Advertisement

Lumbar Spinal Stenosis

  • Kenneth C. Nwosu
  • Safdar N. Khan
  • Thomas D. ChaEmail author
Chapter

Abstract

Over the last few decades, minimally invasive decompression techniques have been developed concurrently with technical advances of retractors, instruments, and visualization tools. Techniques allowing bilateral decompression from a unilateral approach can limit soft tissue disruption and still allow for adequate decompression of the neural elements. Multiple case series have demonstrated equivalent clinical outcomes, a complication profile that is favorable compared to conventional open laminectomy, and comparative studies have shown the benefit of the minimally invasive approach especifically toward reducing perioperative morbidity and postoperative wound infection rates. The role of interspinous process devices for decompression and stabilization when addressing pathology associated with lumbar spinal stenosis is controversial. This chapter discusses the application of minimally invasive techniques for the treatment of lumbar spinal stenosis and includes indications, outcomes, and complications associated with these techniques.

Keywords

Spinal stenosis Minimally invasive Lumbar spine Muscle sparing Endoscopic surgery Outpatient surgery 

References

  1. 1.
    Deyo RA, Gray DT, Kreuter W, Mirza S, Martin BI. United States trends in lumbar fusion surgery for degenerative conditions. Spine. 2005;30:1441–5; discussion 1446–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Botwin KP, et al. Fluoroscopically guided lumbar transformational epidural steroid injections in degenerative lumbar stenosis: an outcome study. Am J Phys Med Rehabil. 2002;81:898–905.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ng L, Chaudhary N, Sell P. The efficacy of corticosteroids in periradicular infiltration for chronic radicular pain: a randomized, double-blind, controlled trial. Spine. 2005;30:857–62.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Weiner BK, Fraser RD, Peterson M. Spinous process osteotomies to facilitate lumbar decompressive surgery. Spine. 1999;24:62–6.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Weiner BK, Walker M, Brower RS, McCulloch JA. Microdecompression for lumbar spinal canal stenosis. Spine. 1999;24:2268–72.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Kim K-T, Lee S-H, Suk K-S, Bae S-C. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine. 2006;31:712–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kim CW. Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine. 2010;35:S281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine. 2002;27:432–8.CrossRefGoogle Scholar
  9. 9.
    Asgarzadie F, Khoo LT. Minimally invasive operative management for lumbar spinal stenosis: overview of early and long-term outcomes. Orthop Clin North Am. 2007;38:387–99; abstract vi–vii.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gu G, et al. [The clinical results of minimally invasive transforaminal lumbar interbody fusion for lumbar spinal stenosis with lumbar instability]. Zhonghua Wai Ke Za Zhi. 2011;49:1081–5.Google Scholar
  11. 11.
    Sasaki M, et al. Microscopic bilateral decompression through unilateral laminotomy for lumbar canal stenosis in patients undergoing hemodialysis. J Neurosurg Spine. 2006;5:494–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rosen DS, et al. Minimally invasive lumbar spinal decompression in the elderly: outcomes of 50 patients aged 75 years and older. Neurosurgery. 2007;60:503–509–510.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Senker W, Meznik C, Avian A, Berghold A. Perioperative morbidity and complications in minimal access surgery techniques in obese patients with degenerative lumbar disease. Eur Spine J. 2011;20:1182–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ivanov A, et al. Minimally invasive decompression for lumbar spinal canal stenosis in younger age patients could lead to higher stresses in the remaining neural arch—a finite element investigation. Minim Invasive Neurosurg. 2007;50:18–22.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chiu JC. Interspinous process decompression (IPD) system (X-STOP) for the treatment of lumbar spinal stenosis. Surg Technol Int. 2006;15:265–75.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lauryssen C. Appropriate selection of patients with lumbar spinal stenosis for interspinous process decompression with the X STOP device. Neurosurg Focus. 2007;22:E5.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Verhoof OJ, Bron JL, Wapstra FH, van Royen BJ. High failure rate of the interspinous distraction device (X-Stop) for the treatment of lumbar spinal stenosis caused by degenerative spondylolisthesis. Eur Spine J. 2008;17:188–92.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Meyerding H. Spondylolisthesis. Surg Gynecol Obstet. 1932;54:371.Google Scholar
  19. 19.
    Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine. 2010;35:S331–7.CrossRefGoogle Scholar
  20. 20.
    Kepler CK, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine. 2012;16:329–33.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI. Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg. 2011;54:201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Alimi M, et al. Radiological and clinical outcomes following extreme lateral interbody fusion. J Neurosurg Spine. 2014;20:623–35.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Malham GM, Parker RM, Goss B, Blecher CM. Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J. 2015;24(Suppl 3):339–45.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wang TY, et al. Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression via extreme lateral interbody fusion: multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg. 2017;106:819–26.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Komp M, Hahn P, Merk H, Godolias G, Ruetten S. Bilateral operation of lumbar degenerative central spinal stenosis in full-endoscopic interlaminar technique with unilateral approach: prospective 2-year results of 74 patients. J Spinal Disord Tech. 2011;24:281–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wang J, et al. Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine. Eur Spine J. 2011;20:623–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yoshimoto M, et al. Minimally invasive technique for decompression of lumbar foraminal stenosis using a spinal microendoscope: technical note. Minim Invasive Neurosurg. 2011;54:142–6.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Deinsberger R, Kinn E, Ungersböck K. Microsurgical treatment of juxta facet cysts of the lumbar spine. J Spinal Disord Tech. 2006;19:155–60.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Yamada K, et al. Clinical outcomes of microscopic decompression for degenerative lumbar foraminal stenosis: a comparison between patients with and without degenerative lumbar scoliosis. Eur Spine J. 2011;20:947–53.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wilkinson JS, Fourney DR. Failure of percutaneous remodeling of the ligamentum flavum and lamina for neurogenic claudication. Neurosurgery. 2012;71:86–92.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chopko BW. A novel method for treatment of lumbar spinal stenosis in high-risk surgical candidates: pilot study experience with percutaneous remodeling of ligamentum flavum and lamina. J Neurosurg Spine. 2011;14:46–50.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Young S, Veerapen R, O’Laoire SA. Relief of lumbar canal stenosis using multilevel subarticular fenestrations as an alternative to wide laminectomy: preliminary report. Neurosurgery. 1988;23:628–33.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Oppenheimer JH, DeCastro I, McDonnell DE. Minimally invasive spine technology and minimally invasive spine surgery: a historical review. Neurosurg Focus. 2009;27:E9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Palmer S. Use of a tubular retractor system in microscopic lumbar discectomy: 1 year prospective results in 135 patients. Neurosurg Focus. 2002;13:E5.Google Scholar
  35. 35.
    Parker SL, et al. Cost-utility analysis of minimally invasive versus open multilevel hemilaminectomy for lumbar stenosis. J Spinal Disord Tech. 2013;26:42–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mobbs RJ, Li J, Sivabalan P, Raley D, Rao PJ. Outcomes after decompressive laminectomy for lumbar spinal stenosis: comparison between minimally invasive unilateral laminectomy for bilateral decompression and open laminectomy: clinical article. J Neurosurg Spine. 2014;21:179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ikuta K, et al. Short-term results of microendoscopic posterior decompression for lumbar spinal stenosis. Technical note. J Neurosurg Spine. 2005;2:624–33.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Costa F, et al. Degenerative lumbar spinal stenosis: analysis of results in a series of 374 patients treated with unilateral laminotomy for bilateral microdecompression. J Neurosurg Spine. 2007;7:579–86.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim D-Y, Lee S-H, Chung SK, Lee H-Y. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine. 2005;30:123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Greiner-Perth R, Boehm H, Allam Y, El-Saghir H. A less invasive approach technique for operative treatment of lumbar canal stenosis. Technique and preliminary results. Zentralbl Neurochir. 2004;65:185–90.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Yagi M, Okada E, Ninomiya K, Kihara M. Postoperative outcome after modified unilateral-approach microendoscopic midline decompression for degenerative spinal stenosis. J Neurosurg Spine. 2009;10:293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Goyal A, et al. Cyclic loads do not compromise functionality of the interspinous spacer or cause damage to the spinal segment: an in vitro analysis. J Long-Term Eff Med Implants. 2008;18:289–302.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zucherman JF, et al. A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine. 2005;30:1351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lønne G, et al. Minimally invasive decompression versus x-stop in lumbar spinal stenosis: a randomized controlled multicenter study. Spine. 2015;40:77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tuschel A, et al. Implant survival analysis and failure modes of the X-Stop interspinous distraction device. Spine. 2013;38:1826–31.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chopko B, Caraway DL. MiDAS I (mild Decompression Alternative to Open Surgery): a preliminary report of a prospective, multi-center clinical study. Pain Physician. 2010;13:369–78.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sasai K, Umeda M, Maruyama T, Wakabayashi E, Iida H. Microsurgical bilateral decompression via a unilateral approach for lumbar spinal canal stenosis including degenerative spondylolisthesis. J Neurosurg Spine. 2008;9:554–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bresnahan L, Ogden AT, Natarajan RN, Fessler RG. A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques. Spine. 2009;34:17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Anderson PA, Tribus CB, Kitchel SH. Treatment of neurogenic claudication by interspinous decompression: application of the X STOP device in patients with lumbar degenerative spondylolisthesis. J Neurosurg Spine. 2006;4:463–71.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bae HW, Lauryssen C, Maislin G, Leary S, Musacchio MJ. Therapeutic sustainability and durability of coflex interlaminar stabilization after decompression for lumbar spinal stenosis: a four year assessment. Int J Spine Surg. 2015;9:15.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kumar N, et al. Role of coflex as an adjunct to decompression for symptomatic lumbar spinal stenosis. Asian Spine J. 2014;8:161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hatta Y, et al. Muscle-preserving interlaminar decompression for the lumbar spine: a minimally invasive new procedure for lumbar spinal canal stenosis. Spine. 2009;34:E276–80.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ikuta K, et al. Surgical complications of microendoscopic procedures for lumbar spinal stenosis. Minim Invasive Neurosurg. 2007;50:145–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Villavicencio AT, Burneikiene S, Roeca CM, Nelson EL, Mason A. Minimally invasive versus open transforaminal lumbar interbody fusion. Surg Neurol Int. 2010;1:12.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fu K-MG, et al. Morbidity and mortality in the surgical treatment of 10,329 adults with degenerative lumbar stenosis. J Neurosurg Spine. 2010;12:443–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Pao J-L, Chen W-C, Chen P-Q. Clinical outcomes of microendoscopic decompressive laminotomy for degenerative lumbar spinal stenosis. Eur Spine J. 2009;18:672–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Talwar V, et al. Insertion loads of the X STOP interspinous process distraction system designed to treat neurogenic intermittent claudication. Eur Spine J. 2006;15:908–12.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bono CM, Vaccaro AR. Interspinous process devices in the lumbar spine. J Spinal Disord Tech. 2007;20:255–61.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lee N, et al. Paradoxical radiographic changes of coflex interspinous device with minimum 2-year follow-up in lumbar spinal stenosis. World Neurosurg. 2016;85:177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Podichetty VK, Spears J, Isaacs RE, Booher J, Biscup RS. Complications associated with minimally invasive decompression for lumbar spinal stenosis. J Spinal Disord Tech. 2006;19:161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Müslüman AM, et al. Midterm outcome after a microsurgical unilateral approach for bilateral decompression of lumbar degenerative spondylolisthesis. J Neurosurg Spine. 2012;16:68–76.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth C. Nwosu
    • 1
  • Safdar N. Khan
    • 2
  • Thomas D. Cha
    • 3
    Email author
  1. 1.Department of Spine SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Division of Spine Surgery, Department of Orthopaedic SurgeryThe Ohio State University Wexner Medical CenterColumbusUSA
  3. 3.Department of Orthopedic SurgeryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations