Fungi from Extreme Environments: A Potential Source of Laccases Group of Extremozymes

  • Om Prakash
  • Kapil Mahabare
  • Krishna Kumar Yadav
  • Rohit SharmaEmail author


Laccases are a group of enzymes consisting of phenol oxidase, phenol peroxidase, lignin peroxidase, manganese peroxidase and tyrosinase. These are non-specific in nature and play an important role in fungal pathogenicity and degradation of the lingocellulosic materials. Laccases are used in pulp and paper industries for enzymatic pulp making processes and in waste management by degradation of phenol compounds present in wastewater. In contrast to other groups laccases from mesophilic fungi especially the wood-rotting fungi have been extensively studied. Some fungi also occupy many natural and man-made extreme environments such as hot springs, cold temperature desserts, soda lakes, rocks, dump sites, etc. and are known as extremophiles. Although enzymes from extreme temperature habitats (cold and hot) have been widely studied and even applied in various industries data on laccase production from extreme environment is understudied. This chapter discusses the distribution of laccase-producing fungi in various extremophilic environments and their ecological roles in various ecosystems and potential industrial applications.


Enzymes Extremophilic environments Laccase Industries Phenolic compounds 



The authors thank Department of Biotechnology, New Delhi, for financial support for the establishment of National Centre for Microbial Resource (NCMR), Pune, wide grant letter no. BT/Coord.II/01/03/2016 dated 6th April 2017.


  1. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gubitz GM (2000) Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alcalde M (2007) Laccases: biological functions, molecular structure and industrial applications. In: Industrial enzymes. Springer, Dordrecht, pp 461–476CrossRefGoogle Scholar
  3. Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 6:e25724PubMedPubMedCentralCrossRefGoogle Scholar
  4. Babot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, José C, Martínez ÁT, Gutiérrez A (2011) Towards industrially-feasible delignification and pitch removal by treating paper pulp with Myceliophthora thermophila laccase and a phenolic mediator. Bioresour Technol 102(12):6717–6722PubMedCrossRefGoogle Scholar
  5. Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007) Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour Technol 98(3):504–510PubMedCrossRefGoogle Scholar
  6. Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Marine Biotechnol 11(4):540–547CrossRefGoogle Scholar
  7. Balakshin M, Capanema E, Chen CL, Gratzl J, Kirkman A, Gracz H (2001) Biobleaching of pulp with dioxygen in the laccase-mediator system–reaction mechanisms for degradation of residual lignin. J Mol Catal B 13:1–16CrossRefGoogle Scholar
  8. Baldrian P (2004) Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 50:245–253PubMedCrossRefGoogle Scholar
  9. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242PubMedCrossRefGoogle Scholar
  10. Barone R, De Santi C, Palma Esposito F, Tedesco P, Galati F, Visone M, Di Scala A, De Pascale D (2014) Marine metagenomics, a valuable tool for enzymes and bioactive compounds discovery. Front Mar Sci 1:38CrossRefGoogle Scholar
  11. Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, del Rayo Sánchez-Carbente M, Sánchez-Reyes A, Dobson AD, Folch-Mallol JL (2017) Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PloS one. 12(3): e0173750PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beckett RP, Minibayeva FV, Laufer Z (2005) Extracellular reactive oxygen species production by lichens. Lichenologist 37(5):397–407CrossRefGoogle Scholar
  13. Beckett RP, Minibayeva FV, Liers C (2012) Occurrence of high tyrosinase activity in the non-Peltigeralean lichen Dermatocarpon miniatum (L.) W. Mann. Lichenologist 44:827–832CrossRefGoogle Scholar
  14. Beckett RP, Minibayeva FV, Liers C (2013) On the occurrence of peroxidase and laccase activity in lichens. Lichenologist 45(2):277–283CrossRefGoogle Scholar
  15. Beeson WT, Iavarone AT, Hausmann CD, Cate JH, Marletta MA (2011) Extracellular aldonolactonase from Myceliophthora thermophila. Appl Environ Microbiol 77(2):650–656PubMedCrossRefGoogle Scholar
  16. Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63(8):3151–3157PubMedPubMedCentralGoogle Scholar
  17. Bhat KM, Maheshwari R (1987) Sporotrichum thermophile growth, cellulose degradation, and cellulase activity. Appl Environ Microbiol 53(9):2175–2182PubMedPubMedCentralGoogle Scholar
  18. Bianchi T (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. PNAS 108(49):19,473–19,481CrossRefGoogle Scholar
  19. Bodke PM, Senthilarasu G, Raghukumar S (2012) Screening diverse fungi for laccases of varying properties. Indian J Microbiol 52(2):247–250PubMedCrossRefGoogle Scholar
  20. Bollag JM, Chu HL, Rao MA, Gianfreda L (2003) Enzymatic oxidative transformation of chlorophenol mixtures. J Environ Qual 32:63–69PubMedCrossRefGoogle Scholar
  21. Bonugli-Santos RC, Durrant LR, da Silva M, Sette LD (2010a) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46(1):32–37CrossRefGoogle Scholar
  22. Bonugli-santos RC, Durrant LR, Sette LD (2010b) Laccase activity and putative laccase genes in marine derived basidiomycetes. Fungal Biol 114(10):863–872PubMedCrossRefGoogle Scholar
  23. Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Diversity 15:1–14Google Scholar
  24. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69(2):987–995PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146CrossRefGoogle Scholar
  26. Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, Golovleva L (2008) Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J Appl Microbiol 105:2065–2075PubMedCrossRefGoogle Scholar
  27. Cho SJ, Park SJ, Lim JS, Rhee YH, Shin KS (2002) Oxidation of polycyclic aromatic hydrocarbons by laccase of Coriolus hirsutus. Biotechnol Lett 24:1337–1340CrossRefGoogle Scholar
  28. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150PubMedCrossRefGoogle Scholar
  29. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35:93–96PubMedCrossRefGoogle Scholar
  30. Claus H, Faber G, Konig H (2002) Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol 59:672–678PubMedCrossRefGoogle Scholar
  31. Crognale S, Pesciaroli L, Petruccioli M, D’Annibale A (2012) Phenol oxidase-producing halotolerant fungi from olive brine wastewater. Process Biochem 47(9):1433–1437CrossRefGoogle Scholar
  32. D’Annibale A, Stazi SR, Vinciguerra V, Sermanni GG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77:265–273PubMedCrossRefGoogle Scholar
  33. D’Souza-Ticlo D, Garg S, Raghukumar C (2009a) Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology. Mar Drugs 7(4):672–688PubMedPubMedCentralCrossRefGoogle Scholar
  34. D’Souza-Ticlo D, Sharma D, Raghukumar C (2009b) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnol 11(6):725–737CrossRefGoogle Scholar
  35. Dahiya JS, Singh D, Nigam P (1998) Characterisation of laccase produced by Coniotherium minitans. J Basic Microbiol 38:349–359CrossRefGoogle Scholar
  36. Dahiya J, Singh D, Nigam P (2001) Decolourisation of synthetic and spentwash-melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour Technol 78:95–98PubMedCrossRefGoogle Scholar
  37. Dalmaso G, Ferreira D, Vermelho A (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965PubMedPubMedCentralCrossRefGoogle Scholar
  38. Daniel JW, Babcock KL, Sievert AH, Rusch HP (1963) Organic requirements and synthetic media for growth of the myxomycete Physarum polycephalum. J Bacteriol 86(2):324–331PubMedPubMedCentralGoogle Scholar
  39. Dhakar K, Pandey A (2013) Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Res 2013:869062PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dhakar K, Jain R, Tamta S, Pandey A (2014) Prolonged laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) isolated from a low temperature environment. Enzyme Res 2014:120708PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duran N, Rosa MA, Dannibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenol oxidases) immobilized on different supports: a review. Enzyme Microb Technol 31:907–931CrossRefGoogle Scholar
  42. Fang ZM, Li TL, Chang F, Zhou P, Fang W, Hong YZ, Zhang XC, Peng H, Xiao YZ (2012) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41PubMedCrossRefGoogle Scholar
  43. Gali NK, Kotteazeth S (2012) Isolation, purification and characterization of thermophilic laccase from xerophyte Cereus pterogonus. Chem Nat Compd 48:451–456CrossRefGoogle Scholar
  44. Gali NK, Kotteazeth S (2013) Biophysical characterization of thermophilic laccase from the xerophytes: Cereus pterogonus and Opuntia vulgaris. Cellulose 20:115–125CrossRefGoogle Scholar
  45. Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30(4):445–453CrossRefGoogle Scholar
  46. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedPubMedCentralCrossRefGoogle Scholar
  47. He L, Liu F, Karuppiah V, Ren Y, Li Z (2014) Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing. Microb Ecol 67:951–961PubMedCrossRefGoogle Scholar
  48. Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553PubMedCrossRefGoogle Scholar
  49. Huang DL, Wang C, Xu P, Zeng GM, Lu BA, Li NJ, Huang C, Lai C, Zhao MH, Xu JJ, Luo XY (2015) A coupled photocatalytic–biological process for phenol degradation in the Phanerochaete chrysosporium–oxalate–Fe3O4 system. Int Biodeter Biodegr 97:115–123CrossRefGoogle Scholar
  50. Hyde KD, Jones EB (1988) Marine mangrove fungi. Marine Ecology 9(1):15–33CrossRefGoogle Scholar
  51. Ibrahim IN, Maraqa A, Hameed KM, Saadoun IM, Maswadeh HM (2011) Assessment of potential plastic-degrading fungi in Jordanian habitats. Turkish J Biol 35(5):551–557Google Scholar
  52. Jaouani A, Neifar M, Prigione V, Ayari A, Sbissi I, Ben Amor S, Ben Tekaya S, Varese GC, Cherif A, Gtari M (2014) Diversity and enzymatic profiling of halotolerant micromycetes from Sebkha El Melah, a Saharan salt flat in southern Tunisia. Biomed Res Int 2014:439,197CrossRefGoogle Scholar
  53. Jensen PR, Fenical W (2002) Secondary metabolites from marine fungi. In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, China, pp 293–315Google Scholar
  54. Jolivalt C, Brenon S, Caminade E, Mougin C, Pontie M (2000) Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J Membr Sci 180:103–113CrossRefGoogle Scholar
  55. Junghanns C, Pecyna MJ, Bohm D, Jehmlich N, Martin C, von Bergen M, Schauer F, Hofrichter M, Schlosser D (2009) Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 84:1095–1105PubMedCrossRefGoogle Scholar
  56. Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Technol 6(2):952–961Google Scholar
  57. Kulkarni SJ, Kaware JP (2013) Review on research for removal of phenol from wastewater. Int J Sci Res Publ 3(4):1–5Google Scholar
  58. Kumar GN, Srikumar K (2011) Thermophilic laccase from xerophyte species Opuntia vulgaris. Biomed Chromatogr 25:707–711PubMedCrossRefGoogle Scholar
  59. Kumar GN, Srikumar K (2012) Characterization of xerophytic thermophilic laccase exhibiting metal ion-dependent dye decolorization potential. Appl Biochem Biotechnol 167:662–676PubMedCrossRefGoogle Scholar
  60. Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7(1):32PubMedPubMedCentralCrossRefGoogle Scholar
  61. Laufer Z, Beckett RP, Minibayeva FV (2006a) Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order Peltigerineae. Ann Bot 98(5):1035–1042PubMedPubMedCentralCrossRefGoogle Scholar
  62. Laufer Z, Beckett RP, Minibayeva FV, Lüthje S, Böttger M (2006b) Occurrence of laccases in lichenized ascomycetes of the Peltigerineae. Mycol Res 110(7):846–853PubMedCrossRefGoogle Scholar
  63. Laufer Z, Beckett RP, Minibayeva FV, Lüthje S, Böttger M (2009) Diversity of laccases from lichens in suborder Peltigerineae. Bryologist 112(2):418–426CrossRefGoogle Scholar
  64. Leonowicz A, Cho N-S, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227PubMedCrossRefGoogle Scholar
  65. Li X, Kondo R, Sakai K (2002) Studies on hypersaline-tolerant white-rot fungi. II. Biodegradation of sugarcane bagasse with marine fungus Phlebia sp. MG-60. J Wood Sci 48:159–162CrossRefGoogle Scholar
  66. Lisov AV, Zavarzina AG, Zavarzin AA, Leontievsky AA (2007) Laccases produced by lichens of the order Peltigerales. FEMS Microbiol Lett 275:46–52PubMedCrossRefGoogle Scholar
  67. Lund M, Eriksson M, Felby C (2003) Reactivity of a fungal laccase towards lignin in softwood kraft pulp. Holzforschung 57:21–26CrossRefGoogle Scholar
  68. Magan N (2007) Fungi in extreme environments. Mycota 4:85–103CrossRefGoogle Scholar
  69. Majcherczyk A, Johannes C (2000) Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochim Biophys Acta 1474:157–162PubMedCrossRefGoogle Scholar
  70. Martin C, Corvini PF, Vinken R, Junghanns C, Krauss G, Schlosser D (2009) Quantification of the influence of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of the xenoestrogen technical nonylphenol by the aquatic hyphomycete Clavariopsis aquatica. Appl Environ Microbiol 75:4398–4409PubMedPubMedCentralCrossRefGoogle Scholar
  71. Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin–derived aromatic compounds. Biosci Biotech Bioch 71:1–15CrossRefGoogle Scholar
  72. Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67(21):2318–2331PubMedCrossRefGoogle Scholar
  73. Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9(6):415–425PubMedCrossRefGoogle Scholar
  74. Nagai M, Sato T, Watanabe H, Saito K, Kawata M, Enei H (2002) Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl Microbiol Biotechnol 60:327–335PubMedCrossRefGoogle Scholar
  75. Nash T (ed) (1996) Lichen Biology. Cambridge Univ. Press, CambridgeGoogle Scholar
  76. Ndahebwa Muhonja C, Magoma G, Imbuga M, Makonde HM (2018) Molecular characterization of Low-Density Polyethene (LDPE) degrading bacteria and fungi from Dandora Dumpsite, Nairobi, Kenya. Int J Microbiol 2018:4167845PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3(3):597–611PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nigam P, Pandey A (2009) Biotechnology for agro-industrial residues utilisation. Springer Science Business Media B.V., pp 1–466Google Scholar
  79. Nuhoglu A, Yalcin B (2005) Modelling of phenol removal in a batch reactor. Process Biochem 40(3–4):1233–1239CrossRefGoogle Scholar
  80. Oest A, Alsaffar A, Fenner M, Azzopardi D, Tiquia-Arashiro SM (2018) Patterns of change in metabolic capabilities of sediment microbial communities along river and lake ecosystems. J Inter Microbiol 2018:6234931. Scholar
  81. Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39,515CrossRefGoogle Scholar
  82. Paloheimo M, Puranen T, Valtakari L, Kruus K, Kallio J, Maentylae A, Fagerstrom R, Ojapalo P, Vehmaanpera J (2006) Novel laccase enzymes and their uses. US Patent No. 77321784 B2. United States Paten and Trademark OfficeGoogle Scholar
  83. Papinutti L, Dimitriu P, Forchiassin F (2008) Stabilization studies of Fomes sclerodermeus laccases. Bioresour Technol 99(2):419–424PubMedCrossRefGoogle Scholar
  84. Patel D, Gismondi R, Alsaffar A, Tiquia-Arashiro SM (2019) Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments. Environ Technol.
  85. Peralta-Zamora P, Pereira CM, Tiburtius ERL, Moraes SG, Rosa MA, Minussi RC, Durán N (2003) Decolorization of reactive dyes by immobilized laccase. Appl Catal B 42:131–144CrossRefGoogle Scholar
  86. Pointing SB, Hyde KD (2000) Lignocellulose-degrading marine fungi. Biofouling 15:221–229PubMedCrossRefGoogle Scholar
  87. Pointing SB, Hyde KD (2001) Bio-exploitation of filamentous fungi. Fungal Diversity Res Ser 6:1–467Google Scholar
  88. Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5(2):25PubMedCentralCrossRefPubMedGoogle Scholar
  89. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B 30:19–24CrossRefGoogle Scholar
  90. Punt PJ, Biezen NV, Conesa A, Albers A, Mangnus J, Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206PubMedCrossRefGoogle Scholar
  91. Quaratino D, Federici F, Petruccioli M, Fenice M, D’Annibale A (2007) Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Antonie van Leeuwenhoek 91(1):57–69PubMedCrossRefGoogle Scholar
  92. Rabinovich ML, Bolobova AV, Vasilchenko LG (2004) Fungal decomposition of natural aromatic structures and xenobiotics: a review. Appl BiochemMicrobiol 40:1–17CrossRefGoogle Scholar
  93. Raghukumar C, Raghukumar S, Chinnaraj A, Chandramohan D, D’souza TM, Reddy CA (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Botanica Marina 37(6):515–524CrossRefGoogle Scholar
  94. Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci 4:495–522PubMedCrossRefGoogle Scholar
  95. Robinson T, Nigam P (2008) Remediation of textile dye-waste water using a white rot fungus Bjerkandera adusta through solid state fermentation (SSF). Appl Biochem Biotechnol 151:618–628PubMedCrossRefGoogle Scholar
  96. Robinson T, Chandran B, Nigam P (2001a) Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb Technol 29:575–579CrossRefGoogle Scholar
  97. Robinson T, Chandran B, Nigam P (2001b) Studies on the decolourisation of an artificial effluent through lignolytic enzyme production by white-rot fungi in N-rich and N-limited media. Appl Microbiol Biotechnol 57:810–813PubMedCrossRefGoogle Scholar
  98. Roy SK, Dey SK, Raha SK, Chakrabarty SL (1990) Purification and properties of an extracellular endoglucanase from Myceliophthora thermophila D-14 (ATCC 48104). Microbiology 136(10):1967–1971Google Scholar
  99. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman DS, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Nunez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Nunez Vargas MP, Boulanger LA, Slack CB, Strobell SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sadhukhan RA, Roy SK, Raha SK, Manna SU, Chakrabarty S (1992) Induction and regulation of alpha-amylase synthesis in a cellulolytic thermophilic fungus Myceliophthora thermophila D14 (ATCC 48104). Indian J Exp Biol 30(6):482–486PubMedGoogle Scholar
  101. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sharma R, Prakash O, Sonawane MS, Nimonkar Y, Golellu PB, Sharma R (2016) Diversity and distribution of phenol oxidase producing fungi from soda lake and description of Curvularia lonarensis sp. nov. Front Microbiol 7:1847PubMedPubMedCentralGoogle Scholar
  104. Sigoillot C, Record E, Belle V, Robert JL, Levasseur A, Punt PJ, van den Hondel CAMJ, Fournel A, Sigoillot JC, Asther M (2004) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64:346–352PubMedCrossRefGoogle Scholar
  105. Soares GMB, Amorim MTP, Hrdina R, Costa-Ferreira M (2002) Studies on the biotransformation of novel disazo dyes by laccase. Process Biochem 37:581–587CrossRefGoogle Scholar
  106. Sumathi T, Viswanath B, Sri Lakshmi A, SaiGopal DV (2016) Production of laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochem Res Int 2016:9519527PubMedPubMedCentralCrossRefGoogle Scholar
  107. Suryanarayanan TS (2012) The diversity and importance of fungi associated with marine sponges. Bot Mar 55(6):553–564CrossRefGoogle Scholar
  108. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Diversity 54(1):19–30CrossRefGoogle Scholar
  109. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19–26CrossRefGoogle Scholar
  110. Tiquia SM (2010) Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River. Environ Pollut 158:1435–1443PubMedCrossRefGoogle Scholar
  111. Tiquia SM (2011) Extracellular hydrolytic enzyme activities of the heterotrophic microbial communities of the Rouge River: an approach to evaluate ecosystem response to urbanization. Microb Ecol 62(3):679–689PubMedCrossRefGoogle Scholar
  112. Tiquia SM, Mormile M (2010) Extremophiles—A source of innovation for industrial and environmental applications. Environ Technol 31(8-9):823PubMedPubMedCentralCrossRefGoogle Scholar
  113. Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46:1–15CrossRefGoogle Scholar
  114. Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257PubMedCrossRefGoogle Scholar
  115. Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53:230–234PubMedCrossRefGoogle Scholar
  116. Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P et al (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline Soda Lake brines. Front Microbiol 7:211PubMedPubMedCentralCrossRefGoogle Scholar
  117. Velazquez-Cedeno MA, Mata G, Savoie JM (2002) Waster educing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J Microbiol Biotechnol 18:201–207CrossRefGoogle Scholar
  118. Verma AK, Raghukumar C, Verma P, Shouche YS, Naik CG (2010) Four marine-derived fungi for bioremediation of raw textile mill effluents. Biodegradation 21(2):217–233PubMedCrossRefGoogle Scholar
  119. Virk AP, Sharma P, Capalash N (2012) Use of laccase in pulp and paper industry. Biotechnol Prog 28(1):21–32PubMedCrossRefGoogle Scholar
  120. Wallace J (1996) Phenol. In: Kroschwitz JI, Howe-Grant M (ed) Kirk-Othmer encyclopedia of chemical technology, 4th edn. Wiley, New York, pp 592–602Google Scholar
  121. Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93(1–2):163–174PubMedCrossRefGoogle Scholar
  122. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187PubMedCrossRefGoogle Scholar
  123. Wong D (2010) Applications of metagenomics for industrial bioproducts. In: Marco D (ed) Metagenomics: theory, methods and applications, 1st edn. Horizon Scientific Press, Norwich, UK, pp 141–158Google Scholar
  124. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292(2):303–311PubMedCrossRefGoogle Scholar
  125. Yurlova NA, De Hoog GS, Fedorova LG (2008) The influence of ortho-and para-diphenoloxidase substrates on pigment formation in black yeast-like fungi. Stud Mycol 61:39–49PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zavarzina AG, Zavarzin AA (2006) Laccase and tyrosinase activities in lichens. Microbiology 75(5):546–556CrossRefGoogle Scholar
  127. Zavarzina AG, Leontievsky AA, Golovleva LA, Trofimov SYA (2004) Transformation of soil humic acids by blue laccase of Panus tigrinus 8/18: an in vitro study. Soil Biol Biochem 36:359–369CrossRefGoogle Scholar
  128. Zille A, Tzanov T, Gubitz GM, Cavaco-Paulo A (2003) Immobilized laccase for decolorization of Reactive Black 5 dyeing effluent. Biotechnol Lett 25:1473–1477PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Centre for Microbial Resource (NCMR), National Centre for Cell ScienceS.P. Pune University, GaneshkhindPuneIndia

Personalised recommendations