Applying Ontology-Informed Lattice Reduction Using the Discrimination Power Index to Financial Domain

  • Qudamah QuboaEmail author
  • Nikolay Mehandjiev
  • Ali Behnaz
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 345)


Contemporary financial institutions are relying on varied and voluminous data and so they need advanced technologies to provide their customers with the best possible services. Capturing the meaning, or semantics, of data and presenting these semantics in simplified yet relevant models are key challenges to achieving this. Formal Concept Analysis (FCA) automates the analysis of properties and instances of the data, generating a lattice which groups properties and instances into concepts. This lattice can be used as automatically generated semantic structure describing the domain, yet the complexity and size of the resultant lattice render this technique unusable in most practical cases involving financial data. To tackle this, our Ontology-informed Lattice Reduction approach can guide the reduction of the lattices generated from financial sampled data. We validate the adaptation of the approach to the financial domain through a real-world asset allocation case study, demonstrating that the approach achieves good overall performance and relevant results.


FCA Semantic structures Lattice reduction Validation 


  1. 1.
    De Mauro, A., Greco, M., Grimaldi, M.: A formal definition of big data based on its essential features. Libr. Rev. 65(3), 122–135 (2016)CrossRefGoogle Scholar
  2. 2.
    Singh, P.K., Kumar, C.A., Gani, A.: A comprehensive survey on formal concept analysis, its research trends and applications. Int. J. Appl. Math. Comput. Sci. 26(2), 495–516 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rouane, M.H., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining formal concept analysis and description logics for mining relational data. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg (2007). Scholar
  4. 4.
    Dias, S.M., Vieira, N.J.: Concept lattices reduction: definition, analysis and classification. Expert Syst. Appl. 42(20), 7084–7097 (2015)CrossRefGoogle Scholar
  5. 5.
    Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. In: Braslavski, P., Karpov, N., Worring, M., Volkovich, Y., Ignatov, D.I. (eds.) RuSSIR 2014. CCIS, vol. 505, pp. 42–141. Springer, Cham (2015). Scholar
  6. 6.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, pp. 230–235 (2007)Google Scholar
  7. 7.
    Stumme, G.: Using ontologies and formal concept analysis for organizing business knowledge. In: Becker, J., Knackstedt, R. (eds.) Wissensmanagement mit Referenzmodellen, pp. 163–174. Physica, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Sarmah, A.K., Hazarika, S.M., Sinha, S.K.: Formal concept analysis: current trends and directions. Artif. Intell. Rev. 44(1), 47–86 (2015)CrossRefGoogle Scholar
  9. 9.
    Quboa, Q., Behnaz, A., Mehandjiev, N., Rabhi, F.: Ontology-informed lattice reduction using the discrimination power index. In: Proceedings of the 24th International Conference on Conceptual Structures (ICCS), Marburg, Germany, July 2019Google Scholar
  10. 10.
    Behnaz, A., Natarajan, A., Rabhi, F.A., Peat, M.: A semantic-based analytics architecture and its application to commodity pricing. In: Feuerriegel, S., Neumann, D. (eds.) FinanceCom 2016. LNBIP, vol. 276, pp. 17–31. Springer, Cham (2017). Scholar
  11. 11.
    LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–32 (2011)Google Scholar
  12. 12.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  13. 13.
    Financial Services Standards. Accessed 19 Apr 2018
  14. 14.
    Belohlavek, R., Trnecka, M.: Basic level of concepts in formal concept analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 28–44. Springer, Heidelberg (2012). Scholar
  15. 15.
    Singh, P.K., Kumar, C.A.: Concept lattice reduction using different subset of attributes as information granules. Granul. Comput. 2(3), 159–173 (2017)CrossRefGoogle Scholar
  16. 16.
    Belohlavek, R., Vychodil, V.: Formal concept analysis with background knowledge: attribute priorities. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(4), 399–409 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhang, S., Guo, P., Zhang, J., Wang, X., Pedrycz, W.: A completeness analysis of frequent weighted concept lattices and their algebraic properties. Data Knowl. Eng. 81, 104–117 (2012)CrossRefGoogle Scholar
  18. 18.
    Bělohlávek, R., Sklenář, V., Zacpal, J.: Formal concept analysis with hierarchically ordered attributes. Int. J. Gen. Syst. 33(4), 383–394 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Domenach, F., Portides, G.: Similarity measures on concept lattices. In: Wilhelm, A.F.X., Kestler, H.A. (eds.) Analysis of Large and Complex Data. SCDAKO, pp. 159–169. Springer, Cham (2016). Scholar
  20. 20.
    Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J. Syst. Cybern. Inf. 8(1), 43–48 (2010)Google Scholar
  21. 21.
    W3C, SPARQL 1.1 Query Language. Accessed 23 Apr 2018
  22. 22.
    Sharpe, W.F.: Asset allocation: management style and performance measurement. J. Portfolio Manag. 18(2), 7–19 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Alliance Manchester Business SchoolUniversity of ManchesterManchesterUK
  2. 2.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations