Systems Biology of Metal Tolerance in Plants: A Case Study on the Effects of Cd Exposure on Two Model Plants

  • Annelie Gutsch
  • Stéphanie Vandionant
  • Kjell SergeantEmail author
  • Marijke Jozefczak
  • Jaco Vangronsveld
  • Jean-François Hausman
  • Ann Cuypers


Plant growth and biomass production are affected by environmental stresses of natural and anthropogenic origin, significantly restricting their full valorisation potential for economic and societal use. Especially, environmental pollution with metals, notably cadmium (Cd), is of great concern. Cadmium enters the plant through metal transporters, which are embedded in the plasma membrane of root cells, thereby competing with the uptake of essential nutrients and altering the nutrient balance (Fig. 2.1, unpublished data).


Cadmium Long-term exposure Gene expression Proteomics Metabolomics integration 



This publication is the result of the bilateral project CadWALL supported by the Luxembourg National Research Fund (FNR/FWO INTER/FWO/13/14).


  1. Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:1–17. Scholar
  2. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica Juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9(9):2419–2431. Scholar
  3. Békésiová B, Hraška Š, Libantová J, Moravčíková J, Matušíková I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35(4):579–588. Scholar
  4. Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum Sativum L.) seedlings. C R Biol 328(1):23–31. Scholar
  5. Corso M, Schvartzman SM, Guzzo F, Souard F, Malkowski E, Hanikenne M, Verbruggen N (2018) Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytol 218(1):283–297. Scholar
  6. Cui L, Pan G, Li L, Yan J, Zhang A, Bian R, Chang A (2012) The reduction of wheat Cd uptake in contaminated soil via biochar amendment: a two-year field experiment. Bioresources 7(4):5666–5676. Scholar
  7. Cunha AD (1987) The estimation of L-phenylalanine ammonia-lyase shows phenylpropanoid biosynthesis to be regulated by l-phenylalanine supply and availability. Phytochemistry 26(10):2723–2727. Scholar
  8. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K et al (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940. Scholar
  9. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N et al (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168(4):309–316. Scholar
  10. Cuypers A, Hendrix S, dos Reis RA, De Smet S, Deckers J, Gielen H, Jozefczak M et al (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470. Scholar
  11. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. Scholar
  12. Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C (2007) Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta 225(5):1301–1312. Scholar
  13. Duruflé H, Clemente HS, Balliau T, Zivy M, Dunand C, Jamet E (2017) Cell wall proteome analysis of Arabidopsis thaliana mature stems. Proteomics 17(8):1–5. Scholar
  14. Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63(3):1413–1421. Scholar
  15. Gall H, Philippe F, Domon J-M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4(1):112–166. Scholar
  16. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46. Scholar
  17. Gutsch A, Keunen E, Guerriero G, Renaut J, Cuypers A, Hausman J-F, Sergeant K (2018a) Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. Plant Biol J 20:1023–1035. Scholar
  18. Gutsch A, Zouaghi S, Renaut J, Cuypers A, Hausman J-F, Sergeant K (2018b) Changes in the proteome of Medicago sativa leaves in response to long-term cadmium exposure using a cell-wall targeted approach. Int J Mol Sci 19:2498. Scholar
  19. Gutsch A, Sergeant K, Keunen E, Prinsen E, Guerriero G, Renaut J, Hausman JF, Cuypers A (2019) Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC Plant Biology.
  20. Hartwig A (2013) Cadmium and cancer. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality, vol Vol. 11, 11th edn. Springer, New York. Scholar
  21. Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310. Scholar
  22. Hossain MK, Strezov V, Yin Chan K, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9):1167–1171. Scholar
  23. Huang W-k, Ji H-L, Gheysen G, Debode J, Kyndt T (2015) Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biol 15:267. Scholar
  24. Hyodo H, Yang SF (1971) Ethylene-enhanced synthesis of phenylalanine ammonia-lyase in pea seedlings. Plant Physiol 47(6):765–770. Scholar
  25. Jacobson T, Priya S, Sharma SK, Andersson S, Jakobsson S, Tanghe R, Ashouri A et al (2017) Cadmium causes misfolding and aggregation of cytosolic proteins in yeast. Mol Cell Biol 37:e00490–e00416. Scholar
  26. Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11(1):33–39. Scholar
  27. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175. Scholar
  28. Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23. Scholar
  29. Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27(3):605–615. Scholar
  30. Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33(1):35–51. Scholar
  31. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3(5):547–562. Scholar
  32. Lavola A, Julkunen-Tiitto R, De La Rosa TM, Lehto T, Aphalo PJ (2000) Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiol Plant 109(3):260–267. Scholar
  33. Levesque-Tremblay G, Pelloux J, Braybrook SA, Müller K (2015) Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242(4):791–811. Scholar
  34. Li H, Liu Y, Chen Y, Wang S, Wang M, Xie T, Wang G (2016) Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Sci Rep 6:31616. Scholar
  35. Liu C-J, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci 99(22):14578–14583. Scholar
  36. Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867. Scholar
  37. Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7:424. Scholar
  38. Martin MN, Saftner RA (1995) Purification and characterization of 1-aminocyclopropane-1-carboxylic acid N-malonyltransferase from tomato fruit. Plant Physiol 108(3):1241–1249. Scholar
  39. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102. Scholar
  40. McDougall GJ (1992) Changes in cell wall-associated peroxidases during the lignification of flax fibres. Phytochemistry 31(10):3385–3389. Scholar
  41. Mendoza-Cózatl DG, Jobe TO, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14(5):554–562. Scholar
  42. Meng X, Song T, Fan H, Yu Y, Cui N, Zhao J, Meng K (2016) A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress. Acta Physiologiae Plantarum 38:260. Scholar
  43. Meyer C-L, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure M-P, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modification in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66(11):3215–3227. Scholar
  44. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19. Scholar
  45. Montesinos MC, Ubeda A, Terencio MC, Payá M, Alcaraz MJ (1995) Antioxidant profile of mono- and dihydroxylated flavone derivatives in free radical generating systems. Zeitschrift Fur Naturforschung Sect C J Biosci 50(7–8):552–560. Scholar
  46. Ok YS, Uchimiya SM, Chang SX, Bolan N (2015) Biochar: production, characterization and applications. CRC Press, New York. ISBN 9781482242294 416 pagesCrossRefGoogle Scholar
  47. Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32(1):1–12. Scholar
  48. Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133. Scholar
  49. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9(11):534–540. Scholar
  50. Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, Deckert J (2011a) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim Pol 58(2):211–216. [pii]PubMedGoogle Scholar
  51. Pawlak-Sprada S, Stobiecki M, Deckert J (2011b) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part II. Profiling of isoflavonoids and their glycoconjugates induced in roots of lupine (Lupinus luteus) seedlings treated with cadmium and lead. Acta Biochim Pol 58(2):217–223. [pii]PubMedGoogle Scholar
  52. Paynel F, Schaumann A, Arkoun M, Douchiche O, Morvan C (2009) Temporal regulation of cell-wall pectin methylesterase and peroxidase isoforms in cadmium-treated flax hypocotyl. Ann Bot 104(7):1363–1372. Scholar
  53. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548. Scholar
  54. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035–1042. Scholar
  55. Printz B, Sergeant K, Guignard C, Renaut J, Hausman JF (2013) Physiological and proteome study of sunflowers exposed to a polymetallic constraint. Proteomics 13(12–13):1993–2015. Scholar
  56. Printz B, Morais RDS, Wienkoop S, Sergeant K, Lutts S, Hausman J-F, Renaut J (2015) An improved protocol to study the plant cell wall proteome. Front Plant Sci 6:237. Scholar
  57. Quartacci MF, Sgherri C, Cardklli R, Fantozzi A (2015) Biochar amendment reduces oxidative stress in lettuce grown under copper excess. Agrochimica-Pisa 59(2):188–202. Scholar
  58. Quartacci MF, Sgherri C, Frisenda S (2017) Biochar amendment affects phenolic composition and antioxidant capacity restoring the nutraceutical value of lettuce grown in a copper-contaminated soil. Sci Hortic 215:9–14. Scholar
  59. Rahoui S, Martinez Y, Sakouhi L, Ben C, Rickauer M, El Ferjani E, Gentzbittel L, Chaoui A (2017) Cadmium-induced changes in antioxidative systems and differentiation in roots of contrasted Medicago truncatula lines. Protoplasma 254(1):473–489. Scholar
  60. Ramos I, Esteban E, Lucena JJ, Gárate A (2002) Cadmium uptake and subcellular distribution in plants of Lactuca Sp. Cd-Mn interaction. Plant Sci 162(5):761–767. Scholar
  61. Ravichandran R, Rajendran M, Devapiriam D (2014) Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem 146:472–478. Scholar
  62. Rizwan M, Ali S, Abbas T, Adrees M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manage 206:676–683. Scholar
  63. Rodríguez-Celma J, Lattanzio G, Villarroya D, Gutierrez-Carbonell E, Ceballos-Laita L, Rencoret J, Gutiérrez A et al (2016) Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. J Proteomics 140:1–12. Scholar
  64. Sanità Di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130. Scholar
  65. Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J, Cuypers A (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol 14(1):214. Scholar
  66. Solecka D, Kacperska A (2003) Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol Plant 119:253–262. Scholar
  67. Staszków A, Swarcewicz B, Banasiak J, Muth D, Jasiński M, Stobiecki M (2011) LC/MS profiling of flavonoid glycoconjugates isolated from hairy roots, suspension root cell cultures and seedling roots of Medicago truncatula. Metabolomics 7(4):604–613. Scholar
  68. Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659. Scholar
  69. Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771. Scholar
  70. Tsuchiya H (2010) Structure-dependent membrane interaction of flavonoids associated with their bioactivity. Food Chem 120(4):1089–1096. Scholar
  71. Van de Poel, Bram IB, Hertog MLATM, Nicolai BM, Geeraerd AH (2014) A transcriptomics-based kinetic model for ethylene biosynthesis in tomato (Solanum lycopersicum) fruit: development, validation and exploration of novel regulatory mechanisms. New Phytol 202(3):952–963. Scholar
  72. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153(3):895–905. Scholar
  73. Viger M, Hancock RD, Miglietta F, Taylor G (2014) More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Glob Change Biol Bioenergy 7(4):658–672. Scholar
  74. Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot 58:25–40. Scholar
  75. Wang Y, Pan F, Wang G, Zhang G, Wang Y, Chen X, Mao Z (2014) Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci Hortic 175:9–15. Scholar
  76. Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biologia Plantarum 49(2):237–245. Scholar
  77. Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2(5):851–860. Scholar
  78. Zhang X, Abrahan C, Colquhoun TA, Liu C-J (2017) A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell 29(5):1157–1174. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Annelie Gutsch
    • 1
    • 2
    • 3
  • Stéphanie Vandionant
    • 2
  • Kjell Sergeant
    • 1
    Email author
  • Marijke Jozefczak
    • 2
  • Jaco Vangronsveld
    • 2
  • Jean-François Hausman
    • 1
  • Ann Cuypers
    • 2
  1. 1.Luxembourg Institute of Science and Technology, Unit Environmental and Industrial Biotechnologies, RDI group Plant BiotechnologiesEsch-sur-AlzetteLuxembourg
  2. 2.Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
  3. 3.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations