Lignocellulose-Degrading Thermophilic Fungi and Their Prospects in Natural Rubber Extraction from Plants

  • Shomaila Sikandar
  • Imran Afzal
  • Naeem Ali
  • Katrina Cornish


Fungi have the ability to grow in diverse habitats and over a wide temperature range. Those that can grow between 45 °C and 55 °C are termed “thermophiles.” Thermophilic fungi were previously discovered in the natural self-heating process of organic debris, and their examples include Mucor pusillus, Thermomyces lanuginosus, Thermoascus aurantiacus, and Thermoidium sulfureum. Thermophilic fungi produce many thermostable enzymes, called thermozymes that are of biotechnological importance, particularly for degradation of lignocellulosic biomass to make value-added biomaterials. These fungi have the ability to grow, at high temperatures, on complex lignocellulosic biomass by secreting different thermozymes like cellulases, xylanases, and pectinases to hydrolyze complex plant polymers. Such extreme fungi naturally adapt to the high temperatures that are needed to degrade plant biomass, as their thermostable proteins are more resistant to proteolysis and chemical denaturation than those of mesophilic fungi. The thermophilic fungus T. lanuginosus STm, and its hydrolytic thermozymes, can efficiently degrade root biomass of the rubber plant (Taraxacum kok-saghyz), enhancing the extraction of natural rubber. Thermophilic fungi, typically lignocellulose degrading, may have industrial potential in applications that require removal or breakdown of lignocellulose to release other value-added secondary products, not just rubber. This chapter reviews the function and utility of thermophilic enzymes, and highlights, for the first time, the potential application of lignocellulose-degrading thermophilic fungi and their thermozymes in the extraction of natural rubber.


Thermozymes Cellulases Xylanases Pectinases Natural rubber 


  1. Adams PR, Deploey JJ (1978) Enzymes produced by thermophilic fungi. Mycologia 70:906–910PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alberghina FA (1973) Growth regulation in Neurospora crassa. Effects of nutrients and of temperature. Arch Microbiol 89:83–94Google Scholar
  4. Allen PJ, Emerson R (1949) Guayule rubber microbiological improvement by shrub retting. Ind Eng Chem 41:346–365CrossRefGoogle Scholar
  5. Akhter N, Morshed MA, Uddin A, Begum F, Sultan T, Azad AK (2011) Production of pectinase by Aspergillus niger cultured in solid state media. Int J Biosci 1(1):33–42Google Scholar
  6. Anand L, Krishnamurthy S, Vithayathil PJ (1990) Purification and properties of xylanase from the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce. Arch Biochem Biophys 276:546–553PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arima K, Iwasaki S, Tamura G (1967) Milk clotting enzyme from microorganisms. I. Screening test and the identification of the potent fungus. Agric Biol Chem 31:540–545CrossRefGoogle Scholar
  8. Bennett NA, Ryan J, Biely P, Vrsanska M, Kremnicky L, Macris BJ, Kekos D, Christakopoulos P, Katapodis P, Claeyssens M, Nerinckx W, Ntauma P, Bhat MK (1998) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydr Res 306:445–455PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bhat KM, Maheshwari R (1987) Sporotrichum thermophile: growth, cellulose degradation, and cellulase activity. Appl Environ Microbiol 53:2175–2182PubMedPubMedCentralGoogle Scholar
  11. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290CrossRefGoogle Scholar
  12. Black L, Hamerstrand G, Nakayama F, Rasnik B (1983) Gravimetric analysis for determining the resin and rubber content of guayule. Rubber Chem Technol 56:367–371CrossRefGoogle Scholar
  13. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bogin O, Peretz M, Hacham Y, Korkhin Y, Frolow F, Kalb AJ, Burstein Y (1998) Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Protein Sci 7(5):1156–1163PubMedPubMedCentralCrossRefGoogle Scholar
  15. Buranov AU (2009) Process for recovering rubber from rubber-bearing plants with a gristmill. Google PatentsGoogle Scholar
  16. Buranov AU, Elmuradov BJ (2009) Extraction and characterization of latex and natural rubber from rubber-bearing plants. J Agric Food Chem 58:734–743CrossRefGoogle Scholar
  17. Buranov A, Elmuradov B, Shakhidoyatov K, Anderson F, Lawrence J (2005) Rubber-bearing plants of Central Asia. In: Industrial crops and rural development. Proceedings of 2005 Annual Meeting of the Association for the Advancement of Industrial Crops: International Conference on Industrial Crops and Rural Development 17–21Google Scholar
  18. Cataldo F (2000) Guayule rubber: a new possible world scenario for the production of natural rubber. Prog Rubber Plast Technol 16:31–59Google Scholar
  19. Chaudhary G, Singh LK, Ghosh S (2012) Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresour Technol 124:111–118PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cooney DG, Emerson R (1964) Thermophilic fungi: an account of their biology, activities and classification. Freeman, San Francisco, CA, pp 80–88Google Scholar
  21. Cornish K, Kopicky SL, McNulty SK, Amstutz N, Chanon AM, Walker S, Kleinhenz MD, Miller AR, Streeter JG (2016) Temporal diversity of Taraxacum kok-saghyz plants reveals high rubber yield phenotypes. Biodiversitas 17:847–856CrossRefGoogle Scholar
  22. Coutts AD, Smith RE (1976) Factors influencing the production of cellulases by Sporotrichum thermophile. Appl Environ Microbiol 31:819–825PubMedPubMedCentralGoogle Scholar
  23. de Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19(1):31–37CrossRefGoogle Scholar
  24. Damaso MC, Andrade CM, Pereira N (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84:821–834PubMedCrossRefPubMedCentralGoogle Scholar
  25. Eagle F (1981) Guayule. Rubber Chem Technol 54:662–684CrossRefGoogle Scholar
  26. Emerson R (1968) Thermophiles. In: Answorth GC, Sussman AS (eds) The fungi: an advanced treatise. Academic Press, London, p 105. 128Google Scholar
  27. Eskew RK, Edwards PW 1946. Process for recovering rubber from fleshy plants. Google PatentsGoogle Scholar
  28. Eswaramoorthy S, Vithayathil PJ, Viswamitra MA (1994) Crystallization and preliminary X-ray crystallographic studies of thermostable xylanase crystals isolated from Paecilomyces varioti. J Mol Biol 243:806–808PubMedCrossRefGoogle Scholar
  29. Folan MA, Coughlan MP (1978) The cellulase complex in the culture filtrate of the thermophyllic fungus, Talaromyces emersonii. Int J Biochem 9:717–722PubMedCrossRefGoogle Scholar
  30. Ganju RK, Murthy SK, Vithayathil PJ (1989) Purification and characterization of two cellobiohydrolases from Chaetomium thermophile var. coprophile. Biochim Biophys Acta 993:266–274PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993a) Production of high level of cellulase-free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J Biotechnol 30:283–297CrossRefGoogle Scholar
  32. Gomes J, Purkarthofer H, Hayn M, Kapplmüller J, Sinner M, Steiner W (1993b) Production of a high level of cellulase-free xylanase by the thermophilic fungus Thermomyces lanuginosus in laboratory and pilot scales using lignocellulosic materials. Appl Microbiol Biotechnol 39:700–707CrossRefGoogle Scholar
  33. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Tech Biotechnol 52:170–179Google Scholar
  35. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hamerstrand G, Montgomery R (1984) Pilot-scale guayule processing using countercurrent solvent extraction equipment. Rubber Chem Technol 57:344–350CrossRefGoogle Scholar
  37. Hayashida S, Yoshioka H (1980) Production and purification of thermostable cellulases from Humicola insolens YH-8. Agric Biol Chem 44:1721–1728Google Scholar
  38. Howard R, Abotsi E, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619CrossRefGoogle Scholar
  39. Inamdar A (1987) Polygalacturonase from Thermoascus aurantiacus: isolation and functional characteristics. Ph.D thesis. Indian Institute of Science, BangaloreGoogle Scholar
  40. Jensen B, Olsen J, Allermann K (1987) Effect of media composition on the production of extracellular amylase from the thermophilic fungus Thermomyces lanuginosus. Biotechnol Lett 9:313–316CrossRefGoogle Scholar
  41. Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870PubMedCrossRefPubMedCentralGoogle Scholar
  42. Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53CrossRefGoogle Scholar
  43. Kawamori M, Takayama K-I, Takasawa S (1987) Production of cellulases by a thermophilic fungus Thermoascus aurantiacus A-131. Agric Biol Chem 51:647–654Google Scholar
  44. Khandke KM, Vithayathil PJ, Murthy SK (1989a) Degradation of larchwood xylan by enzymes of a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  45. Khandke KM, Vithayathil PJ, Murthy SK (1989b) Purification of xylanase, β-glucosidase, endocellulase, and exocellulase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274:491–500PubMedCrossRefPubMedCentralGoogle Scholar
  46. Krause MS, De Ceuster TJJ, Tiquia SM, Michel FC Jr, Madden LV, Hoitink HAJ (2003) Isolation and characterization of Rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93(10):1292–1300PubMedCrossRefPubMedCentralGoogle Scholar
  47. Krishnamurthy S (1989) Purification and properties of xylanases and β-glucosidases elaborated by the thermophilic fungus Paecilomyces varioti Bainier. Ph.D. thesis. Indian Institute of Science, BangaloreGoogle Scholar
  48. Kumakura M, Kasai N, Tamada M. and Kaetsu I (1988). Method of pretreatment in saccharification and fermentation of waste cellulose resource. Google PatentsGoogle Scholar
  49. Li DC, Yang YJ, Shen CY (1997) Protease production by the thermophilic fungus Thermomyces lanuginosus. Mycol Res 101:18–22CrossRefGoogle Scholar
  50. Lindt W (1886) Mitteilungen über einige neue pathogene Shimmelpilze. Arch Exp Pathol Pharmakol 21:269–298Google Scholar
  51. Liu W-H, Beppu T, Arima K (1973) Physical and chemical properties of the lipase of thermophilic fungus Humicola lanuginosa S-38. Agric Biol Chem 37:2493–2499CrossRefGoogle Scholar
  52. Magan N, Aldred D (2008) Environmental fluxes and fungal interactions: maintaining a competitive edge. In: British mycological society symposia series. Academic Press, Vol. 27, pp. 19–35Google Scholar
  53. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488PubMedPubMedCentralCrossRefGoogle Scholar
  54. Malcolm AA, Shepherd MG (1972) Purification and properties of Penicillium glucose-6-phosphate dehydrogenase. Biochem J 128:817–831PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mandels M (1975) Microbial sources of cellulase. Biotechnol Bioeng Symp 5:81–105Google Scholar
  56. Mandels M, Sternberg D (1976) Recent advances in cellulase technology. J Ferment Technol 54:267–286Google Scholar
  57. Martin N, de Souza SR, da Silva R, Gomes E (2004) Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct. Braz Arch Biol Technol 47(5):813–819CrossRefGoogle Scholar
  58. Martin N, Guez MAU, Sette LD, Da Silva R, Gomes E (2010) Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Microbiology 79(3):306–313CrossRefGoogle Scholar
  59. Martinez M, Poirrier P, Chamy R, Prüfer D, Schulze-Gronover C, Jorquera L, Ruiz G (2015) Taraxacum officinale and related species—an ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol 169:244–262PubMedCrossRefPubMedCentralGoogle Scholar
  60. McHale A, Coughlan MP (1981) The cellulolytic system of Talaromyces emersonii. Identification of the various components produced during growth on cellulosic media. Biochim Biophys Acta 662:145–151CrossRefGoogle Scholar
  61. Miehe H (1907) Die Sel bsterhitzung des Heus Eine biologische Studie. Gustav Fischer Verlag, Jena, GermanyGoogle Scholar
  62. Miehe H (1930) Die Wärmebildung von Reinkulturen im Hinblick auf die Ätiologie der Selbsterhitzung pflanzlicher Stoffe. Arch Mikrobiol 1:78–118CrossRefGoogle Scholar
  63. Mouchacca J (1997) Thermophilic fungi biodiversity and taxonomic status. Cryptogamie Mycol 18:19–69Google Scholar
  64. Mussatto SI, Teixeira J (2010) Lignocellulose as raw material in fermentation processes. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, pp 897–907Google Scholar
  65. Nguyen S, Ala F, Cardwell C, Cai D, McKindles KM, Lotvola A, Hodges S, Deng Y, Tiquia-Arashiro SM (2013) Isolation and screening of carboxydotrophs isolated from composts and their potential for butanol synthesis. Environ Technol 34:1995–2007PubMedCrossRefGoogle Scholar
  66. Noack K (1920) Der Betriebstoffwechsel der thermophilen Pilze. Jahrb Wiss Bot 59:593–648Google Scholar
  67. Oberson J, Binz T, Fracheboud D, Canevascini G (1992) Comparative investigation of cellulose-degrading enzyme systems produced by different strains of Myceliophthora thermophila (Apinis) v. Oorschot. Enzyme Microb Technol 14:303–312CrossRefGoogle Scholar
  68. Ong PS, Gaucher GM (1973) Protease production by thermophilic fungi. Can J Microbiol 19:129–133PubMedCrossRefGoogle Scholar
  69. Ong PS, Gaucher GM (1976) Production, purification and characterization of thermomycolase, the extracellular serine protease of the thermophilic fungus Malbranchea pulchella var. sulfurea. Can J Microbiol 22:165–176PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ottesen M, Rickert W (1970) The isolation and partial characterization of an acid protease produced by Mucor miehei. C R Trav Lab Carlsberg 37:301–325PubMedGoogle Scholar
  71. Plecha S, Hall D, Tiquia-Arashiro SM (2013) Screening and characterization of soil microbes capable of degrading cellulose from Switchgrass (Panicum virgatum L.). Environ Technol 34:1895–1904PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pomaranski E, Tiquia-Arashiro SM (2016) Butanol tolerance of carboxydotrophic bacteria isolated from manure composts. Environ Technol 37(15):1970–1982PubMedCrossRefGoogle Scholar
  73. Prabhu KA, Maheshwari R (1999) Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls. J Biosci 24:461–470CrossRefGoogle Scholar
  74. Puchart VR, Katapodis P, Biely P, Kremnický LR, Christakopoulos P, Vršanská M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 24:355–361CrossRefGoogle Scholar
  75. Raddadi N, Cherif A, Daffonchio D, Mohamed N, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913PubMedCrossRefPubMedCentralGoogle Scholar
  76. Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18(3):345CrossRefGoogle Scholar
  77. Ramirez-Cadavid DA, Cornish K, Michel FC Jr (2017) Taraxacum kok-saghyz (TK): Compositional analysis of a feedstock for natural rubber and other bioproducts. Ind Crop Prod 107:624–640CrossRefGoogle Scholar
  78. Ramirez-Cadavid DA, Valles-Ramirez S, Cornish K, Michel FC Jr (2018) Simultaneous quantification of rubber, inulin, and resins in Taraxacum kok-saghyz (TK) roots by sequential solvent extraction. Ind Crop Prod 122:647–656CrossRefGoogle Scholar
  79. Renosto F, Seubert PA, Knudson P, Segel IH (1985) APS kinase from Penicillium chrysogenum. Dissociation and reassociation of subunits as the basis of the reversible heat inactivation. J Biol Chem 260(3):1535–1544PubMedPubMedCentralGoogle Scholar
  80. Romanelli RA, Houston CW, Barnett SM (1975) Studies on thermophilic cellulolytic fungi. Appl Microbiol 30:276–281PubMedPubMedCentralGoogle Scholar
  81. Russell RB, Sternberg MJ (1997) Two new examples of protein structural similarities within the structure-function twilight zone. Protein Eng 10(4):333–338PubMedCrossRefPubMedCentralGoogle Scholar
  82. Russell RJ, Hough DW, Danson MJ, Taylor GL (1994) The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure 2(12):1157–1167PubMedCrossRefPubMedCentralGoogle Scholar
  83. Schloman WW, Carlson DW, Hilton AS (1988) Guayule extractables: influence of extraction conditions on yield and composition. Biomass 17:239–249CrossRefGoogle Scholar
  84. Sikandar S, Ujor VC, Ezeji TC, Rossington JL, Michel FC, McMahan CM, Cornish K (2017) Thermomyces lanuginosus STm: A source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (Rubber dandelion). Ind Crop Prod 103:161–168CrossRefGoogle Scholar
  85. Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sundaram TK (1986) Physiology and growth of thermophilic bacteria. In: Brock D (ed) Thermophiles: general, molecular, and applied microbiology. John Wiley & Sons, Inc., New York, N.Y, pp 75–106Google Scholar
  87. Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4-beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  88. Timling I, Taylor DL (2012) Peeking through a frosty window molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429CrossRefGoogle Scholar
  89. Tiquia SM (2005) Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26(10):1104–1114CrossRefGoogle Scholar
  90. Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their biotechnological applications. Springerbriefs in microbiology: extremophilic microorganisms. Springer International Publishing, p. 131Google Scholar
  91. Tiquia-Arashiro SM, Mormile M (2013) Sustainable technologies: Bioenergy and biofuel from biowaste and biomass. Environ Technol 34(13):1637–1805PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ujor V, Bharathidasan AK, Michel FC Jr, Ezeji TC, Cornish K (2015) Butanol production from inulin-rich chicory and Taraxacum kok-saghyz extracts: determination of sugar utilization profile of Clostridium saccharobutylicum P262. Ind Crop Prod 76:739–748CrossRefGoogle Scholar
  93. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492PubMedPubMedCentralCrossRefGoogle Scholar
  94. Van Beilen JB, Poirier Y (2007) Guayule and Russian dandelion as alternative sources of natural rubber. Crit Rev Biotechnol 27:217–231PubMedCrossRefPubMedCentralGoogle Scholar
  95. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643PubMedCrossRefPubMedCentralGoogle Scholar
  96. Voordouw G, Gaucher GM, Roche RS (1974) Physicochemical properties of thermomycolase, the thermostable, extracellular, serine protease of the fungus Malbranchea pulchella. Can J Biochem 52:981–990PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wright CH, Kafkewitz DA, Somberg EW (1983) Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus. J Bacteriol 156(2):493–497PubMedPubMedCentralGoogle Scholar
  98. Xie S, Syrenne R, Sun S, Yuan JS (2014) Exploration of natural biomass utilization systems (NBUS) for advanced biofuel—from systems biology to synthetic design. Curr Opin Biotechnol 27:195–203PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yoshioka H, Nagato N, Chavanich S, Nilubol N, Hayashida S (1981) Purification and properties of thermostable xylanase from Talaromyces byssochlamydoides YH-50. Agric Biol Chem 45:2425–2432Google Scholar
  100. Znameroski EA, Glass NL (2013) Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnol Biofuels 6:6PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Biology, Department of BiologyLahore Garrison UniversityLahorePakistan
  2. 2.Faculty of Biological Sciences, Department of MicrobiologyQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Food, Agricultural and Biological Engineering, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA
  4. 4.Horticulture and Crop Science, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA

Personalised recommendations