New Perspectives on the Distribution and Roles of Thermophilic Fungi

  • Miriam I. Hutchinson
  • Amy J. Powell
  • José Herrera
  • Donald O. Natvig


Defined as fungi that grow better at 25 °C than at 45 °C, thermophilic fungi were discovered more than a century ago. Nevertheless, little is known about the natural roles and distribution of these organisms. Although common in “sun-heated soils” and other natural substrates they have most often been recovered from manmade composts, and one hypothesis suggests that they evolved as decomposers in natural compost. This hypothesis suggests that propagules found outside compost have been dispersed by wind, an idea that seems nearly impossible to reconcile with their high frequency and broad distribution. In this chapter we briefly review the biology, history, and evolution of thermophilic fungi. We also present new results from ongoing efforts to map the range of habitats from which thermophilic fungi can be obtained. We have isolated thermophilic fungi over small and large spatial scales. Our surveys have focused on soil, litter, and herbivore droppings sampled from diverse ecosystems (deserts, grasslands, and forests) across eight western states, Mexico and Canada—from southern deserts to alpine ecosystems in Colorado and Montana. Our results show that thermophiles can be isolated readily from all of these substrates at nearly every latitude and elevation. We observed that the success of recovering thermophilic fungi from soil decreases with increasing latitude. During this survey, we also discovered that several species of thermophilic fungi can survive storage in soil samples for several years at −80 °C.


Thermophile Ecology Chaetomiaceae Eurotiales Biogeography 



This research was supported in part by a National Science Foundation award to the University of New Mexico (UNM) for the Sevilleta Long-Term Ecological Research program. We acknowledge support for DNA sequencing from the UNM Department of Biology’s Molecular Biology Facility. Data analysis was aided by computing resources of the UNM Center for Evolutionary & Theoretical Immunology (CETI) under National Institutes of Health grant P30GM110907, and the UNM Center for Advanced Research Computing, supported in part by the National Science Foundation.

Funding statement Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.


  1. Abou Alhamed MF, Shebany YM (2012) Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biol 14:859–863CrossRefGoogle Scholar
  2. Allen PJ, Emerson R (1949) Guayule rubber: microbiological improvement by shrub retting. Ind Eng Chem 41:346–365CrossRefGoogle Scholar
  3. Ames LM (1963) A monograph of the Chaetomiaceae. US Army Res Dev Ser No. 2, Washington, DC, pp 9–125Google Scholar
  4. Andrey DO, Kaiser L, Emonet S, Erard V, Chalandon Y, Van Delden C (2017) Cerebral rhizomucor infection treated by posaconazole delayed-release tablets in an allogeneic stem cell transplant recipient. Int J Infect Dis 55:24–26CrossRefGoogle Scholar
  5. Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394CrossRefGoogle Scholar
  6. Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–929CrossRefGoogle Scholar
  7. Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211CrossRefGoogle Scholar
  8. Bustamante J (2006) Thermophilic fungi on the Sevilleta National Wildlife Refuge. PhD diss., University of New MexicoGoogle Scholar
  9. Cooney DG, Emerson R (1964) Thermophilic fungi: an account of their biology, activities and classification. W.H. Freeman, San Francisco, CA, p 188Google Scholar
  10. Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20CrossRefGoogle Scholar
  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  12. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996CrossRefGoogle Scholar
  13. Eichorst SA, Kuske CR (2012) Cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils identified using stable isotope probing. Appl Environ Microbiol 78:2316–2327CrossRefGoogle Scholar
  14. Fergus CL (1971) The temperature relationships and thermal resistance of a new thermophilic Papulaspora from mushroom compost. Mycologia 63:426–431CrossRefGoogle Scholar
  15. Fergus CL, Sinden JW (1969) A new thermophilic fungus from mushroom compost: Thielavia thermophila spec. nov. Can J Bot 47:1635–1637CrossRefGoogle Scholar
  16. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefGoogle Scholar
  17. Hawksworth D, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5:1–17Google Scholar
  18. Hedger JN, Hudson HJ (1974) Nutritional studies of Thermomyces lanuginosus from wheat straw compost. Trans Br Mycol Soc 62:129–143CrossRefGoogle Scholar
  19. Herrera J, Khidir HH, Eudy DM, Porras-Alfaro A, Natvig DO, Sinsabaugh RL (2010) Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102:1012–1026CrossRefGoogle Scholar
  20. Hirose D, Degawa Y, Inaba S, Tokumasu S (2012) The anamorphic genus Calcarisporiella is a new member of the Mucoromycotina. Mycoscience 53:256–260CrossRefGoogle Scholar
  21. Hoffmann K, Pawłowska J, Walther G, Wrzosek M, De Hoog GS, Benny GL, Kirk PM, Voigt K (2013) The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 30:57–76CrossRefGoogle Scholar
  22. Houbraken J, Spierenburg H, Frisvad JC (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. A Van Leeuw J Microb 101:403c421CrossRefGoogle Scholar
  23. Houbraken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249CrossRefGoogle Scholar
  24. Houbraken J, Samson RA, Yilmaz N (2016) Taxonomy of Aspergillus, Penicillium and Talaromyces and its significance for biotechnology.Aspergillus and Penicillium in the Post-Genomic Era. Caister Academic Press, Norfolk, pp 1–15CrossRefGoogle Scholar
  25. Hutchinson MI, Powell AJ, Tsang A, O’Toole N, Berka RM, Barry K, Grigoriev IV, Natvig DO (2016) Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica. Fungal Genet Biol 86:9–19CrossRefGoogle Scholar
  26. Kane BE, Mullins JT (1973) Thermophilic fungi in a municipal waste compost system. Mycologia 65:1087–1100CrossRefGoogle Scholar
  27. Kerekes J, Kaspari M, Stevenson B, Nilsson RH, Hartmann M, Amend A, Bruns TD (2013) Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol 22:2827–2838CrossRefGoogle Scholar
  28. Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162CrossRefGoogle Scholar
  29. Koukol O (2016) Myriococcum revisited: a revision of an overlooked fungal genus. Plant Syst Evol 302:957–969CrossRefGoogle Scholar
  30. Langarica-Fuentes A, Zafar U, Heyworth A, Brown T, Fox G, Robson GD (2014) Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol 88:296–308CrossRefGoogle Scholar
  31. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278CrossRefGoogle Scholar
  32. Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:580–W584CrossRefGoogle Scholar
  33. Lindt W (1886) Mitteilungen über einige neue pathogene Shimmelpilze. Arch Exp Pathol Pharmakol 21:269–298CrossRefGoogle Scholar
  34. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279CrossRefGoogle Scholar
  35. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. 2011; Version 2.75.
  36. Maheshwari R, Kamalam PT, Balasubramanyam PV (1987) The biogeography of thermophilic fungi. Curr Sci 56:151–155Google Scholar
  37. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488CrossRefGoogle Scholar
  38. Massimo NC, Devan MN, Arendt KR, Wilch MH, Riddle JM, Furr SH, Steen C, U’Ren JM, Sandberg DC, Arnold AE (2015) Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol 70:61–76CrossRefGoogle Scholar
  39. Mehrotra RS, Aneja KR (1990) An introduction to mycology. New Age International, New Delhi, pp 1–737Google Scholar
  40. Miehe H (1907a) Die selbsterhitzung des Heus. Eine biologische studie. Gustav Fischer, Jena, pp 1–127Google Scholar
  41. Miehe H (1907b) Thermoidium sulfureum n.g. n.sp., etin neuer Wärmepilz. Berichte der Deutsch Bot Ges 25:510–515Google Scholar
  42. Miehe H (1930a) Die Wärmebildung von Reinkulturen im Hinblick auf die ätiologie der Selbsterhitzung pflanzlicher Stoffe. Arch Mikrobiol 1:78–118CrossRefGoogle Scholar
  43. Miehe H (1930b) Über die Selbsterhitzung des Heues. Arb Dtsch Landwirtsch Gesellsch Berlin 111:76–91Google Scholar
  44. Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116:489–502CrossRefGoogle Scholar
  45. Mouchacca J (2000a) Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes. World J Microbiol Biotechnol 16:869–880CrossRefGoogle Scholar
  46. Mouchacca J (2000b) Thermophilic fungi and applied research: a synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–888CrossRefGoogle Scholar
  47. Moustafa A-WF, Abdel-Azeem AM (2008) Thielavia gigaspora, a new thermotolerant ascomycete from Egypt. Microbiol Res 163:441–444CrossRefGoogle Scholar
  48. Natvig DO, Taylor JW, Tsang A, Hutchinson MI, Powell AJ (2015) Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila). Mycologia 107:319–327CrossRefGoogle Scholar
  49. Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N, Brayton KA (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8(11):e79512CrossRefGoogle Scholar
  50. Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19:31–37CrossRefGoogle Scholar
  51. Pan WZ, Huang XW, Wei KB, Zhang CM, Yang DM, Ding JM, Zhang KG (2010) Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152CrossRefGoogle Scholar
  52. Peixoto-Nogueira SC, Sandrim VC, Guimarães LHS, Jorge JA, Terenzi HF, Polizeli MLTM (2008) Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng 31:329–334CrossRefGoogle Scholar
  53. Platt AR, Woodhall RW, George AL Jr (2007) Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 43:58–62CrossRefGoogle Scholar
  54. Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104:813–825CrossRefGoogle Scholar
  55. Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899CrossRefGoogle Scholar
  56. Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18:345–354CrossRefGoogle Scholar
  57. Richardson MJ (2001) Diversity and occurrence of coprophilous fungi. Mycol Res 105:387–402CrossRefGoogle Scholar
  58. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845CrossRefGoogle Scholar
  59. Salar RK (2018) Thermophilic fungi: basic concepts and biotechnological applications. CRC Press, Boca Raton, FL, pp 1–334CrossRefGoogle Scholar
  60. Salar RK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agric Techonol 3:77–107Google Scholar
  61. Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY (2009) Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19:1722–1731CrossRefGoogle Scholar
  62. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  63. St-Germain G, Robert A, Ishak M, Tremblay C, Claveau S (1993) Infection due to Rhizomucor pusillus: report of four cases in patients with leukemia and review. Clin Infect Dis 16:640–645CrossRefGoogle Scholar
  64. Straatsma G, Samson RA, Olijnsma TW, Den Camp HJO, Gerrits JP, Van Griensven LJ (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60:454–458PubMedPubMedCentralGoogle Scholar
  65. Subrahmanyam A (1999) Ecology and distribution. In: Thermophilic moulds in biotechnology. Springer, Dordrecht, pp 13–42CrossRefGoogle Scholar
  66. Tansey MR (1971) Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycologia 63:537–547CrossRefGoogle Scholar
  67. Tansey MR (1973) Isolation of thermophilic fungi from alligator nesting material. Mycologia 65:594–601CrossRefGoogle Scholar
  68. Tansey MR (1975) Fungi associated with growing stalagtites. Mycologia 67:171–172CrossRefGoogle Scholar
  69. Tansey MR (1977) Enrichment, isolation and assay of growth of thermophilic and thermotolerant fungi in lignin-containing media. Mycologia 69:463–476CrossRefGoogle Scholar
  70. Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci U S A 69:2426–2428CrossRefGoogle Scholar
  71. Tansey MR, Jack MA (1976) Thermophilic fungi in sun-heated soils. Mycologia 68:1061–1075CrossRefGoogle Scholar
  72. Taylor JW, Hann-Soden C, Branco S, Sylvain I, Ellison CE (2015) Clonal reproduction in fungi. Proc Natl Acad Sci U S A 112:8901–8908CrossRefGoogle Scholar
  73. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159CrossRefGoogle Scholar
  74. Tiquia SM (2005) Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26(10):1104–1114CrossRefGoogle Scholar
  75. Tsiklinsky P (1899) Sur les mucédinées thermophiles. Ann Inst Pasteur 13:500–505Google Scholar
  76. van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP (2012) Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers 52:197–207CrossRefGoogle Scholar
  77. van den Brink J, van Muiswinkel GCJ, Theelen B, Hinz SWA, de Vries RP (2013) Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 79:1316–1324Google Scholar
  78. von Klopotek A (1976) Thielavia heterothallica spec. nov., die perfekte Form von Chrysosporium thermophilum. Arch Microbiol 107:223–224CrossRefGoogle Scholar
  79. White TJ, Bruns T, Lee SJ, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322Google Scholar
  80. Winnepenninckx B, Backeljau T, Wachter R (1993) Complete small ribosomal subunit RNA sequence of the chiton (Lischke, 1873) (Mollusca, Polyplacophora). Nucleic Acids Res 21:1670–1670CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Mercy CollegeDobbs FerryUSA

Personalised recommendations