Adaptation Mechanisms and Applications of Psychrophilic Fungi

  • Muhammad Rafiq
  • Noor Hassan
  • Maliha Rehman
  • Fariha Hasan


Earth has a combination of diverse environmental conditions, from pleasant to extreme, from a human’s perspective. Fungi are ubiquitous in nature and found everywhere. Low-temperature regions have several restrictions, and fungi harboring there, possess specific mechanisms to thrive in such harsh environments, and their extraordinary characteristics can be exploited for the benefit of humans and nature. The Chapter lines up data of psychrophilic fungi, strategies to survive in cryogenic zones, and applications in biotechnology and industry. Besides low temperature, psychrophilic fungi also face UV rays, low nutrients and water availability, freeze-thaw cycles, and osmotic pressure. They play an important role in nutrient cycling and decomposition of organic compounds at freezing temperatures. Strategies of cold tolerance in fungi include production of antifreeze proteins, compatible solutes, and maintenance of plasma membrane fluidity, cold-active enzymes, and other mechanisms. Cold active enzymes, bioactive metabolites, lipids, pigments, exopolysaccharides, antifreeze proteins, bioleaching, bioremediation of wastewater, soil, hydrocarbons, etc. are some of the important biotechnological uses of low-temperature fungi. Here, we elaborate strategies of cold-adapted fungi to survive in cold and their possible uses in industry and biotechnology. This Chapter gives comprehensive knowledge of low-temperature environment harboring thousands of fungal species. It explains both phenotypic and genotypic mechanisms by which fungi thrive at low temperature and in turn how can we use these adaptation strategies for diverse industrial applications. This chapter is expected to be useful for researchers as well as biotechnological and industrial bioprospectors.


Cold-adapted fungi Adaptation mechanisms Metabolites Biotechnology Industry 



We would like to thank and acknowledge Simon Powell, University Graphics Officer, School of Earth Sciences, University of Bristol, UK, for illustration.


  1. Adapa V, Ramya LN, Pulicherla KK, Rao KR (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337PubMedCrossRefGoogle Scholar
  2. Ahmad B, Javed I, Shah AA, Hameed A, Hasan F (2010) Psychrotrophic bacteria isolated from −20°C freezer. Afr J Biotechnol 9:718–724CrossRefGoogle Scholar
  3. Alcaíno J, Cifuentes V, Baeza M (2015) Physiological adaptations of yeasts living in cold environments and their potential applications. World J Microbiol Biotechnol 31:1467–1473. Scholar
  4. Allen D, Huston AL, Weels LE, Deming JW (2002) Biotechnological use of psychrophiles. Encycl Environ Microbiol:1–17Google Scholar
  5. Arcangeli C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids: approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biopolymers 57:179–186PubMedCrossRefGoogle Scholar
  6. Bashir A, Hoffmann T, Smits SHJ, Bremer E (2014) Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis. Appl Environ Microbiol 80(9):2773–2785PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bedard DL, Bailey JJ, Brandon LR, Jerzak GS (2006) Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Appl Environ Microbiol 72:2460–2470PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690PubMedCrossRefGoogle Scholar
  9. Bowman JP (2017) Chapter 15: Genomics of psychrophilic bacteria and archaea. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology. Springer International Publishing, New York, pp 345–387CrossRefGoogle Scholar
  10. Castrillo M, Luque EM, Carmen JPMM, Corrochano LM, Avalos J (2018) Transcriptional basis of enhanced photoinduction of carotenoid biosynthesis at low temperature in the fungus Neurospora crassa. Res Microbiol 169: 278–289PubMedCrossRefGoogle Scholar
  11. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui K, Williams T (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460. Scholar
  12. Chandler S (2018) The Effect of Temperature on Cell Membranes. Updated March 13.
  13. Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20PubMedCrossRefGoogle Scholar
  14. Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-Grand) 50:631–642Google Scholar
  15. Cockell C, Blaustein AR (2001) Ecosystems, evolution, and ultraviolet radiation. Springer, New YorkCrossRefGoogle Scholar
  16. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345PubMedCrossRefGoogle Scholar
  17. Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase: functional and physico-chemical characterization. J Biol Chem 277:35133–35139PubMedCrossRefGoogle Scholar
  18. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  19. D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P et al (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:e457PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dalsgaard PW, Larsen TO, Frydenvang K, Christophersen C (2004a) Psychrophilin A and Cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881PubMedCrossRefGoogle Scholar
  22. Dalsgaard PW, Blunt JW, Munro MH, Larsen TO, Christophersen C (2004b) Psychrophilin B and C: Cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67:1950–1952PubMedCrossRefGoogle Scholar
  23. Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot 58:141PubMedCrossRefGoogle Scholar
  24. Da-qing W, Wen-ran J, Tai-peng S, Yu-tian M, Wei Z, Hong-yan W (2016) Screening psychrophilic fungi of cellulose degradation and characteristic of enzyme production. J Northeast Agric Univ 23:20–27Google Scholar
  25. Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120CrossRefGoogle Scholar
  26. Duarte AWF, dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VJ, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Pessoa A Jr, Sette LD (2018) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 38:600–619. Scholar
  27. Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357PubMedCrossRefGoogle Scholar
  28. Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA (2006) Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol 8:1212–1219PubMedCrossRefGoogle Scholar
  29. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940PubMedCrossRefGoogle Scholar
  30. Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:323101. Scholar
  31. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 512840. Scholar
  32. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200PubMedPubMedCentralCrossRefGoogle Scholar
  33. Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, Lee BKB, Isa MNM, Mat-Sharani S, Sulaiman S, Tay LJ, Zolkefli R, Noor YM, Law DSN, Rahman SHA, Md-Illias R, Abu Bakar FD, Najimudin N, Murad AMA, Mahadi NM (2018) The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PLOS One 13(1):e0189947. Scholar
  34. Flores GE, Bates ST, Caporaso JG, Lauber CL, Leff JW, Knight R, Fierer N (2012) Diversity, distribution and sources of bacteria in residential kitchens. Environ Microbiol 15:588–596PubMedPubMedCentralCrossRefGoogle Scholar
  35. Frisvad JC, Larsen TO, Dalsgaard PW, Seifert KA, Louis-Seize G, Lyhne EK, Jarvis BB, Fettinger JC, Overy DP (2006) Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum. Int J Syst Evol Microbiol 56:1427–1437PubMedCrossRefGoogle Scholar
  36. Garcia-Lopez E, Cid C (2017) Glaciers and ice sheets as analog environments of potentially habitable icy worlds. Front Microbiol 8:1407PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gawas-Sakhalkar P, Singh S, Simantini N, Ravindra R (2012) High-temperature optima phosphatases from the cold-tolerant Arctic fungus Penicillium citrinum. Polar Res 31. Scholar
  38. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gerginova M, Manasiev J, Yemendzhiev H, Terziyska A, Peneva N, Alexieva Z (2013) Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus. Z Naturforsch C 68:384–393. Scholar
  40. Gessler NN, Egorova AS, Belozerskaya TA (2014) Melanin pigments of fungi under extreme environmental conditions. Appl Biochem Microbiol 50:105–113CrossRefGoogle Scholar
  41. Goenadi DH, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932Google Scholar
  42. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235Google Scholar
  43. Grant WD (2004) Life at low water activity. Philos Trans R Soc B Biol Sci 359:1249–1267CrossRefGoogle Scholar
  44. Grishkan I (2011) In: Horikoshi K (ed) Extremophiles handbook. Springer Verlag, Tokyo, pp 1135–1146CrossRefGoogle Scholar
  45. Hamid B, Rana RS, Chauhan D, Singh P, Mohiddin FA, Sahay S, Abidi I (2014) Psychrophilic yeasts and their biotechnological applications - a review. Afr J Biotechnol 13:2188–2197CrossRefGoogle Scholar
  46. Han KH, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43:1065–1078PubMedCrossRefGoogle Scholar
  47. Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15:147–172CrossRefGoogle Scholar
  48. Hassan N, Rafiq M, Hayat M, Nadeem S, Shah AA, Hasan F (2017) Potential of psychrotrophic fungi isolated from Siachen glacier, Pakistan, to produce antimicrobial metabolites. Appl Ecol Environ Res 15:1157–1171CrossRefGoogle Scholar
  49. He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, Wei D (2017) Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol 17:22. Scholar
  50. Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193:1552–1562PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hoshino T (2005) Ecophysiology of snow mold fungi. Curr Top Plant Biol 6:27–35Google Scholar
  52. Hoshino T, Matsumoto N (2012) Cryophilic fungi to denote fungi in the cryosphere. Fungal Biol Rev 26:102–105CrossRefGoogle Scholar
  53. Hoshino T, Kiriaki M, Nakajima T (2003) Novel thermal hysteresis proteins from low temperature basidiomycete, Coprinus psychromorbidus. Cryo Letters 24:135–142PubMedGoogle Scholar
  54. Hua ZZ, Chen Y, Du GC, Chen J (2004) Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J Microbiol Biotechnol 20:25–29CrossRefGoogle Scholar
  55. Hughes KA, Bridge P, Clark MS (2007) Tolerance of Antarctic soil fungi to hydrocarbons. Sci Total Environ 372:539–548PubMedCrossRefGoogle Scholar
  56. Jansson J, Taş N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12. Scholar
  57. Javed A, Qazi JI (2016) Psychrophilic microbial enzymes implications in coming biotechnological processes. Am Scient Res J Eng Technol Sci 23:103–120Google Scholar
  58. Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8(1). Scholar
  59. Kostadinova M, Krumova E, Tosi S, Pashova, Angelova M (2009) Isolation and identification of filamentous fungi from Island Livingston, Antarctica. Biotech Biotechnol Equip 23:267–270CrossRefGoogle Scholar
  60. Kuddus M, Roohi AJ, Ramteke PW (2011) An overview of cold-active microbial α-amylase: adaptation strategies and biotechnological potentials. Biotechnology 10:246–258CrossRefGoogle Scholar
  61. Kudryashova EB, Chernousova EY, Suzina NE, Ariskina EV, Gilichinsky DA (2013) Microbial diversity of Late Pleistocene Siberian permafrost samples. Microbiology 82:341–351CrossRefGoogle Scholar
  62. Lambou K, Pennati A, Valsecchi I, Tada R, Sherman S, Sato H, Beau R, Gadda G, Latgé JP (2013) Pathway of glycine betaine biosynthesis in Aspergillus fumigatus. Eukaryot Cell 12:853–863PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lewer P, Graupner PR, Hahn DR, Karr LL, Duebelbeis DO, Lira JM, Anzeveno PB, Fields SC, Gilbert JR, Pearce C (2006) Discovery, synthesis, and insecticidal activity of cycloaspeptide E. J Nat Prod 69:1506–1510PubMedCrossRefGoogle Scholar
  64. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361PubMedCrossRefGoogle Scholar
  65. Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844. Scholar
  66. Margesin R, Feller G, Gerday C, Russell NJ (2002) In: Bitton G (ed) Encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 871–885Google Scholar
  67. Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459PubMedPubMedCentralCrossRefGoogle Scholar
  68. Marinelli F, Brunati M, Sponga F, Ciciliato I, Losi D, Van Trappen S, Göttlich E, De Hoog S, Rojas JL, Genilloud O (2004) Biotechnological exploitation of heterotrophic bacteria and filamentous fungi isolated from benthic mats of Antarctic lakes. In: Kurtböke I, Swings J (eds) Microbial genetic resources and biodiscovery. Queensland Complete Printing Services, Queensland, pp 163–184Google Scholar
  69. Martínez D, Rosa A-G, Revilla MA (1999) Cryopreservation of in vitro grown shoot-tips of Olea europaea L. var. Arbequina. Cryo-Letters 20:29–36Google Scholar
  70. Mayordomo I, Randez-Gil F, Prieto JA (2000) Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans. J Agric Food Chem 48:105–109PubMedCrossRefGoogle Scholar
  71. Moghaddam MSH, Soltani J (2014) Psychrophilic endophytic fungi with biological activity inhabit Cupressaceae plant family. Symbiosis 63:79–86CrossRefGoogle Scholar
  72. Montiel PO (2000) Soluble carbohydrates (trehalose in particular) and cry protection in polar biota. Cryo Letters 21:83–90PubMedGoogle Scholar
  73. Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192CrossRefGoogle Scholar
  74. Mukherjee M, Mukherjee PK, Horwitz B, Zachow C, Berg G, Zeilinger S (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Ind J Microbiol 52Google Scholar
  75. Mukhopadhyay SK, Chatterjee S, Gauri SS, Das SS, Mishra A, Patra M, Ghosh AK, Das AK, Singh SM, Dey S (2014) Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr Polym 104:204–212PubMedCrossRefGoogle Scholar
  76. Murakami H, Nobusawa T, Hori K, Shimojima M, Ohta H (2018) Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol 177(1):181–193PubMedPubMedCentralGoogle Scholar
  77. Musilova M, Tranter M, Bennett SA, Wadham J, Anesio AM (2015) Stable microbial community composition on the Greenland ice sheet. Front Microbiol 6:193PubMedPubMedCentralCrossRefGoogle Scholar
  78. Narsian V, Patel HH (2000) Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem 32:559–565CrossRefGoogle Scholar
  79. Nenwani V, Doshi P, Saha T, Rajkumar S (2010) Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J Yeast Fung Res 1:009–014Google Scholar
  80. NOAA (2018). National Ocean Service, National Oceanographic and Atmospheric Administration, Department of Commerce) as well as non-polar regions. What is the cryosphere? Last updated: 06/25/18
  81. Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 323–336CrossRefGoogle Scholar
  82. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  83. Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24:97–102CrossRefGoogle Scholar
  84. Pandey N, Dhakar K, Jain R, Pandey A (2016) Temperature dependent lipase production from cold and pH tolerant species of Penicillium. Mycosphere 7:1533–1545CrossRefGoogle Scholar
  85. Parker JC, McPherson RK, Andrews KM, Levy CB, Dubins JS, Chin JE, Perry PV, Hulin B, Perry DA, Inagaki T, Dekker KA (2000) Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes 49:2079–2086PubMedCrossRefGoogle Scholar
  86. Pascual S, Melgarejo P, Magan N (2003) Water availability affects the growth, accumulation of compatible solutes and the viability of the biocontrol agent Epicoccum nigrum. Mycopathologia 156:93–100PubMedCrossRefGoogle Scholar
  87. Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289PubMedCrossRefGoogle Scholar
  88. Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144PubMedCrossRefGoogle Scholar
  89. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  90. Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75PubMedPubMedCentralCrossRefGoogle Scholar
  91. Poveda G, Gil-Durán C, Vaca I, Levicán G, Chávez R (2018) Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol Res 51:28PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rastogi RP, Richa, Singh SP, Häder D-P, Sinha RP (2010a) Mycosporine-like amino acids profile and their activity under PAR and UVR in a hot-spring cyanobacterium Scytonema sp. HKAR-3. Austral J Bot 58:286–293CrossRefGoogle Scholar
  93. Rastogi RP, Richa KA, Tyagi MB, Sinha RP (2010b) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980PubMedPubMedCentralCrossRefGoogle Scholar
  94. Raymond J, Fritsen C, Shen K (2007) An Ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221PubMedCrossRefGoogle Scholar
  95. Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48PubMedCrossRefGoogle Scholar
  96. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRefGoogle Scholar
  97. Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losi D, Van Trappen S, Mergaert J, Swings J, Marinelli F (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2:33–41PubMedCrossRefGoogle Scholar
  98. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141CrossRefGoogle Scholar
  99. Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc B 326:595–611CrossRefGoogle Scholar
  100. Salazar G, Sunagawa S (2017) Marine microbial diversity. Curr Biol 27:R489–R494PubMedCrossRefGoogle Scholar
  101. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms and industrial applications of cold-active enzymes. Front Microbiol 7:1408PubMedPubMedCentralGoogle Scholar
  102. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: Industrial relevance and current trends. Front Bioeng Biotechnol 3:148PubMedPubMedCentralCrossRefGoogle Scholar
  103. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004CrossRefGoogle Scholar
  104. Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbaru m CCFEE 5080. Res Microbiol 153:585–592PubMedCrossRefGoogle Scholar
  105. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:32Google Scholar
  106. Selbmann L, Pacelli C, Zucconi L, Dadachova E, Moeller R, de Vera JP, Onofri S (2018) Resistance of an Antarctic cryptoendolithic black fungus to radiation gives new insights of astrobiological relevance. Fungal Biol 122:546–554PubMedCrossRefGoogle Scholar
  107. Sharma R, Baghel RK (2010) Dynamics of acid phosphatase production of the ectomycorrhizal mushroom Cantharellus tropicalis. Afr J Microbiol Res 4:2072–2078Google Scholar
  108. Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262PubMedCrossRefGoogle Scholar
  109. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. Scholar
  110. Singh MS, Yadav SL, Singh KS, Singh P, Singh NP, Ravindra R (2011) Phosphate solubilizing ability of two Arctic Aspergillus niger strains. Polar Res 30:7283CrossRefGoogle Scholar
  111. Singh S, Mandal SK (2012) Optimization of processing parameters for production of pectinolytic enzymes from fermented pineapple residue of mixed Aspergillus species. Jordan J Biol Sci 5:307–314Google Scholar
  112. Singh SM, Singh PN, Singh SK, Sharma PK (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Polar Rec 50:31–36CrossRefGoogle Scholar
  113. Snider CS, Hsiang T, Zhao G, Griffith M (2000) Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds. Phytopathology 90:354–361PubMedCrossRefGoogle Scholar
  114. Sommaruga R, Libkind D, van Broock M, Whitehead K (2004) Mycosporine-glutaminol-glucoside, a UV-absorbing compound of two Rhodotorula yeast species. Yeast 21:1077–1081PubMedCrossRefGoogle Scholar
  115. Son H, Lee J, Lee YW (2012) Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Gibberella zeae. Microbiol Res 167:608–615. Scholar
  116. Stibal M, Anesio AM, Blues CJD, Tranter M (2009) Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6:913–922CrossRefGoogle Scholar
  117. Sumarah MW, Miller JD, Adams GW (2005) Measurement of a rugulosin-producing endophyte in white spruce seedlings. Mycologia 97:770–776PubMedCrossRefGoogle Scholar
  118. Takasawa T, Sagisaka K, Yagi K, Uchiyama K, Aoki A, Takaoka K, Yamamato K (1997) Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis. Can J Microbiol 43:417–424PubMedCrossRefGoogle Scholar
  119. Tan H, Tang J, Li X, Liu T, Miao R, Huang Z, Wang Y, Gan B, Peng W (2017) Biochemical characterization of a psychrophilic phytase from an artificially cultivable morel Morchella importuna. J Microbiol Biotechnol 27. Scholar
  120. Taskin M, Ortucu S, Unver Y, Tasar OC, Ozdemir M, Kaymak HC (2016) Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf Environ Prot 103:136–143CrossRefGoogle Scholar
  121. Thomas DN, Dieckmann GS (2002) Antarctic sea ice--a habitat for extremophiles. Science 25:641–644CrossRefGoogle Scholar
  122. Tibbett M, Grantham K, Sanders FE, Cairney JWG (1998a) Induction of cold active acid phosphomonoesterase activity at low temperature in psychrotrophic ectomycorrhizal Hebeloma spp. Mycol Res 102:1533–1539CrossRefGoogle Scholar
  123. Tibbett M, Sanders FE, Cairney JWG (1998b) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129–135CrossRefGoogle Scholar
  124. Tiquia SM, Mormile M (2010) Extremophiles–A source of innovation for industrial and environmental applications. Environ Technol 31(8-9):823PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tiquia-Arashiro SM, Rodrigues D (2016) Thermophiles and psychrophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, New York, pp 89–127CrossRefGoogle Scholar
  126. Tiwari R, Nain PKS, Singh S, Adak A, Saritha M, Rana S, Sharma A, Nain L (2015) Cold active holocellulase cocktail from Aspergillus niger SH3: process optimization for production and biomass hydrolysis. J Taiwan Inst Chem Eng 56:57–66CrossRefGoogle Scholar
  127. Trivedi P, Pandey A (2007) Low temperature phosphate solubilization and plant growth promotion by psychrotrophic bacteria, isolated from Indian Himalayan region. Res J Microbiol 2:454–461CrossRefGoogle Scholar
  128. Trochine A, Turchetti B, Vaz ABM, Brandao L, Rosa LH, Buzzini P, Rosa C, Libkind D (2017) Description of Dioszegia patagonica sp. nov., a novel carotenogenic yeast isolated from cold environments. Int J Syst Evol Microbiol 67:4332–4339PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci. 3:160106. Scholar
  130. Tsuji M, Tanabe Y, Vincent WF, Uchida M (2018) Mrakia arctica sp. nov., a new psychrophilic yeast isolated from an ice island in the Canadian High Arctic. Mycoscience 59:54–58CrossRefGoogle Scholar
  131. Turk M, Plemenitaš A, Gunde-Cimerman N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958PubMedCrossRefGoogle Scholar
  132. Upadhyay P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6:15PubMedPubMedCentralCrossRefGoogle Scholar
  133. Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S (2016) Bacterial diversity and community composition from seasurface to subseafloor. ISME J 10:979–989PubMedCrossRefGoogle Scholar
  134. Wang N, Zang J, Ming K, Liu Y, Wu Z, Ding H (2013) Production of cold-adapted cellulase by Verticillium sp. isolated from Antarctic soils. Electron J Biotechnol 16:10–10Google Scholar
  135. Wang M, Tian J, Xiang M, Liu X (2017) Living strategy of cold-adapted fungi with the reference to several representative species. Mycology 8:178–188PubMedPubMedCentralCrossRefGoogle Scholar
  136. Watkinson SC (2016) The fungi. Chapter 5: Physiology and adaptation. pp 141–187CrossRefGoogle Scholar
  137. Weinstein RN, Palm ME, Johnstone K, Wynn-Williams DD (1997) Ecological and physiological characterization of Humicola marvinii, a new psychrophilic fungus from fellfield soils in the maritime Antarctic. Mycologia:706–711Google Scholar
  138. Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92(2):222–229CrossRefGoogle Scholar
  139. Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749CrossRefGoogle Scholar
  140. Wu G, Lin A, Gu Q, Zhu T, Li D (2013) Four new chloro-eremophilane sesquiterpenes from an antarctic deep-sea derived fungus, Penicillium sp. PR19N-1. Mar Drugs 11:1399–1408PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wu G, Sun X, Yu G, Wang W, Zhu T, Gu Q, Li D (2014) Cladosins A–E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J Nat Prod 77:270–275PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wu B, Wiese J, Wenzel-Storjohann A, Malien S, Schmaljohann R, Imhoff JF (2016) Engyodontochones, antibiotic polyketides from the marine fungus Engyodontium album strain LF069. Chem A Eur J 22:7452–7462CrossRefGoogle Scholar
  143. Wu DL, Li HJ, Smith DR, Jaratsittisin J, Xia-Ke-Er XFKT, Ma WZ, Guo YW, Dong J, Shen J, Yang DP, Lan WJ (2018) Polyketides and alkaloids from the marine-derived fungus Dichotomomyces cejpii F31-1 and the antiviral activity of Scequinadoline A against Dengue Virus. Mar Drugs 16:229PubMedCentralCrossRefPubMedGoogle Scholar
  144. Wynn-Williams DD, Edwards HGM (2000) Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial antarctic habitats and Mars analogs. Icarus 144:486–503. Scholar
  145. Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403PubMedCrossRefGoogle Scholar
  146. Yogabaanu U, Weber JFF, Convey P, Rizman-Idid M, Alias SA (2017) Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Pol Sci 14:60–67CrossRefGoogle Scholar
  147. Yu SM, Ramkumar G, Lee YH (2013) Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J Appl Microbiol 115:509–516PubMedCrossRefGoogle Scholar
  148. Yusof NY, Firdaus-Raih M, Mahadi NM, Illias RM, Abu Bakar FD, Murad AMA (2017) In silico analysis and 3D structure prediction of a chitinase from psychrophilic yeast Glaciozyma antarctica PI12. Malays Appl Biol 46:117–123Google Scholar
  149. Zhdanova NN, Zakharchenko VA, Haselwandter K (2005) In: Dighton J, White JF, Oudemans P (eds) The fungal community, its organization and role in the ecosystem. CRC Press, Baton Rouge, LA, pp 759–768Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Microbiology, Faculty of Life Sciences and Informatics Balochistan University of Information TechnologyEngineering and Management Sciences (BUITEMS)QuettaPakistan

Personalised recommendations