Advertisement

Heavy Metal Toxicity: Physiological Implications of Metal Toxicity in Plants

  • Eugeniusz MałkowskiEmail author
  • Krzysztof Sitko
  • Paulina Zieleźnik-Rusinowska
  • Żaneta Gieroń
  • Michał Szopiński
Chapter

Abstract

When content of HMs, such as Cd, Cr, Ni, Pb or Zn, in soils is high, then they are taken up in excess and affect different physiological processes in plants. HMs affect growth of roots and shoots, changing their morphology and anatomy. However, at low doses HMs may stimulate plant growth, which is termed hormesis. At cellular level HMs cause changes in the configuration of the endoplasmic reticulum, higher vacuolization of cells, increase in the size of the cell nucleus, changes in the shape of the Golgi apparatus, as well as disruption of chloroplasts and mitochondria ultrastructure. HMs usually cause a decrease of chlorophyll content and significant inhibition of photosynthetic rate. The use of chlorophyll a fluorescence measurements to examine photosynthetic performance revealed that HMs affect negatively photosystems II and I, diminishing considerably such parameters as φP0. Excess of HM disturb also plant water relations. As a result strong reduction in transpiration rate (E), stomatal conductance (gs) and water use efficiency (WUE) is observed. Excess of reactive oxygen species (ROS) is produced in plants as a response to heavy metal stress. High amount of ROS cause lipid peroxidation, inactivation and/or direct damage to nucleic acids, modification of proteins and carbohydrates. In consequence, content of malondialdehyde (MDA) increases as well as activity of ROS-scavenging enzymes, such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR). Synthesis of phytochelatins is one of the plant responses to the presence of heavy metals (HM) in the environment. Phytochelatins (PCs) are synthesized from glutathione (GSH) by PC synthase (PCS) that is activated by HM ions. The role of PCs in HM stress relies on chelating metals, which are subsequently transported to the vacuole.

Keywords

Heavy metals Growth Photosynthesis Oxidative stress Hyperaccumulation Phytochelatins Water relations 

Notes

Acknowledgements

We apologize to authors whose relevant works on physiological implications of metal toxicity in plants have not been cited, either inadvertently or because of length constraints. We also wish to thank Mr. Szymon Rusinowski for providing of several important references. Finally, we thank Ms Elżbieta Małkowski for drawing Figure 1.

References

  1. Agrawal J, Sherameti I, Varma A (2011) Detoxification of heavy metals: state of art. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Soil biology, vol 30. Springer, Heidelberg, pp 1–34CrossRefGoogle Scholar
  2. Ahmad MSA, Ashraf M, Tabassam Q, Hussain M, Firdous H (2011) Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol Trace Elem Res 144:1229–1239PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ait Ali N, Dewez D, Didur O, Popovic R (2006) Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynth Res 89:81–87CrossRefGoogle Scholar
  4. Akhtar T, Zia-ur-Rehman M, Naeem A, Nawaz R, Ali S, Murtaza G, Maqsood MA, Azhar M, Khalid H, Rizwan M (2017) Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environ Sci Pollut Res 24:5521–5529CrossRefGoogle Scholar
  5. Akhter MF, Omelon CR, Gordon RA, Moser D, Macfie SM (2014) Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ Exp Bot 100:10–19CrossRefGoogle Scholar
  6. Alloway BJ (1990) The origins of heavy metals in soils. In: Alloway BJ (ed) Heavy metals in soils. Blackie and Son/Wiley, Glasgow/New York, pp 29–39Google Scholar
  7. Alloway BJ (2013a) Introduction. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Environmental pollution, vol 22, 3rd edn. Springer, Dordrecht, pp 3–9Google Scholar
  8. Alloway BJ (2013b) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Environmental pollution, vol 22, 3rd edn. Springer, Dordrecht, pp 11–50Google Scholar
  9. Alvesa LR, Monteiroa CC, Carvalhoa RF, Ribeiroa PC, Tezottob T, Azevedoc RA, Gratãoa PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115CrossRefGoogle Scholar
  10. Amaria T, Ghnaya T, Debez A, Taamali M, Youssef NB, Lucchini G, Sacchi GA, Abdelly C (2014) Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. J Plant Physiol 171:1634–1644CrossRefGoogle Scholar
  11. An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21–26PubMedCrossRefPubMedCentralGoogle Scholar
  12. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324Google Scholar
  13. Anjum SA, Ashraf U, Khan I, Tanveer M, Saleem MF, Wang L (2016) Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant Parts. Water Air Soil Pollut 227:326CrossRefGoogle Scholar
  14. Antosiewicz DM (1993) Mineral status of dicotyledonous crop plants in relation to their constitutional tolerance to lead. Environ Exp Bot 33:575–589CrossRefGoogle Scholar
  15. Antosiewicz DM (1995) The relationships between constitutional and inducible Pb-tolerance and tolerance to mineral deficits in Biscutella laevigata and Silene inflate. Environ Exp Bot 35:55–69CrossRefGoogle Scholar
  16. Antosiewicz DM (2005) Study of calcium-dependent lead-tolerance on plants differing in their level of Ca-deficiency tolerance. Environ Pollut 134:23–34PubMedCrossRefPubMedCentralGoogle Scholar
  17. Appenroth KJ (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds) Soil heavy metals. Soil biology, vol 19. Springer, Heidelberg, pp 19–29CrossRefGoogle Scholar
  18. Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332CrossRefGoogle Scholar
  19. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113PubMedCrossRefPubMedCentralGoogle Scholar
  20. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107Google Scholar
  21. Ban Y, Xu Z, Yang Y, Zhang H, Chen H, Tang M (2017) Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere 27:283–292CrossRefGoogle Scholar
  22. Barabasz A, Klimecka M, Kendziorek M, Weremczuk A, Ruszczyńska A, Bulska E, Antosiewicz DM (2016) The ratio of Zn to Cd supply as a determinant of metal-homeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4. J Exp Bot 67:6201–6214PubMedPubMedCentralCrossRefGoogle Scholar
  23. Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Ruiz JM, Blasco B (2014) Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environ Exp Bot 107:98–104CrossRefGoogle Scholar
  24. Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bazihizina N, Redwan M, Taiti C, Giordano C, Monetti E, Masi E, Azzarello E, Mancuso S (2015) Root based responses account for Psidium guajava survival at high nickel concentration. J Plant Physiol 174:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bazzaz FA, Rolfe GL, Windle P (1974) Differing sensitivity of corn and Soybean photosynthesis and transpiration to lead contamination. J Environ Qual 3:156–158CrossRefGoogle Scholar
  27. Becerril JM, González-Murua C, Muñoz-Rueda A, De Felipe MR (1989) Changes induced by cadmium and lead in gas exchange and water relations of clover and lucerne. Plant Physiol Biochem 27:913–918Google Scholar
  28. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268PubMedCrossRefPubMedCentralGoogle Scholar
  29. Benáková M, Ahmadi H, Dučaiová Z, Tylová E, Clemens S, Tůma J (2017) Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ Sci Pollut Res 24:20705–20716CrossRefGoogle Scholar
  30. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34CrossRefGoogle Scholar
  31. Benyó D, Horváth E, Németh E, Leviczky T, Takács K, Lehotai N, Feigl G, Kolbert Z, Ördög A, Gallé R, Csiszár J, Szabados L, Erdei L, Gallé A (2016) Physiological and molecular responses to heavy metal stresses suggest different detoxification mechanism of Populus deltoides and P.x canadensis. J. Plant Physiol 201:62–70PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bernabé-Antonio A, Álvarez L, Buendía-González L, Maldonado-Magaña A (2015) Accumulation and tolerance of Cr and Pb using a cell suspension culture system of Jatropha curcas. Plant Cell Tiss Organ Cult 120:221–228CrossRefGoogle Scholar
  33. Bernardini A, Salvatori E, Di Re S, Fusaro L, Nervo G, Manes F (2016a) Natural and commercial Salix clones differ in their ecophysiological response to Zn stress. Photosynthetica 54:56–64CrossRefGoogle Scholar
  34. Bernardini A, Salvatori E, Guerrini V, Fusaro L, Canepari S, Manes F (2016b) Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: photosynthetic performance and metal accumulation capacity under controlled conditions. Int J Phytoremediat 18:16–24CrossRefGoogle Scholar
  35. Berry RA (1924) The manurial properties of lead nitrate. J. Agric Sci 14:58–65CrossRefGoogle Scholar
  36. Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18CrossRefGoogle Scholar
  37. Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Soil biology, vol 30. Springer, Heidelberg, pp 35–57CrossRefGoogle Scholar
  38. Broadley MR, White PH, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702PubMedCrossRefPubMedCentralGoogle Scholar
  39. Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, London, pp 191–248CrossRefGoogle Scholar
  40. Brooks RR (ed) (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. Cab International, WallingfordGoogle Scholar
  41. Broyer TC, Johnson CM, Paull RE (1972) Some aspects of lead in plant nutrition. Plant Soil 36:301–313CrossRefGoogle Scholar
  42. Brunet J, Varrault G, Zuily-Fodil Y, Repelline A (2009) Accumulation of lead in the roost of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120PubMedCrossRefPubMedCentralGoogle Scholar
  43. Calabrese EJ (2004) Hormesis: from marginalization to mainstream A case for hormesis as the default dose-response model in risk assessment. Toxicol Appl Pharm 197:125–136CrossRefGoogle Scholar
  44. Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474PubMedCrossRefPubMedCentralGoogle Scholar
  45. Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48PubMedCrossRefPubMedCentralGoogle Scholar
  46. Calabrese EJ, Mattson MP (2011) Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 5:25–38PubMedPubMedCentralCrossRefGoogle Scholar
  47. Caldelas C, Araus JL, Febrero A, Bort J (2012) Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol Plant 34:1217–1228CrossRefGoogle Scholar
  48. Cazalé AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219PubMedCrossRefPubMedCentralGoogle Scholar
  49. Cenkci S, Ciğerci IH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473CrossRefGoogle Scholar
  50. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74PubMedCrossRefGoogle Scholar
  51. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264CrossRefGoogle Scholar
  52. Cho M, Chardonnens AN, Dietz K-J (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293CrossRefGoogle Scholar
  53. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  54. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefPubMedCentralGoogle Scholar
  55. Clijsters H, van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  56. Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102PubMedPubMedCentralCrossRefGoogle Scholar
  57. Cseh E, Fodor F, Varga A, Zaray G (2000) Effect of lead treatment on the distribution of essential elements in cucumber. J Plant Nutr 23:1095–1105CrossRefGoogle Scholar
  58. DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integrat Plant Biol 50:1268–1280CrossRefGoogle Scholar
  59. DalCorso G, Fasani E, Furini A (2013) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Front Plant Sci 4:280PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dalla Vecchia F, La Rocca N, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338CrossRefGoogle Scholar
  61. Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017) Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol 94:167–183PubMedCrossRefPubMedCentralGoogle Scholar
  62. Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol 158:777–786CrossRefGoogle Scholar
  63. Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth and gas exchange. J. Plant Nutr 25:2389–2407CrossRefGoogle Scholar
  64. Dazy M, Masfaraud J-F, Férard J-F (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302PubMedCrossRefPubMedCentralGoogle Scholar
  65. Dehno AH, Mohtadi A (2018) The effect of different iron concentrations on lead accumulation in hydroponically grown Matthiola flavida Boiss. Ecol Res 33:757–765CrossRefGoogle Scholar
  66. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228CrossRefGoogle Scholar
  67. Deng THB, van der Ent A, Tang YT, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2018) Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil 423:1–11CrossRefGoogle Scholar
  68. Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289CrossRefGoogle Scholar
  69. Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107CrossRefGoogle Scholar
  70. Dong Y, Ogawa T, Lin D, Koh HJ, Kamiunten H, Matsuo M, Cheng S (2006) Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crop Res 95:420–425CrossRefGoogle Scholar
  71. Đorđević B, Prášková M, Hampel D, Havel L (2017) Effects of cadmium and lead stress on somatic embryogenesis of coniferous species. Part II: changes of thiol substances. Acta Physiol Plant 39:141CrossRefGoogle Scholar
  72. Duffus JH (2002) “Heavy metal”—a meaningless term? Pure Appl Chem 74:793–807CrossRefGoogle Scholar
  73. Dunlap CE, Bouse R, Flegal AR (2000) Past leader gasoline emissions as a nonpoint source tracer in riparian systems: a study of river inputs to San Francisco bay. Environ Sci Technol 34:1211–1215CrossRefGoogle Scholar
  74. Ekmekçi Y ¸ Tanyolaç D¸ Ayhan B (2009) A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol Plant 31: 319–330CrossRefGoogle Scholar
  75. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120.  https://doi.org/10.1155/2015/756120CrossRefGoogle Scholar
  76. Fahra M, Laplaze L, El Mzibri M, Doumas P, Bendaou N, Hocher V, Bogusz D, Smouni A (2015) Assessment of lead tolerance and accumulation in metallicolous and non-metallicolous populations of Hirschfeldia incana. Environ Exp Bot 109:186–192CrossRefGoogle Scholar
  77. Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450PubMedCrossRefPubMedCentralGoogle Scholar
  78. Fergusson J (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press plc, OxfordGoogle Scholar
  79. Fernàndez-Martínez J, Zacchini M, Fernández-Marínc B, García-Plazaolac JI, Fleck I (2014) Gas-exchange, photo- and antioxidant protection, and metal accumulation in I-214 and Eridano Populus sp. clones subjected to elevated zinc concentrations. Environ Exp Bot 107:144–153CrossRefGoogle Scholar
  80. Fischer S, Kühnlenz T, Thieme M, Schmidt H, Clemens S (2014) Analysis of plant tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48:7552–7559PubMedCrossRefPubMedCentralGoogle Scholar
  81. Fodor F (2002) Physiological responses of vascular plants to heavy metals. In: Prasad M, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 149–177CrossRefGoogle Scholar
  82. Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730CrossRefGoogle Scholar
  83. Friedland AJ (1990) The movement of metals through soils and ecosystems. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Inc., Boca Raton, pp 7–19Google Scholar
  84. Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67CrossRefGoogle Scholar
  85. Furini A (ed) (2012) Plants and heavy metals. Springer, DordrechtGoogle Scholar
  86. Gabbrielli R, Pandolfini T, Espen L, Palandri MR (1999) Growth, peroxidase activity and cytological modifications in Pisum sativum seedlings exposed to Ni2+ toxicity. J Plant Physiol 155:639–645CrossRefGoogle Scholar
  87. Gajewska E, Skłodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf 73:996–1003PubMedCrossRefPubMedCentralGoogle Scholar
  88. Gajewska E, Skłodowska M, Słaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoot. Biol Plant 50:653–659CrossRefGoogle Scholar
  89. Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  90. Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30:286–300CrossRefGoogle Scholar
  91. Gielen H, Vangronsveld J, Cuypers A (2017) Cd-induced Cu deficiency responses in Arabidopsis thaliana: are phytochelatins involved? Plant Cell Environ 40:390–400PubMedCrossRefPubMedCentralGoogle Scholar
  92. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefPubMedCentralGoogle Scholar
  93. Gill RA, Ali B, Islam F, Farooq MA, Gill MB, Mwamba TM, Zhou W (2015) Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol Biochem 94:130–143PubMedCrossRefGoogle Scholar
  94. Glińska S, Bartczak M, Oleksiak S, Wolska A, Gabara B, Posmyk M, Janas K (2007) Effects of anthocyanins-rich extract from red cabbage leaves on meristematic cells of Allium cepa L. roots treated with heavy metals. Ecotoxicol Environ Saf 68:343–350PubMedCrossRefPubMedCentralGoogle Scholar
  95. González Á, del Mar Gil-Diaz M, del Carmen Lobo M (2015) Response of two barley cultivars to increasing concentrations of cadmium or chromium in soil during the growing period. Biol Trace Elem Res 163:235–243PubMedCrossRefPubMedCentralGoogle Scholar
  96. González Á, del Mar Gil-Diaz M, del Carmen Lobo M (2017) Metal tolerance in barley and wheat cultivars: physiological screening methods and application in phytoremediation. J Soil Sedim 17:1403–1412CrossRefGoogle Scholar
  97. Gonzalez-Mendoza D, Quiroz Moreno A, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314PubMedCrossRefPubMedCentralGoogle Scholar
  98. Govarthanan M, Kamala-Kannan S, Kim SA, Seo Y-S, Park J-H, Oh B-T (2016) Synergistic effect of chelators and Herbaspirillum sp. GW103 on lead phytoextraction and its induced oxidative stress in Zea mays. Arch Microbiol 198:737–742PubMedCrossRefPubMedCentralGoogle Scholar
  99. Gupta DK, Sandalio LM (eds) (2012) Metal toxicity in plants: perception, signaling and remediation. Springer, HeidelbergGoogle Scholar
  100. Gupta DK, Huang HG, Nicoloso FT, Schetinger MR, Farias JG, Li TQ, Razafindrabe BHN, Aryal N, Inouhe M (2013) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22:1403–1412PubMedCrossRefPubMedCentralGoogle Scholar
  101. Gupta V, Jatav PK, Verma R, Kothari SL, Kachhwaha S (2017) Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats. Environ Sci Pollut Res 24:23915–23925CrossRefGoogle Scholar
  102. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164PubMedPubMedCentralCrossRefGoogle Scholar
  103. Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hakat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22:1534–1544CrossRefGoogle Scholar
  104. Hammett FS (1928a) Studies in the biology of metals. I. The localization of lead by growing roots. Protoplasma 4:183–186CrossRefGoogle Scholar
  105. Hammett FS (1928b) Studies in the biology of metals. II. The reatardative influence of lead on root growth. Protoplasma 4:187–191CrossRefGoogle Scholar
  106. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259PubMedCrossRefPubMedCentralGoogle Scholar
  107. He J-Y, Ren Y-F, Zhu C, Yan Y-P, Jiang D-A (2008) Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46:466–470CrossRefGoogle Scholar
  108. Hettiarachchi GM, Pierzynski GM, Ransom MD (2000) In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619CrossRefGoogle Scholar
  109. Hojati M, Modarres-Sanavy SAM, Enferadi ST, Majdi M, Ghanati F, Farzadfar S, Pazoki A (2017) Cadmium and copper induced changes in growth, oxidative metabolism and terpenoids of Tanacetum parthenium. Environ Sci Pollut Res 24:12261–12272CrossRefGoogle Scholar
  110. Hooda PS (ed) (2010) Trace elements in soils. Wiley, ChichesterGoogle Scholar
  111. Hu Y, Wang NS, Hu XJ, Lin XY, Feng Y, Jin CW (2013) Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants. Plant Soil 371:105–115CrossRefGoogle Scholar
  112. Huang CY, Bazzaz FA, Vanderhoef LN (1974) The inhibition of soybean metabolism by cadmium and lead. Plant Physiol 54:122–124PubMedPubMedCentralCrossRefGoogle Scholar
  113. Izmaiłow R, Biskup A (2003) Reproduction of Echium vulgare L (Boraginaceae) at contaminated sites. Acta Biol Cracov 45:69–75Google Scholar
  114. Izmaiłow R, Kościńska-Pająk M, Kwiatkowska M, Musiał K (2015) Effect of heavy metals on reproduction in plants. In: Wierzbicka M (ed) Ecotoxicology: plants, soils, metals: monograph. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, pp 96–116. (in Polish)Google Scholar
  115. Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32:979–986CrossRefGoogle Scholar
  116. Javed MT, Akram MS, Tanwir K, Chaudhary HJ, Ali Q, Stoltz E, Lindberg S (2017) Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxicol Environ Saf 141:216–225PubMedCrossRefPubMedCentralGoogle Scholar
  117. Jean L, Bordas F, Gautier-Moussard C, Vernay P, Hitmi A, Bollinger J-C (2008) Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environ Pollut 153:555–563PubMedCrossRefPubMedCentralGoogle Scholar
  118. Jensen GH (1907) Toxic limits and stimulation effects of some salts and poisons on wheat. Bot Gazette 43:11–44CrossRefGoogle Scholar
  119. Jia L, He X, Chen W, Liu Z, Huang Y, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator—Lonicera japonica Thunb. Ecotoxicology 22:476–485PubMedCrossRefPubMedCentralGoogle Scholar
  120. Jia L, Liu Z, Chen W, Ye Y, Yu S, He X (2015) Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. J Plant Growth Regul 34:13–21CrossRefGoogle Scholar
  121. Jiang HM, Yang JC, Zhang JF (2007) Effects of external phosphorus on the cell ultrastructure and chlorophyll content of maize under cadmium and zinc stress. Environ Pollut 147:750–756PubMedCrossRefPubMedCentralGoogle Scholar
  122. Jinadasa N, Collins D, Holford P, Milham PJ, Conroy JP (2016) Reactions to cadmium stress in a cadmium-tolerant variety of cabbage (Brassica oleracea L.): is cadmium tolerance necessarily desirable in food crops? Environ Sci Pollut Res 23:5296–5306CrossRefGoogle Scholar
  123. Ju XH, Tang S, Jia Y, Guo J, Ding Y, Song Y, Zhao Y (2011) Determination and characterization of cysteine, glutathione and phytochelatins (PC2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection. J Chromatogr B 879:1717–1724CrossRefGoogle Scholar
  124. Juknys R, Vitkauskaitė G, Račaitė M, Venclovienė J (2012) The impacts of heavy metals on oxidative stress and growth of spring barley. Cent Eur J Biol 7:299–306Google Scholar
  125. Kabata-Pendias A (2011) Trace elements in soils and plants. CRC Press/Taylor and Francis Group, Boca RatonGoogle Scholar
  126. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soils to human. Springer, HeidelbergCrossRefGoogle Scholar
  127. Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements. Wydawnictwo Naukowe PWN, Warszawa. (in Polish)Google Scholar
  128. Kabir AH (2016) Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress. Plant Biol 18:710–719PubMedCrossRefPubMedCentralGoogle Scholar
  129. Kalaji HM, Loboda T (2007) Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ 53:511–516CrossRefGoogle Scholar
  130. Kalaji HM, Rastogi A, Zivcak M, Brestic M, Daszkowska-Golec A, Sitko K, Alsharafa KY, Lotfi R, Samborska IA, Cetner MD (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56(3):953–961CrossRefGoogle Scholar
  131. Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell 14:2353–2367PubMedPubMedCentralCrossRefGoogle Scholar
  132. Kapusta P, Szarek-Łukaszewska G, Stefanowicz AM (2011) Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area (S Poland). Environ Pollut 159:1516–1522PubMedCrossRefPubMedCentralGoogle Scholar
  133. Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. In: van Breemen N (ed) Plant-induced soil changes: processes and feedbacks. Springer, Dordrecht, pp 21–53CrossRefGoogle Scholar
  134. Kennedy CD (1983) Transient potential shifts with pH glass electrodes due to divalent cations. Analyst 108:1003–1006CrossRefGoogle Scholar
  135. Kennedy CD, Gonsalves FAN (1987) The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+ efflux of excised roots. J Exp Bot 38:800–817CrossRefGoogle Scholar
  136. Khudsar T, Mahmooduzzafar I, Iqbal M, Sairam RK (2004) Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Plant 48:255–260CrossRefGoogle Scholar
  137. Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007a) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150:280–287PubMedCrossRefPubMedCentralGoogle Scholar
  138. Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2007b) Toxic effects of Pb2+ on growth and mineral nutrition of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Plant Soil 300:127–136CrossRefGoogle Scholar
  139. Kopittke PM, Asher CJ, Menzies NW (2008) Prediction of Pb speciation in concentrated and diluted nutrient solutions. Environ Pollut 153:548–554PubMedCrossRefPubMedCentralGoogle Scholar
  140. Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot 61:945–954PubMedCrossRefPubMedCentralGoogle Scholar
  141. Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res 22:11648–11657CrossRefGoogle Scholar
  142. Kováčik J, Klejdusb B, Hedbavny J, Zoń J (2011) Significance of phenols in cadmium and nickel uptake. J Plant Physiol 168:576–584PubMedCrossRefPubMedCentralGoogle Scholar
  143. Kozlov MV (2005) Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the cooper-nickel smelter: natural selection or phenotypic acclimation? Chemosphere 59:189–197PubMedCrossRefPubMedCentralGoogle Scholar
  144. Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech 16:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  145. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMedCrossRefPubMedCentralGoogle Scholar
  146. Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272PubMedCrossRefGoogle Scholar
  147. Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51CrossRefGoogle Scholar
  148. Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A (2016) Pectinous cell wall thickenings formation – A common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361PubMedCrossRefPubMedCentralGoogle Scholar
  149. Kühnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the AtPCS1-defcient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65:4241–4253PubMedPubMedCentralCrossRefGoogle Scholar
  150. Kumar A, Prasad MNV (2015) Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 53:66–71CrossRefGoogle Scholar
  151. Kumar A, Prasad MNV, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89:1056–1065PubMedCrossRefPubMedCentralGoogle Scholar
  152. Kummerová M, Zezulka Š, Kráľová K, Masarovičová E (2010) Effect of zinc and cadmium on physiological and production characteristics in Matricaria recutita. Biol Plant 54:308–314CrossRefGoogle Scholar
  153. Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674PubMedCrossRefPubMedCentralGoogle Scholar
  154. Kutrowska A (2013) Trace metals membrane transporters in plants. Kosmos 298:105–113. (in Polish)Google Scholar
  155. Kwiatkowska M, Izmaiłow R (2014) Ovules, female gametophytes and embryos are more sensitive to heavy metal pollution than anthers and pollen of Cardaminopsis arenosa (L.) Hayek (Brassicaceae), a member of calamine flora. Acta Biol Cracov Ser Bot 56(1):128–137Google Scholar
  156. Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. C R Biol 334:118–126PubMedCrossRefPubMedCentralGoogle Scholar
  157. Lane SD, Martin ES, Garrod JF (1978) Lead toxicity effects on indole-3-ylacetic acid-induced cell elongation. Planta 144:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  158. Laportea M-A, Sterckeman T, Dauguet S, Denaix L, Nguyen C (2015) Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environ Exp Bot 109:45–53CrossRefGoogle Scholar
  159. Lebeau T, Jézéquel K, Braud A (2011) Bioaugmentation-assisted phytoextraction applied to metal-contaminated soils: state of the art and future prospects. In: Ahamd I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 229–266CrossRefGoogle Scholar
  160. Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663PubMedPubMedCentralCrossRefGoogle Scholar
  161. Li W, Khan MA, Yanaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50CrossRefGoogle Scholar
  162. Li X, Zhang L, Li Y, Ma L, Bu N, Ma C (2012) Changes in photosynthesis, antioxidant enzymes and lipid peroxidation in soybean seedlings exposed to UV-B radiation and/or Cd. Plant Soil 352:377–387CrossRefGoogle Scholar
  163. Li L, Scheckel KG, Zheng L, Liu G, Xing W, Xiang G (2014) Immobilization of lead in soil influenced by soluble phosphate and calcium: lead speciation evidence. J Environ Qual 43:468–474PubMedCrossRefPubMedCentralGoogle Scholar
  164. Li B, Liu J-F, Yang J-X, Ma Y-B, Chen S-B (2015a) Comparison of phytotoxicity of copper and nickel in soils with different Chinese plant species. J Integr Agric 14:1192–1201CrossRefGoogle Scholar
  165. Li S, Yang W, Yang T, Chen Y, Ni W (2015b) Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—a cadmium accumulating plant. Int J Phytoremediat 17:85–92CrossRefGoogle Scholar
  166. Lin Y-F, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206PubMedCrossRefPubMedCentralGoogle Scholar
  167. Lin T, Wan X, Zhang F (2016) The short-term responses of glutathione and phytochelation synthetic pathways genes to additional nitrogen under cadmium stress in poplar leaves. Russ J Plant Physiol 63:754–762CrossRefGoogle Scholar
  168. Liu D, Kottke I (2004) Subcellular localization of cadmium in the roots cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosci 29:329–335PubMedCrossRefPubMedCentralGoogle Scholar
  169. Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2003) Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci 165:793–802CrossRefGoogle Scholar
  170. Liu C-H, Huang W-D, Kao CH (2012) The decline in potassium concentration is associated with cadmium toxicity of rice seedlings. Acta Physiol Plant 34:495–502CrossRefGoogle Scholar
  171. Liu H, Wang H, Ma Y, Wang H, Shi Y (2016) Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere 144:1960–1965PubMedCrossRefPubMedCentralGoogle Scholar
  172. Lv S, Sun Z, Qian J, Ma X, Yu B, Chen X, Cao S (2012) Isolation and characterization of a novel cadmium-sensitive mutant in Arabidopsis. Acta Physiol Plant 34:1107–1118CrossRefGoogle Scholar
  173. Lysenko EA, Klaus AA, Pshybytko NL, Kusnetsov VV (2015) Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Photosynth Res 125:291–303PubMedCrossRefPubMedCentralGoogle Scholar
  174. Ma QY, Logan TJ, Traina SJ, Ryan JA (1994) Effects of NO3, Cl, F, SO42−, and CO32− on Pb2+ immobilization by hydroxyapatite. Environ Sci Technol 28:408–418PubMedCrossRefPubMedCentralGoogle Scholar
  175. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: cost and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRefGoogle Scholar
  176. Mahdavian K, Ghaderian SM, Schat H (2016) Pb accumulation, Pb tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala L. under Pb exposure. Environ Exp Bot 126:21–31CrossRefGoogle Scholar
  177. Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant 51:589–592CrossRefGoogle Scholar
  178. Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427PubMedCrossRefPubMedCentralGoogle Scholar
  179. Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637CrossRefGoogle Scholar
  180. Małecka A, Derba-Maceluch M, Kaczorowska K, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissue treated with lead ions: mitochondrial and peroxisomal level. Acta Physiol Plant 31:1065–1075CrossRefGoogle Scholar
  181. Małkowski E, Kita A, Galas W, Karcz W, Kuperberg JM (2002) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37:66–76CrossRefGoogle Scholar
  182. Mallick S, Sinam G, Mishra RK, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73:987–995PubMedCrossRefPubMedCentralGoogle Scholar
  183. Marschner H (1995) Mineral nutrition of higher plants. Academic Press Ltd., LondonGoogle Scholar
  184. Mathur S, Kalaji HM, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54:185–192CrossRefGoogle Scholar
  185. Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J et al (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259PubMedPubMedCentralCrossRefGoogle Scholar
  186. Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  187. Meyer C-L, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142PubMedCrossRefPubMedCentralGoogle Scholar
  188. Meyer C-L, Juraniec M, Huguet S, Chaves-Rodriguez E, Salis P, Isaure MP, Goormaghtigh E, Verbruggen N (2015) Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. J Exp Bot 66:3215–3227PubMedPubMedCentralCrossRefGoogle Scholar
  189. Michalak E, Wierzbicka M (1998) Differences in lead tolerance between Allium cepa plants developing from seeds and bulbs. Plant Soil 199:251–260CrossRefGoogle Scholar
  190. Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381PubMedPubMedCentralCrossRefGoogle Scholar
  191. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039PubMedCrossRefPubMedCentralGoogle Scholar
  192. Mohtadi A, Ghaderian SM, Schat H (2012) A comparison of lead accumulation and tolerance among heavy metal hyperaccumulating and non-hyperaccumulating metallophytes. Plant Soil 352:267–276CrossRefGoogle Scholar
  193. Monnet F, Vaillant N, Vernay P, Coudret A, Sallanon H, Hitmi A (2001) Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress. J Plant Physiol 158:1137–1144CrossRefGoogle Scholar
  194. Moradi L, Ehsanzadeh P (2015) Effects of Cd on photosynthesis and growth of safflower (Carthamus tinctorius L.) genotypes. Photosynthetica 53:506–518CrossRefGoogle Scholar
  195. Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth Res 36:75–80PubMedCrossRefPubMedCentralGoogle Scholar
  196. Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328PubMedCrossRefPubMedCentralGoogle Scholar
  197. Murshed R, Lopez-Lauri F, Sallanon H (2008) Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Anal Biochem 383:320–322PubMedCrossRefPubMedCentralGoogle Scholar
  198. Mvamba TM, Ali S, Ali B, Lwalaba JL, Liu H, Farooq MA, Shou J, Zhou W (2016) Interactive effects of cadmium and copper on metal accumulation, oxidative stress, and mineral composition in Brassica napus. Int J Environ Sci Technol 13:2163–2174CrossRefGoogle Scholar
  199. Nada E, Ferjani BA, Ali R, Bechir BR, Imed M, Makki B (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant 29:57–62CrossRefGoogle Scholar
  200. Nadgórska-Socha A, Ptasiński B, Kita A (2013) Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicology 22:1422–1434PubMedPubMedCentralCrossRefGoogle Scholar
  201. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  202. Nakazawa R, Ozawa T, Naito T, Kameda Y, Takenaga H (2001) Interactions between cadmium and nickel in phytochelatin biosynthesis and the detoxification of the two metals in suspension-cultured tobacco cells. Biol Plant 44:627–630CrossRefGoogle Scholar
  203. Nakos G (1983) Total concentrations of Mn, Zn and Cu in certain forest soils in Greece. Plant Soil 74:137–140CrossRefGoogle Scholar
  204. Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41CrossRefGoogle Scholar
  205. Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134CrossRefGoogle Scholar
  206. Olko A (2009) Physiological aspects of plant heavy metal tolerance. Kosmos 58:221–228. (in Polish)Google Scholar
  207. Osma E, Elveren M, Karakoyun G (2017) Heavy metal accumulation affects growth of Scots pine by causing oxidative damage. Air Qual Atmos Health 10:85–92CrossRefGoogle Scholar
  208. Oustriere N, Marchand L, Rosette G, Friesl-Hanl W, Mench M (2017) Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb and Zn in a contaminated soil. Environ Sci Pollut Res 24:7468–7481CrossRefGoogle Scholar
  209. Panda SK, Choudhury S (2005) Chromium stress in plant. Braz J Plant Physiol 17:95–102CrossRefGoogle Scholar
  210. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758CrossRefGoogle Scholar
  211. Parkinson BM, Pacini E (1995) A comparison of tapetal structure and function in pteridophytes and angiosperms. Plant Syst Evol 198:55–88CrossRefGoogle Scholar
  212. Parlak KU (2016) Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. NJAS Wageningen J Life Sci 76:1–5CrossRefGoogle Scholar
  213. Patniak AR, Achary VMM, Panda B (2013) Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul 71:157–170CrossRefGoogle Scholar
  214. Per TS, Khan S, Asgher M, Bano B, Khan NA (2016) Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress. Photosynthetica 54:491–501CrossRefGoogle Scholar
  215. Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. Bull Environ Contam Toxicol 66:727–734PubMedPubMedCentralGoogle Scholar
  216. Phang IC, Leung DWM, Taylor HH, Burritt DJ (2011) The protective effect of sodium nitroprusside (SNP) treatment on Arabidopsis thaliana seedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicol Environ Saf 74:1310–1315PubMedCrossRefPubMedCentralGoogle Scholar
  217. Pietrini F, Iori V, Cheremisina A, Shevyakova NI, Radyukina N, Kuznetsov VV, Zacchini M (2015) Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. Environ Sci Pollut Res 22:482–494CrossRefGoogle Scholar
  218. Pogrzeba M, Rusinowski S, Sitko K, Krzyżak J, Skalska A, Małkowski E, Ciszek D, Werle S, McCalmont JP, Mos M, Kalaji HM (2017) Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environ Pollut 225:163–174CrossRefGoogle Scholar
  219. Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217-218:8–17PubMedCrossRefPubMedCentralGoogle Scholar
  220. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25PubMedCrossRefPubMedCentralGoogle Scholar
  221. Postrigan’ BN, Knyazev AV, Kuluev BR, Chemeris AV (2013) Effect of cadmium on promoter activity of rice phytochelatin synthase gene in transgenic tobacco plants. Russ J Plant Physiol 60:701–705CrossRefGoogle Scholar
  222. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, amd detoxification in plants. Rev Environ Contam Toxicol 213:113–136Google Scholar
  223. Przedpełska-Wąsowicz EM, Wierzbicka M (2011) Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma 248:663–671PubMedCrossRefPubMedCentralGoogle Scholar
  224. Przymusiński R, Woźny A (1985) The reactions of lupin roots to the presence of lead in the medium. Biochem Physiol Pflanzen 180:309–318CrossRefGoogle Scholar
  225. Qiao X, Shi G, Chen L, Tian X, Xu X (2013) Lead-induced oxidative damage in steriled seedlings of Nymphoides peltatum. Environ Sci Polut Res 20:5047–5055CrossRefGoogle Scholar
  226. Rabęda I, Bilski H, Mellerowicz EJ, Napieralska A, Suski S, Woźny A, Krzesłowska M (2015) Colocalization of low-methylesterified pectins and Pb deposits in the apoplastu of aspen roots exposed to lead. Environ Pollut 205:315–326PubMedCrossRefPubMedCentralGoogle Scholar
  227. Rascio N, Navari-Izzo F (2010) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181PubMedCrossRefPubMedCentralGoogle Scholar
  228. Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149PubMedPubMedCentralCrossRefGoogle Scholar
  229. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  230. Rengel Z, Graham RD (1996) Uptake of zinc from chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J Exp Bot 47:217–226CrossRefGoogle Scholar
  231. Rivelli AR, Maria SD, Puschenreiter M, Gherbin P (2012) Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Int J Phytoremediat 14:320–334CrossRefGoogle Scholar
  232. Rizvi A, Khan M-S (2017) Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185:942–952PubMedCrossRefPubMedCentralGoogle Scholar
  233. Rizwan M, Ali S, Rehman MZ, Javed MR, Bashir A (2018) Lead toxicity in cereals and its management strategies: a critical review. Water Air Soil Pollut 229:211CrossRefGoogle Scholar
  234. Robinson MWH, Bañelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266CrossRefGoogle Scholar
  235. Rodrigues dos Reis A, Barcelos J, Wruck de Souza Osório CR, Santos EF, Lisboa LAM, Santini JMK, Dornelas dos Santos JM, Junior FE, Campos M, Monteiro de Figueiredo PA, Lavres J, Gratão PP (2017) A glimpse into the physiological, biochemical and nutritional status of soybean plants under Ni-stress conditions. Environ Exp Bot 144:76–87CrossRefGoogle Scholar
  236. Rodriguez N, Amils R, Jiménez-Ballesta R, Rufo L, de la Fuente V (2007) Heavy metal content in Erica andevalensis: an endemic plant from the extreme acidic environment of Tinto River and its soils. Arid Land Res Manag 21:51–65CrossRefGoogle Scholar
  237. Romanowska E, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116:148–154PubMedCrossRefPubMedCentralGoogle Scholar
  238. Ross SM (1994a) Sources and forms of potentially toxic metals in soil—plant systems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 3–25Google Scholar
  239. Ross SM (1994b) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 63–152Google Scholar
  240. Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859PubMedCrossRefPubMedCentralGoogle Scholar
  241. Saha J, Majumder B, Mumtaz B, Biswas A (2017) Arsenic-induced oxidative stress and thiol metabolism in two cultivars of rice and its possible reversal by phosphate. Acta Physiol Plant 39:263Google Scholar
  242. Sanitá di Toppi L, Fossati F, Musetti R, Mikerezi I, Favali MA (2002) Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J Plant Nutr 25:701–717CrossRefGoogle Scholar
  243. Sauvé S, McBride M, Hendershot W (1998) Lead phosphate solubility in water and soil suspension. Environ Sci Technol 32:388–393CrossRefGoogle Scholar
  244. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392PubMedCrossRefPubMedCentralGoogle Scholar
  245. Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:73–93PubMedPubMedCentralGoogle Scholar
  246. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277CrossRefGoogle Scholar
  247. Serrano N, Díaz-Cruz JM, Ariño C, Esteban M (2015) Recent contributions to the study of phytochelatins with an analytical approach. Trends Anal Chem 73:129–145CrossRefGoogle Scholar
  248. Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotox Environ Safe 71:76–85CrossRefGoogle Scholar
  249. Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454CrossRefGoogle Scholar
  250. Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043CrossRefGoogle Scholar
  251. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  252. Shaw AJ (ed) (1990) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Inc., Boca RatonGoogle Scholar
  253. Sherameti I, Varma A (eds) (2010) Soil heavy metals. Soil biology, vol 19. Springer, HeidelbergGoogle Scholar
  254. Sherameti I, Varma A (eds) (2015) Heavy metal contamination of soils. Monitoring and remediation. Soil biology, vol 44. Springer, ChamGoogle Scholar
  255. Shi GR, Cai QS (2009) Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biol Plant 53:391–394CrossRefGoogle Scholar
  256. Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977CrossRefGoogle Scholar
  257. Silva S, Pinto G, Santos C (2017) Low doses of Pb affected Lactuca sativa photosynthetic performance. Photosynthetica 55:50–57CrossRefGoogle Scholar
  258. Simek J, Tuma J, Dohnal V, Musil K, Ducaiová Z (2016) Salicylic acid and phenolic compounds under cadmium stress in cucumber plants (Cucumis sativus L.). Acta Physiol Plant 38:172CrossRefGoogle Scholar
  259. Simmons RW, Chaney RL, Angle JS, Kruatrachue M, Klinphoklap S, Reeves RD, Bellamy P (2014) Towards practical cadmium Phytoextraction with Noccaea caerulescens. Int J Phytoremediat 17:191–199CrossRefGoogle Scholar
  260. Singh S, Prasad SM (2015) IAA alleviates Cd toxicity on growth, photosynthesis and oxidative damages in eggplant seedlings. Plant Growth Regul 77:87–98CrossRefGoogle Scholar
  261. Singh V, Tripathi B-N, Sharma V (2016) Interaction of Mg with heavy metals (Cu, Cd) in T. aestivum with special reference to oxidative and proline metabolism. J Plant Res 129:487–497PubMedCrossRefPubMedCentralGoogle Scholar
  262. Sitko K, Rusinowski S, Kalaji HM, Szopiński M, Małkowski E (2017) Photosynthetic efficiency as bioindicator of environmental pressure in A. halleri. Plant Physiol 175:290–302PubMedPubMedCentralCrossRefGoogle Scholar
  263. Słomka A, Kawalec P, Kellner K, Jędrzejczyk-Korycińska M, Rostański A, Kuta E (2010) Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the test applied? Acta Biol Cracov Ser Bot 52(1):123–127Google Scholar
  264. Słomka A, Jędrzejczyk-Korycińska M, Rostański A, Karcz J, Kawalec P, Kuta E (2012) Heavy metals in soil affect reproductive processes more than morphological characters in Viola tricolor. Environ Exp Bot 75:204–211CrossRefGoogle Scholar
  265. Smýkalová I, Zámečníková B (2003) The relationship between salinity and cadmium stress in barley. Biol Plant 46:269–273CrossRefGoogle Scholar
  266. Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVK (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140CrossRefGoogle Scholar
  267. Sresty TVS, Madhava Rao KV (1999) Ultrastructural alterations in response to zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13CrossRefGoogle Scholar
  268. Stiborová M, Ditrichová M, Březinová A (1987) Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biol Plant 29:453–467CrossRefGoogle Scholar
  269. Stroiński A, Chadzinikolau T, Giżewska K, Zielezińska M (2010) ABA or cadmium induced phytochelatin synthesis in potato tubers. Biol Plant 54:117–120CrossRefGoogle Scholar
  270. Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46:339–345CrossRefGoogle Scholar
  271. Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of Interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Environ Toxicol 20:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  272. Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999CrossRefGoogle Scholar
  273. Tack FMG (2010) Trace elements: general soil chemistry, principles and processes. In: Hooda PS (ed) Trace elements in soils. Blackwell Publishing, Ltd, London, pp 9–37CrossRefGoogle Scholar
  274. Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167PubMedPubMedCentralCrossRefGoogle Scholar
  275. Tang YT, Qiua RL, Zeng XW, Ying RR, Yu FM, Zhou XY (2009) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134CrossRefGoogle Scholar
  276. Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948PubMedPubMedCentralCrossRefGoogle Scholar
  277. Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cel suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216CrossRefGoogle Scholar
  278. Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695PubMedCrossRefPubMedCentralGoogle Scholar
  279. Titov AF, Talanova VV, Boeva NP (1996) Growth responses of barley and wheat seedlings to lead and cadmium. Biol Plant 38:431–436CrossRefGoogle Scholar
  280. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198PubMedCrossRefPubMedCentralGoogle Scholar
  281. Trivedi S, Erdei L (1992) Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat pf low and high K+ status. Physiol Plant 84:94–100CrossRefGoogle Scholar
  282. Tu C, He T, Liu C, Lu X, Lang Y (2011) Accumulation of trace elements in agricultural topsoil under different geological background. Plant Soil 349:241–251CrossRefGoogle Scholar
  283. Turpeinen R, Salminene J, Kairesalo T (2000) Mobility and bioavailability lead in contaminated boreal forest soil. Environ Sci Technol 34:5152–5156CrossRefGoogle Scholar
  284. Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama-Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y, Kiyono M, Fujiwara T, Clemens S (2017) Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. Plant Cell Physiol 58:1730–1742PubMedPubMedCentralCrossRefGoogle Scholar
  285. Van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147PubMedPubMedCentralCrossRefGoogle Scholar
  286. Van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324PubMedPubMedCentralCrossRefGoogle Scholar
  287. Van der Ent A, Baker JM, Reeves D, Pollard J, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  288. Vangronsveld J, Colpaert JV, van Tichelen KK (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  289. Vassilev A, Lidon FC, Ramalho JC, do Céu Matos M, Bareiro MG (2004) Shoot cadmium accumulation and photosynthetic performance of barley plants exposed to high cadmium treatments. J Plant Nutr 27:775–795CrossRefGoogle Scholar
  290. Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosynthetic performance of young bean plants. J Phytol 3:58–62Google Scholar
  291. Velikova V, Tsonev T, Loreto F, Centritto M (2011) Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel. Environ Pollut 159:1058–1066PubMedCrossRefPubMedCentralGoogle Scholar
  292. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefPubMedCentralGoogle Scholar
  293. Verbruggen N, Juraniec M, Baliardini C, Meyer CL (2013) Tolerance to cadmium in plants: the special case of hyperaccumulators. Biometals 26:633–638PubMedCrossRefPubMedCentralGoogle Scholar
  294. Verkleij JAC, Golan-Goldhirsh A, Antosiewicz DM, Schwitzguébel J-P, Schröder P (2009) Dualites in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22CrossRefGoogle Scholar
  295. Vesely T, Neuberg M, Trakal L, Szakova J, Tlustoš P (2012) Water lettuce Pistia stratiotes L. response to lead toxicity. Water Air Soil Pollut 223:1847–1859CrossRefGoogle Scholar
  296. Vogel AI (1951) A text-book of quantitative inorganic analysis. Theory and practice, 2nd edn. Longmans, Green and Company, Ltd., SuffolkGoogle Scholar
  297. Vondráčková S, Hejcman M, Száková J, Müllerová V, Tlustš P (2014) Soil chemical properties affect the concentration of elements (N, P, K, Ca, Mg, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their distribution between organs of Rumex obtusifolius. Plant Soil 379:231–245CrossRefGoogle Scholar
  298. Wang EX, Benoit G (1996) Mechanisms controlling the mobility of lead in the spodosols of a northern hardwood forest ecosystem. Environ Sci Technol 30:2211–2219CrossRefGoogle Scholar
  299. Wang Y, Wang S, Nan Z, Ma J, Zang F, Chen Y, Li Y, Zhang Q (2015) Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environ Sci Pollut Res 22:19756–19763CrossRefGoogle Scholar
  300. Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792PubMedCrossRefPubMedCentralGoogle Scholar
  301. Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281PubMedCrossRefPubMedCentralGoogle Scholar
  302. Wierzbicka M (1987) Lead accumulation and its translocation barriers in roots of Allium cepa L.—autoradiographic and ultrastructural studies. Plant Cell Environ 10:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  303. Wierzbicka M (1989) Disturbances in cytokinesis caused by inorganic lead. Environ Exp Bot 29:123–133CrossRefGoogle Scholar
  304. Wierzbicka M (2015) Defense of plants against heavy metals. In: Wierzbicka M (ed) Ecotoxicology: plants, soils, metals: monograph. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, pp 96–116. (in Polish)Google Scholar
  305. Wierzbicka M, Obidzińska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171CrossRefGoogle Scholar
  306. Wójcik M, Tukendorf A (1999) Cd-tolerance of maize, rye and wheat seedlings. Acta Phys Plant 21:99–107CrossRefGoogle Scholar
  307. Wójcik M, Sugier P, Siebielec G (2014) Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci Total Environ 487:313–322PubMedCrossRefPubMedCentralGoogle Scholar
  308. Woźny A, Jerczynska E (1991) The effect of lead on early stages of Phaseolus vulgaris L. growth in vitro conditions. Biol Plant 33:32–39CrossRefGoogle Scholar
  309. Wu X, He J, Ding H, Zhu Z, Chen J, Xu S, Zh D (2015) Modulation of zinc-induced oxidative damage in Solanum melongena by 6-benzylaminopurine involves ascorbate–glutathione cycle metabolism. Environ Exp Bot 116:1–11CrossRefGoogle Scholar
  310. Yang XE, Baligar VC, Foster JC, Martens DC (1997) Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant Soil 196:271–276CrossRefGoogle Scholar
  311. Ying R-R, Qiu R-L, Tang Y-T, Hua P-J, Qiu H, Chen H-R, Shi T-H, Morel J-L (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87PubMedCrossRefPubMedCentralGoogle Scholar
  312. Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115CrossRefGoogle Scholar
  313. Zeng F, Chen S, Miao Y, Wu F, Zhang G (2008) Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ Pollut 155:284–289PubMedCrossRefPubMedCentralGoogle Scholar
  314. Zeng L, Zhu T, Gao Y, Wang Y, Ning C, Björn LO, Chen D, Li S (2017) Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicol Environ Saf 139:228–237PubMedCrossRefPubMedCentralGoogle Scholar
  315. Zhang G, Fukami M, Sekimoto H (2000) Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. J Plant Nutr 23:1337–1350CrossRefGoogle Scholar
  316. Zhang X, Gao B, Xia H (2014) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotox Environ Safe 106:102–108CrossRefGoogle Scholar
  317. Zornoza P, Roblesand S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226CrossRefGoogle Scholar
  318. Zorrig W, Shahzad Z, Abdelly C, Berthomieu P (2012) Calcium enhances cadmium tolerance and decreases cadmium accumulation in lettuce (Lactuca sativa). Afr J Biotechnol 11:8441–8448Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eugeniusz Małkowski
    • 1
    Email author
  • Krzysztof Sitko
    • 1
  • Paulina Zieleźnik-Rusinowska
    • 1
  • Żaneta Gieroń
    • 1
  • Michał Szopiński
    • 1
  1. 1.Department of Plant Physiology, Faculty of Biology and Environmental ProtectionUniversity of Silesia in KatowiceKatowicePoland

Personalised recommendations