Advertisement

Systems Biology of Metal Tolerance in Plants: A Case Study on the Effects of Cd Exposure on Two Model Plants

  • Annelie Gutsch
  • Stéphanie Vandionant
  • Kjell SergeantEmail author
  • Marijke Jozefczak
  • Jaco Vangronsveld
  • Jean-François Hausman
  • Ann Cuypers
Chapter

Abstract

Plant growth and biomass production are affected by environmental stresses of natural and anthropogenic origin, significantly restricting their full valorisation potential for economic and societal use. Especially, environmental pollution with metals, notably cadmium (Cd), is of great concern. Cadmium enters the plant through metal transporters, which are embedded in the plasma membrane of root cells, thereby competing with the uptake of essential nutrients and altering the nutrient balance (Fig. 2.1, unpublished data).

Keywords

Cadmium Long-term exposure Gene expression Proteomics Metabolomics integration 

Notes

Acknowledgement

This publication is the result of the bilateral project CadWALL supported by the Luxembourg National Research Fund (FNR/FWO INTER/FWO/13/14).

References

  1. Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:1–17.  https://doi.org/10.3389/fpls.2013.00111CrossRefGoogle Scholar
  2. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica Juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9(9):2419–2431.  https://doi.org/10.1002/pmic.200800478CrossRefPubMedGoogle Scholar
  3. Békésiová B, Hraška Š, Libantová J, Moravčíková J, Matušíková I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35(4):579–588.  https://doi.org/10.1007/s11033-007-9127-xCrossRefPubMedGoogle Scholar
  4. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum Sativum L.) seedlings. C R Biol 328(1):23–31.  https://doi.org/10.1016/j.crvi.2004.10.001CrossRefPubMedGoogle Scholar
  5. Corso M, Schvartzman SM, Guzzo F, Souard F, Malkowski E, Hanikenne M, Verbruggen N (2018) Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytol 218(1):283–297.  https://doi.org/10.1111/nph.14948CrossRefPubMedGoogle Scholar
  6. Cui L, Pan G, Li L, Yan J, Zhang A, Bian R, Chang A (2012) The reduction of wheat Cd uptake in contaminated soil via biochar amendment: a two-year field experiment. Bioresources 7(4):5666–5676.  https://doi.org/10.15376/biores.7.4.5666-5676CrossRefGoogle Scholar
  7. Cunha AD (1987) The estimation of L-phenylalanine ammonia-lyase shows phenylpropanoid biosynthesis to be regulated by l-phenylalanine supply and availability. Phytochemistry 26(10):2723–2727.  https://doi.org/10.1016/S0031-9422(00)83579-7CrossRefGoogle Scholar
  8. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K et al (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940.  https://doi.org/10.1007/s10534-010-9329-xCrossRefPubMedGoogle Scholar
  9. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168(4):309–316.  https://doi.org/10.1016/j.jplph.2010.07.010CrossRefPubMedGoogle Scholar
  10. Cuypers A, Hendrix S, dos Reis RA, De Smet S, Deckers J, Gielen H, Jozefczak M et al (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470.  https://doi.org/10.3389/fpls.2016.00470CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097.  https://doi.org/10.2307/3870059CrossRefPubMedPubMedCentralGoogle Scholar
  12. Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta 225(5):1301–1312.  https://doi.org/10.1007/s00425-006-0425-7CrossRefPubMedGoogle Scholar
  13. Duruflé H, Clemente HS, Balliau T, Zivy M, Dunand C, Jamet E (2017) Cell wall proteome analysis of Arabidopsis thaliana mature stems. Proteomics 17(8):1–5.  https://doi.org/10.1002/pmic.201600449CrossRefGoogle Scholar
  14. Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63(3):1413–1421.  https://doi.org/10.1093/jxb/err384CrossRefPubMedGoogle Scholar
  15. Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4(1):112–166.  https://doi.org/10.3390/plants4010112CrossRefGoogle Scholar
  16. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46.  https://doi.org/10.1016/j.envexpbot.2012.04.006CrossRefGoogle Scholar
  17. Gutsch A, Keunen E, Guerriero G, Renaut J, Cuypers A, Hausman J-F, Sergeant K (2018a) Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. Plant Biol J 20:1023–1035.  https://doi.org/10.1111/plb.12865CrossRefGoogle Scholar
  18. Gutsch A, Zouaghi S, Renaut J, Cuypers A, Hausman J-F, Sergeant K (2018b) Changes in the proteome of Medicago sativa leaves in response to long-term cadmium exposure using a cell-wall targeted approach. Int J Mol Sci 19:2498.  https://doi.org/10.3390/ijms19092498CrossRefPubMedCentralGoogle Scholar
  19. Gutsch A, Sergeant K, Keunen E, Prinsen E, Guerriero G, Renaut J, Hausman JF, Cuypers A (2019) Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC Plant Biology. https://doi.org/10.1186/s12870-019-1859-y
  20. Hartwig A (2013) Cadmium and cancer. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality, vol Vol. 11, 11th edn. Springer, New York.  https://doi.org/10.1007/978-94-007-5179-8CrossRefGoogle Scholar
  21. Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310.  https://doi.org/10.3389/fpls.2012.00310CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hossain MK, Strezov V, Yin Chan K, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9):1167–1171.  https://doi.org/10.1016/j.chemosphere.2010.01.009CrossRefPubMedGoogle Scholar
  23. Huang W-k, Ji H-L, Gheysen G, Debode J, Kyndt T (2015) Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biol 15:267.  https://doi.org/10.1186/s12870-015-0654-7CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hyodo H, Yang SF (1971) Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings. Plant Physiol 47(6):765–770.  https://doi.org/10.1104/PP.47.6.765CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jacobson T, Priya S, Sharma SK, Andersson S, Jakobsson S, Tanghe R, Ashouri A et al (2017) Cadmium causes misfolding and aggregation of cytosolic proteins in yeast. Mol Cell Biol 37:e00490–e00416.  https://doi.org/10.1128/MCB.00490-16CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11(1):33–39.  https://doi.org/10.1016/j.tplants.2005.11.008CrossRefPubMedGoogle Scholar
  27. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175.  https://doi.org/10.3390/ijms13033145CrossRefPubMedPubMedCentralGoogle Scholar
  28. Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23.  https://doi.org/10.3389/fpls.2016.00023CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27(3):605–615.  https://doi.org/10.1007/s00299-007-0490-9CrossRefPubMedGoogle Scholar
  30. Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33(1):35–51.  https://doi.org/10.1007/s11738-010-0581-zCrossRefGoogle Scholar
  31. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3(5):547–562.  https://doi.org/10.1002/bbb.169CrossRefGoogle Scholar
  32. Lavola A, Julkunen-Tiitto R, De La Rosa TM, Lehto T, Aphalo PJ (2000) Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiol Plant 109(3):260–267.  https://doi.org/10.1034/j.1399-3054.2000.100306.xCrossRefGoogle Scholar
  33. Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K (2015) Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242(4):791–811.  https://doi.org/10.1007/s00425-015-2358-5CrossRefPubMedGoogle Scholar
  34. Li H, Liu Y, Chen Y, Wang S, Wang M, Xie T, Wang G (2016) Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci Rep 6:31616.  https://doi.org/10.1038/srep31616CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu C-J, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci 99(22):14578–14583.  https://doi.org/10.1073/pnas.212522099CrossRefPubMedGoogle Scholar
  36. Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867.  https://doi.org/10.3389/fpls.2017.01867CrossRefPubMedPubMedCentralGoogle Scholar
  37. Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7:424.  https://doi.org/10.3389/fpls.2016.00424CrossRefPubMedPubMedCentralGoogle Scholar
  38. Martin MN, Saftner RA (1995) Purification and characterization of 1-aminocyclopropane-1-carboxylic acid N-malonyltransferase from tomato fruit. Plant Physiol 108(3):1241–1249.  https://doi.org/10.1104/pp.108.3.1241CrossRefPubMedPubMedCentralGoogle Scholar
  39. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102.  https://doi.org/10.1093/jxb/erl183CrossRefPubMedGoogle Scholar
  40. McDougall GJ (1992) Changes in cell wall-associated peroxidases during the lignification of flax fibres. Phytochemistry 31(10):3385–3389.  https://doi.org/10.1016/0031-9422(92)83691-QCrossRefGoogle Scholar
  41. Mendoza-Cózatl DG, Jobe TO, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14(5):554–562.  https://doi.org/10.1016/j.pbi.2011.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meng X, Song T, Fan H, Yu Y, Cui N, Zhao J, Meng K (2016) A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress. Acta Physiologiae Plantarum 38:260.  https://doi.org/10.1007/s11738-016-2266-8CrossRefGoogle Scholar
  43. Meyer C-L, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure M-P, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modification in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66(11):3215–3227.  https://doi.org/10.1093/jxb/erv144CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19.  https://doi.org/10.1016/j.tplants.2005.11.002CrossRefPubMedGoogle Scholar
  45. Montesinos MC, Ubeda A, Terencio MC, Payá M, Alcaraz MJ (1995) Antioxidant profile of mono- and dihydroxylated flavone derivatives in free radical generating systems. Zeitschrift Fur Naturforschung Sect C J Biosci 50(7–8):552–560.  https://doi.org/10.1515/znc-1995-7-813CrossRefGoogle Scholar
  46. Ok YS, Uchimiya SM, Chang SX, Bolan N (2015) Biochar: production, characterization and applications. CRC Press, New York. ISBN 9781482242294 416 pagesCrossRefGoogle Scholar
  47. Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32(1):1–12.  https://doi.org/10.1007/s10653-009-9273-2CrossRefPubMedGoogle Scholar
  48. Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133.  https://doi.org/10.3389/fpls.2015.00133CrossRefPubMedPubMedCentralGoogle Scholar
  49. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9(11):534–540.  https://doi.org/10.1016/j.tplants.2004.09.002CrossRefPubMedGoogle Scholar
  50. Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, Deckert J (2011a) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim Pol 58(2):211–216. https://doi.org/201114547 [pii]PubMedGoogle Scholar
  51. Pawlak-Sprada S, Stobiecki M, Deckert J (2011b) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part II. Profiling of isoflavonoids and their glycoconjugates induced in roots of lupine (Lupinus luteus) seedlings treated with cadmium and lead. Acta Biochim Pol 58(2):217–223. https://doi.org/201114547 [pii]PubMedGoogle Scholar
  52. Paynel F, Schaumann A, Arkoun M, Douchiche O, Morvan C (2009) Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyl. Ann Bot 104(7):1363–1372.  https://doi.org/10.1093/aob/mcp254CrossRefPubMedPubMedCentralGoogle Scholar
  53. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548.  https://doi.org/10.1046/j.1365-313X.2002.01442.xCrossRefPubMedGoogle Scholar
  54. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035–1042.  https://doi.org/10.1021/np9904509CrossRefPubMedGoogle Scholar
  55. Printz B, Sergeant K, Guignard C, Renaut J, Hausman JF (2013) Physiological and proteome study of sunflowers exposed to a polymetallic constraint. Proteomics 13(12–13):1993–2015.  https://doi.org/10.1002/pmic.201200400CrossRefPubMedGoogle Scholar
  56. Printz B, Morais RDS, Wienkoop S, Sergeant K, Lutts S, Hausman J-F, Renaut J (2015) An improved protocol to study the plant cell wall proteome. Front Plant Sci 6:237.  https://doi.org/10.3389/fpls.2015.00237CrossRefPubMedPubMedCentralGoogle Scholar
  57. Quartacci MF, Sgherri C, Cardklli R, Fantozzi A (2015) Biochar amendment reduces oxidative stress in lettuce grown under copper excess. Agrochimica-Pisa 59(2):188–202.  https://doi.org/10.12871/0021857201527CrossRefGoogle Scholar
  58. Quartacci MF, Sgherri C, Frisenda S (2017) Biochar amendment affects phenolic composition and antioxidant capacity restoring the nutraceutical value of lettuce grown in a copper-contaminated soil. Sci Hortic 215:9–14.  https://doi.org/10.1016/j.scienta.2016.12.002CrossRefGoogle Scholar
  59. Rahoui S, Martinez Y, Sakouhi L, Ben C, Rickauer M, El Ferjani E, Gentzbittel L, Chaoui A (2017) Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines. Protoplasma 254(1):473–489.  https://doi.org/10.1007/s00709-016-0968-9CrossRefPubMedGoogle Scholar
  60. Ramos I, Esteban E, Lucena JJ, Gárate A (2002) Cadmium uptake and subcellular distribution in plants of Lactuca Sp. Cd-Mn interaction. Plant Sci 162(5):761–767.  https://doi.org/10.1016/S0168-9452(02)00017-1CrossRefGoogle Scholar
  61. Ravichandran R, Rajendran M, Devapiriam D (2014) Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem 146:472–478.  https://doi.org/10.1016/j.foodchem.2013.09.080CrossRefPubMedGoogle Scholar
  62. Rizwan M, Ali S, Abbas T, Adrees M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manage 206:676–683.  https://doi.org/10.1016/j.jenvman.2017.10.035CrossRefPubMedGoogle Scholar
  63. Rodríguez-Celma J, Lattanzio G, Villarroya D, Gutierrez-Carbonell E, Ceballos-Laita L, Rencoret J, Gutiérrez A et al (2016) Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. J Proteomics 140:1–12.  https://doi.org/10.1016/j.jprot.2016.03.017CrossRefPubMedGoogle Scholar
  64. Sanità Di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130.  https://doi.org/10.1016/S0098-8472(98)00058-6CrossRefGoogle Scholar
  65. Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J, Cuypers A (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol 14(1):214.  https://doi.org/10.1186/s12870-014-0214-6CrossRefPubMedPubMedCentralGoogle Scholar
  66. Solecka D, Kacperska A (2003) Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol Plant 119:253–262.  https://doi.org/10.1034/j.1399-3054.2003.00181.xCrossRefGoogle Scholar
  67. Staszków A, Swarcewicz B, Banasiak J, Muth D, Jasiński M, Stobiecki M (2011) LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula. Metabolomics 7(4):604–613.  https://doi.org/10.1007/s11306-011-0287-2CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659.  https://doi.org/10.1016/j.jbiosc.2013.05.035CrossRefPubMedGoogle Scholar
  69. Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771.  https://doi.org/10.3389/fpls.2014.00771CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tsuchiya H (2010) Structure-dependent membrane interaction of flavonoids associated with their bioactivity. Food Chem 120(4):1089–1096.  https://doi.org/10.1016/j.foodchem.2009.11.057CrossRefGoogle Scholar
  71. Van de Poel, Bram IB, Hertog MLATM, Nicolai BM, Geeraerd AH (2014) A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. New Phytol 202(3):952–963.  https://doi.org/10.1111/nph.12685CrossRefPubMedGoogle Scholar
  72. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905.  https://doi.org/10.1104/pp.110.155119CrossRefPubMedPubMedCentralGoogle Scholar
  73. Viger M, Hancock RD, Miglietta F, Taylor G (2014) More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Glob Change Biol Bioenergy 7(4):658–672.  https://doi.org/10.1111/gcbb.12182CrossRefGoogle Scholar
  74. Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot 58:25–40.  https://doi.org/10.1016/j.envexpbot.2005.06.012CrossRefGoogle Scholar
  75. Wang Y, Pan F, Wang G, Zhang G, Wang Y, Chen X, Mao Z (2014) Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci Hortic 175:9–15.  https://doi.org/10.1016/j.scienta.2014.05.029CrossRefGoogle Scholar
  76. Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biologia Plantarum 49(2):237–245.  https://doi.org/10.1007/s10535-005-7245-7CrossRefGoogle Scholar
  77. Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2(5):851–860.  https://doi.org/10.1093/mp/ssp066CrossRefPubMedGoogle Scholar
  78. Zhang X, Abrahan C, Colquhoun TA, Liu C-J (2017) A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell 29(5):1157–1174.  https://doi.org/10.1105/tpc.16.00855CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Annelie Gutsch
    • 1
    • 2
    • 3
  • Stéphanie Vandionant
    • 2
  • Kjell Sergeant
    • 1
    Email author
  • Marijke Jozefczak
    • 2
  • Jaco Vangronsveld
    • 2
  • Jean-François Hausman
    • 1
  • Ann Cuypers
    • 2
  1. 1.Luxembourg Institute of Science and Technology, Unit Environmental and Industrial Biotechnologies, RDI group Plant BiotechnologiesEsch-sur-AlzetteLuxembourg
  2. 2.Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
  3. 3.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations