metal plant growth promoting bacteria: paradigms and prospects. Arab J Chem.
  4. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ 26:1–20CrossRefGoogle Scholar
  5. Anjum NA, Ahmed I, Valega M, Figueira E, Duarte AC, Pereira E (2013) Phenological development stages variation versus mercury tolerance, accumulation and allocation in sat marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal). Environ Sci Pollut Res 20:3910–3922CrossRefGoogle Scholar
  6. Azcon R, Peralvarez MDC, Biro B, Roldan A, Ruiz-Lozano JM (2009) Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multi contaminated soil amended with treated lignocellulosic agrowaste. Appl Soil Ecol 41:168–177CrossRefGoogle Scholar
  7. Baycu G, Tolunay D, Ozden H, Guenenebakan S (2006) Ecophysiological and seasonal variations in Cd, Pb, Zn and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut 143:545–554PubMedCrossRefGoogle Scholar
  8. Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insight into antioxidant defenses of legume root nodules. New Phytol 188:960–976PubMedCrossRefGoogle Scholar
  9. Beladi M, Kashani A, Habibi D, Paknejad F, Golshan M (2011) Uptake and effects of lead and copper on three plant species in contaminated soils: role of phytochelatin. Afr J Agric Res 6:3483–3492Google Scholar
  10. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  11. Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bo Song J, Wang YX, Li HB, Li BW, Zhou ZS, Gao S, Yang ZM (2015) The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genomics 15:495–507CrossRefGoogle Scholar
  13. Bontemps C, Elliott GN, Simon MF, Dos Reis FB, Junior Gross E et al (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52PubMedCrossRefGoogle Scholar
  14. Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228PubMedCrossRefGoogle Scholar
  15. Carrasco JA, Armanio P, Pajuelo E, Burgos A, Caviedes MA, Lopez R, Chamber MA, Palomeras AJ (2005) Isolation and characterization of symbiotically effective rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140CrossRefGoogle Scholar
  16. Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814CrossRefGoogle Scholar
  17. Chen WM, Yu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupria vidustai waninsis and its effects on heavy metals removal by nodulated Mimosa pudica. J Hazard Mater 151:364–372PubMedCrossRefGoogle Scholar
  18. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798PubMedCrossRefGoogle Scholar
  19. Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular weight organic acids exuded by Millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38CrossRefGoogle Scholar
  20. Chiboub M, Saadani O, Challougui Fatnassi I, Souhir A, Jebara M, Harzalli Jebara S (2016) Characterization of plant growth promoting rhizobacteria efficient and resistant to cadmium isolated from Sulla coronaria. C R Biol 399:391–398CrossRefGoogle Scholar
  21. Chiboub M, Harzalli Jebara S, Saadani O, Challougui Fatnassi I, Abdelkerim S, Jebara M (2017) Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. J Plant Res 131:99. Scholar
  22. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708, 12 pages. Scholar
  23. Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163(3):319–332PubMedCrossRefGoogle Scholar
  24. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  25. Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological Roles of Glutathione S-Transferases in Soybean Root Nodules. Plant Physiol 150(1): 521–530PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria. J Hazard Mater 177:323–330PubMedCrossRefGoogle Scholar
  27. Davies LC, Carias CC, Novais JM, Martins-Dias S (2005) Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol Eng 25:594–605CrossRefGoogle Scholar
  28. De Meyer SE, Briscoe L, Martínez-Hidalgo P, Agapakis CM, Estrada de-los Santos P, Seshadri R et al (2016) Symbiotic Burkholderia species show diverse arrangements of nif/fix and nod genes, and lack typical high affinity cytochrome cbb3 oxidase genes. Mol Plant Microbe Interact 29:609–619PubMedCrossRefGoogle Scholar
  29. Dixit R, Wasiullah D, Malaviya Kuppusamy P, Udai BS, Asha S, Renu S, Bhanu PS, Jai PR, Pawan Kumar S, Harshad L, Diby P (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212CrossRefGoogle Scholar
  30. Du J, Yang JL, Li CH (2012) Advances in metallotionein studies in forest trees. Plant OMICS 5(1):46–51Google Scholar
  31. Edao HG (2017) Heavy metals pollution of soil; toxicity and phytoremediation techniques. Int J Adv Res 1(1):29–41Google Scholar
  32. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1–18. Scholar
  33. Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2011) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 122:703–709CrossRefGoogle Scholar
  34. Fatnassi CI, Chiboub M, Saadani O, Jebara M, Harzalli JS (2013) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Basic Microbiol 53:1–9CrossRefGoogle Scholar
  35. Fatnassi CI, Chiboub M, Jebara M, Jebara SH (2014). Bacteria associated with different legume species grown in heavy-metal contaminated soils. Int J Agric Pol Res. 2 (12): 460-467Google Scholar
  36. Fatnassi CI, Chiboub CM, Saadani O, Jebara M, Jebara HS (2015) Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338:241–254PubMedCrossRefGoogle Scholar
  37. Fischerova Z, Tlustos P, Szakova J, Sichorova K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100PubMedCrossRefGoogle Scholar
  38. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedPubMedCentralCrossRefGoogle Scholar
  39. Glick BR (2015) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefGoogle Scholar
  40. Gomes MP, Marques LLTC, Soares AM (2013) Cadmium effects on mineral nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia 68:223–230Google Scholar
  41. Gómez-Sagasti MT, Marino D (2015) PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation. Front Plant Sci 6:81. Scholar
  42. Gopalakrishnan S, Sathya A, Vijayabharathi R, Kumar R, Varshney CL, Gowda L, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377PubMedCrossRefGoogle Scholar
  43. Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the cleanup of toxic metals in the environment. Braz J Plant Physiol 17:53–64CrossRefGoogle Scholar
  44. Gupta DK, Chatterjee S, Datta S, Veer V, Walther C (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144. Scholar
  45. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288PubMedCrossRefGoogle Scholar
  46. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613PubMedCrossRefGoogle Scholar
  47. Hansda A, Anshumali VK, Usmani Z (2014) Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Res Sci Technol 6: 131–134Google Scholar
  48. Hao X, Lin Y, Johnstone L, Baltrus DA, Miller SJ, Wei G, Rensing C (2012) Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings. J Bacteriol 194:736–737PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediation 16:179–202PubMedCrossRefGoogle Scholar
  50. Harzalli Jebara S, Abdelkerim S, Challougui Fatnassi I, Chiboub M, Saadani O, Jebara M (2015a) Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils. J Basic Microbiol 55:346–353CrossRefGoogle Scholar
  51. Harzalli Jebara S, Saadani O, Challougui Fatnassi I, Chiboub M, Abdelkerim S, Jebara M (2015b) Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Environ Sci Pollut Res 22:2537–2545CrossRefGoogle Scholar
  52. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:37Google Scholar
  53. Hou X, Hou HJM (2013) Roles of manganese in photosystem II dynamics to irradiations and temperatures. Front Biol 8:312–322CrossRefGoogle Scholar
  54. Iqbal Tak H, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52Google Scholar
  55. Jia F, Wu B, Li H, Huang J, Zheng C (2013) Genome-wide identification and characterisation of F-box family in maize. Mol Genet Genomics 288:559–577PubMedCrossRefGoogle Scholar
  56. Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2008) Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol Biochem 40:2225–2236CrossRefGoogle Scholar
  57. López-Millán AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–596PubMedCrossRefGoogle Scholar
  58. Luo Q, Sun L, Hu X, Zhou R (2014) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS One 9:e115581. Scholar
  59. Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599–616PubMedCrossRefGoogle Scholar
  60. Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentines oils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725PubMedCrossRefGoogle Scholar
  61. Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H (2015) Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci 5:757. Scholar
  62. Ma Y, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7.
  63. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act assignaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368PubMedPubMedCentralCrossRefGoogle Scholar
  64. Milner MJ, Seamo J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nadgórska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res 20:1124–1134CrossRefGoogle Scholar
  66. Ovečka M, Takáč T (2013) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):71–86Google Scholar
  67. Pagani MA, Tomas M, Carrillo J et al (2012) The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem 117:306–315PubMedCrossRefGoogle Scholar
  68. Pajuelo E, Dary M, Palomares A, Rodriguez-Llorente I, Carrasco J, Chamber M (2008a) Biorhizoremediation of Heavy Metals Toxicity Using Rhizobium-Legume Symbioses. Springer 101–104Google Scholar
  69. Pajuelo E, Rodriguez -Llorente ID, Dary M, Palomares AJ (2008b) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Pollut 154: 203–211PubMedCrossRefGoogle Scholar
  70. Pilar MH, Ann MH (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes J 1(2):70–82CrossRefGoogle Scholar
  71. Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574PubMedCrossRefGoogle Scholar
  72. Reddy MS, Lakshmi P, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242PubMedCrossRefGoogle Scholar
  73. Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH (2016) In situ phytostabilisation capacity of three legumes and their associated plant growth promoting bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicol Environ Saf 130: 263–269PubMedCrossRefGoogle Scholar
  74. Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean up. Bot Rev 78:32–62CrossRefGoogle Scholar
  75. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143–1146PubMedPubMedCentralGoogle Scholar
  76. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306PubMedPubMedCentralCrossRefGoogle Scholar
  77. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol. 49(2):195–204PubMedCrossRefGoogle Scholar
  78. Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32. Scholar
  79. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144PubMedCrossRefGoogle Scholar
  80. Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577PubMedCrossRefGoogle Scholar
  81. Wang C, Tian Y, Wang X, Geng J, Jiang J, Yu H, Wang C (2010) Lead contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology 19:1130–1139PubMedCrossRefGoogle Scholar
  82. Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradirhizobium sp (Vigna) on growth symbioses seed yield and metal uptake by green gram plants. Chemosphere 70:36–45PubMedCrossRefGoogle Scholar
  83. Wani PA, Khan MS, Zaidi A (2008) Effect of metal tolerant plant growth promoting rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42PubMedCrossRefGoogle Scholar
  84. Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS332 isolated from root nodule of Lespedeza cuneata in old mine tailings in China. J Hazard Mater 162:50–56PubMedCrossRefGoogle Scholar
  85. Wu Z, Zhao X, Scu X, Tang Q, Nie Z, Qu C, Chen Z, Hu C (2015) Antioxidant enzyme systems and the ascorbate–glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Chemosphere 138:526–536PubMedCrossRefGoogle Scholar
  86. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  87. Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation and yield of lentil. Biol Fertil Soil 47:457–465CrossRefGoogle Scholar
  88. Zhang H, Xu W, Guo J, He Z, Ma M (2005) Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci 169:1059–1065CrossRefGoogle Scholar
  89. Zhang S, Zhang H, Qin R, Jiang W, Liu D (2009) Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18:814–823PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Salwa Harzalli Jebara
    • 1
  • Imen Challougui Fatnassi
    • 1
  • Manel Chiboub
    • 1
  • Omar Saadani
    • 1
  • Souhir Abdelkrim
    • 1
  • Khedhiri Mannai
    • 1
  • Moez Jebara
    • 1
  1. 1.Centre de Biotechnologie Borj Cedria, Laboratoire des LégumineusesUniversity Tunis El ManarHammamLifTunisia

Personalised recommendations