Navigated Spinal Fusion

  • Ana Luís
  • Rodrigo Navarro-Ramirez
  • Sertac Kirnaz
  • Jonathan Nakhla
  • Roger HärtlEmail author


3D navigation options offer new opportunities for more precise navigation in spinal surgery, favor reduction of radiation exposure for the surgical team, and accelerate surgical workflow. Recently, the latest concept of “total navigation” using iCT NAV in spinal surgery has been introduced. Therefore, workflows have changed from what they were before using X-ray and fluoroscopy. Although several groups have described reduced radiation exposure for the surgical staff, fastest surgical workflows, and improved screw implantation accuracy, there is not enough evidence available to prove a significant benefit over the institutional costs.

Total navigation makes spine surgery safer and more accurate and enhances efficient and reproducible workflows. Fluoroscopy and radiation exposure for the surgical staff can be eliminated in the majority of cases.


Navigation Intraoperative CT Minimally invasive spine surgery CAS Neuronavigation 


  1. 1.
    Malhotra D, et al. Instrumentation of the posterior thoracolumbar spine: from wires to pedicle screws. Neurosurgery. 2014;10(Suppl 4):497–504; discussion 505PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kalfas IH. Image-guided spinal navigation: principles and clinical applications. In: Ozgur B, Benzel E, Garfin S, editors. Minimally invasive spine surgery: a practical guide to anatomy and techniques. New York, NY: Springer; 2009. p. 7–22.CrossRefGoogle Scholar
  3. 3.
    Kalfas IH. Image-guided spinal navigation: principles and clinical applications. In: Ozgur B, Benzel E, Garfin S, editors. Minimally invasive spine surgery: a practical guide to anatomy and techniques. 1st ed. New York: Springer; 2012.Google Scholar
  4. 4.
    Kalfas IH. Image-guided spinal navigation: application to spinal metastases. Neurosurg Focus. 2001;11(6):e5.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Härtl R, Korge A. Minimally invasive spine surgery: techniques, evidence,e and controversies. New York: Thieme; 2012.Google Scholar
  6. 6.
    Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck's Arch Surg. 2013;398(4):501–14.CrossRefGoogle Scholar
  7. 7.
    Holly LT. Image-guided spinal surgery. Int J Med Robot. 2006;2(1):7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sanders R, et al. Exposure of the orthopaedic surgeon to radiation. J Bone Joint Surg Am. 1993;75(3):326–30.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Rampersaud YR, et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000;25(20):2637–45.CrossRefGoogle Scholar
  10. 10.
    Kalfas IH, et al. Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg. 1995;83(4):641–7.CrossRefGoogle Scholar
  11. 11.
    Murphy MA, et al. Frameless stereotaxis for the insertion of lumbar pedicle screws. J Clin Neurosci. 1994;1(4):257–60.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Allam Y, et al. Computer tomography assessment of pedicle screw placement in thoracic spine: comparison between free hand and a generic 3D-based navigation techniques. Eur Spine J. 2013;22(3):648–53.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tian NF, et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J. 2011;20(6):846–59.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rivkin MA, Yocom SS. Thoracolumbar instrumentation with CT-guided navigation (O-arm) in 270 consecutive patients: accuracy rates and lessons learned. Neurosurg Focus. 2014;36(3):E7.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Aoude AA, et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015;24(5):990–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kotani Y, et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique. Spine (Phila Pa 1976). 2007;32(14):1543–50.CrossRefGoogle Scholar
  17. 17.
    Laine T, et al. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Navarro-Ramirez R, et al. Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable intraoperative-CT 3D navigation system. World Neurosurg. 2017;100:325.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gelalis ID, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21(2):247–55.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Shin BJ, et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17(2):113–22.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Van de Kelft E, et al. A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976). 2012;37(25):E1580–7.CrossRefGoogle Scholar
  22. 22.
    Scheufler KM, et al. Accuracy of image-guided pedicle screw placement using intraoperative computed tomography-based navigation with automated referencing. Part II: thoracolumbar spine. Neurosurgery. 2011;69(6):1307–16.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Santos ER, et al. Comparison of open and percutaneous lumbar pedicle screw revision rate using 3-D image guidance and intraoperative CT. Orthopedics. 2015;38(2):e129–34.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Technologists, A.S.o.R. X-ray risk calculator. 2016 [cited 2017 03302017]; Available from:
  25. 25.
    Nolte LP, et al. Computer-aided fixation of spinal implants. J Image Guid Surg. 1995;1(2):88–93.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Karhade AV, Vasudeva VS, Pompeu YA, Lu Y. Image guided spine surgery: available technology and future potential. Austin Neurosurg Open Access. 2016;3(1):1043.Google Scholar
  27. 27.
    Brodwater BK, et al. Extracranial application of the frameless stereotactic operating microscope: experience with lumbar spine. Neurosurgery. 1993;32(2):209–13; discussion 213PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nolte L, et al. Image-guided computer-assisted spine surgery: a pilot study on pedicle screw fixation. Stereotact Funct Neurosurg. 1996;66(1–3):108–17.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Foley KT, Smith MM. Image-guided spine surgery. Neurosurg Clin N Am. 1996;7(2):171–86.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wood MJ, McMillen J. The surgical learning curve and accuracy of minimally invasive lumbar pedicle screw placement using CT based computer-assisted navigation plus continuous electromyography monitoring – a retrospective review of 627 screws in 150 patients. Int J Spine Surg. 2014;8CrossRefGoogle Scholar
  31. 31.
    Larson AN, et al. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop. 2012;32(6):e23–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Patel AA, Whang PG, Vaccaro AR. Overview of computer-assisted image-guided surgery of the spine. Semin Spine Surg. 2008;20(3):186–94.CrossRefGoogle Scholar
  33. 33.
    Ringel F, et al. Navigation, robotics, and intraoperative imaging in spinal surgery. In: Schramm J, editor. Advances and technical standards in neurosurgery: volume 41. Cham: Springer; 2014. p. 3–22.CrossRefGoogle Scholar
  34. 34.
    Acosta FL Jr, et al. Use of intraoperative isocentric C-arm 3D fluoroscopy for sextant percutaneous pedicle screw placement: case report and review of the literature. Spine J. 2005;5(3):339–43.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hedrick MH, Fraser JK. Processing regenerative cells from adipose tissue for placement in patient suffering from e.g. liver disorder involves separating, concentrating, and manipulating regenerative cells for enhancement of therapeutic effects. San Diego, California: Cytori Therapeutics Inc; 2008.Google Scholar
  36. 36.
    Hahn P, et al. A new electromagnetic navigation system for pedicle screws placement: a human cadaver study at the lumbar spine. PLoS One. 2015;10(7):e0133708.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Papadopoulos EC, et al. Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J. 2005;5(3):263–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kalfas IH. Benzel’s Spine Surgery - 193 Intraoperative Imaging of the Spine. 4th ed. Amsterdam, Netherlands: Elsevier; 2017.Google Scholar
  39. 39.
    Njoku I, et al. Minimally invasive 2D navigation-assisted treatment of thoracolumbar spinal fractures in East Africa: a case report. Cureus. 2016;8(2):e507.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(3. Suppl):324–9.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin N Am. 2008;52(4):707–30.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Schafer S, et al. Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med Phys. 2011;38(8):4563–74.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nottmeier EW. A review of image-guided spinal surgery. J Neurosurg Sci. 2012;56(1):35–47.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Tjardes T, et al. Image-guided spine surgery: state of the art and future directions. Eur Spine J. 2010;19(1):25–45.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Baaj AA, Beckman J, Smith DA. O-Arm-based image guidance in minimally invasive spine surgery: technical note. Clin Neurol Neurosurg. 2013;115(3):342–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mendelsohn D, et al. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 2016;16(3):343–54.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lee MH, et al. Feasibility of intra-operative computed tomography navigation system for pedicle screw insertion of the thoraco-lumbar spine. J Spinal Disord Tech. 2013;26(5):E183–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Houten JK, Nasser R, Baxi N. Clinical assessment of percutaneous lumbar pedicle screw placement using the O-arm multidimensional surgical imaging system. Neurosurgery. 2012;70(4):990–5.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Slomczykowski M, et al. Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine (Phila Pa 1976). 1999;24(10):975–82; discussion 983CrossRefGoogle Scholar
  50. 50.
    Hartl R, et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79(1):162–72.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Khanna AR, Yanamadala V, Coumans JV. Effect of intraoperative navigation on operative time in 1-level lumbar fusion surgery. J Clin Neurosci. 2016;32:72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Meng XT, et al. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis. Neurosurg Rev. 2016;39(3):385–91.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shin BJ, et al. Navigated guide tube for the placement of mini-open pedicle screws using stereotactic 3D navigation without the use of K-wires: technical note. J Neurosurg Spine. 2013;18(2):178–83.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Joseph JR, et al. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J Neurosurg Spine. 2016;25(3):339–44.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lian X, et al. Total 3D Airo(R) navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int. 2016;2016:5027340.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang Y, et al. Navigated 2-level posterior lumbar fusion: a 5-cm-incision procedure. J Orthop Surg Res. 2016;11:1.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kim TT, et al. Minimally invasive spinal surgery with intraoperative image-guided navigation. Biomed Res Int. 2016;2016:5716235.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Nasser R, et al. Resection of spinal column tumors utilizing image-guided navigation: a multicenter analysis. Neurosurg Focus. 2016;41(2):E15.CrossRefGoogle Scholar
  59. 59.
    Yang YK, et al. Computer navigation-aided resection of sacral chordomas. Chin Med J. 2016;129(2):162–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Luís
    • 1
    • 2
  • Rodrigo Navarro-Ramirez
    • 2
  • Sertac Kirnaz
    • 2
  • Jonathan Nakhla
    • 2
  • Roger Härtl
    • 2
    Email author
  1. 1.Department of NeurosurgeryHospital Egas Moniz-Centro Hospitalar de Lisboa OcidentalLisbonPortugal
  2. 2.Department of NeurosurgeryNew York-Presbyterian/Weill Cornell Medical Center, Weill Cornell Brain and Spine CenterNew YorkUSA

Personalised recommendations