Advertisement

Percutaneous Pedicle Screws

  • Jonathan N. SembranoEmail author
  • Sharon C. Yson
  • David W. PollyJr.
Chapter

Abstract

Minimally invasive techniques in pedicle screw insertion provide an additional option to a spine surgeon’s armamentarium in dealing with various spine pathologies. It can be applied to practically any surgical setting where conventional open technique is indicated. The most apparent advantage of percutaneous pedicle screw insertion relates to reduced paraspinal muscle damage. Studies have shown that this decreased approach-related morbidity results in decreased operative blood loss, reduced postoperative narcotic use, and greater preservation of trunk extension strength.

Because direct visualization of anatomic landmarks is sacrificed, intraoperative imaging is necessary to facilitate safe pedicle screw placement. Two common methods of percutaneous pedicle screw insertion are discussed in this chapter. The first is with real-time two-dimensional (2-D) fluoroscopic imaging. The second is with three-dimensional (3-D) image-guided navigation which employs virtual images taken with an intraoperative CT scanner. Accuracy rates with either method have been demonstrated to be similar or improved compared to open technique.

The benefit of improved imaging technology is associated with increased radiation exposure risk. This can be minimized by wearing protective garments, observing safe distance from the beam source, and limiting or eliminating unnecessary exposure.

Keywords

Percutaneous Minimally Invasive Pedicle Screw Insertion 

References

  1. 1.
    Ringel F, Stoffel M, Stuer C, Meyer B. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery. 2006;59(4 Suppl 2):ONS361–6; discussion ONS6–7.PubMedGoogle Scholar
  2. 2.
    Kim DY, Lee SH, Chung SK, Lee HY. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976). 2005;30(1):123–9.CrossRefGoogle Scholar
  3. 3.
    Raley DA, Mobbs RJ. Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilisation of the thoracic and lumbar spine: accuracy and complication rates. Spine (Phila Pa 1976). 2012;37(12):1092–100.CrossRefGoogle Scholar
  4. 4.
    McGirt MJ, Parker SL, Mummaneni P, Knightly J, Pfortmiller D, Foley K, et al. Is the use of minimally invasive fusion technologies associated with improved outcomes after elective interbody lumbar fusion? Analysis of a nationwide prospective patient-reported outcomes registry. Spine J. 2017;17(7):922–32.CrossRefGoogle Scholar
  5. 5.
    Lehmann W, Ushmaev A, Ruecker A, Nuechtern J, Grossterlinden L, Begemann PG, et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J. 2008;17(6):857–63.CrossRefGoogle Scholar
  6. 6.
    Bresnahan LE, Smith JS, Ogden AT, Quinn S, Cybulski GR, Simonian N, et al. Assessment of paraspinal muscle cross-sectional area after lumbar decompression: minimally invasive versus open approaches. Clin Spine Surg. 2017;30(3):E162–E8.CrossRefGoogle Scholar
  7. 7.
    Ntilikina Y, Bahlau D, Garnon J, Schuller S, Walter A, Schaeffer M, et al. Open versus percutaneous instrumentation in thoracolumbar fractures: magnetic resonance imaging comparison of paravertebral muscles after implant removal. J Neurosurg Spine. 2017;09:1–7.Google Scholar
  8. 8.
    Knox JB, Dai JM 3rd, Orchowski JR. Superior segment facet joint violation and cortical violation after minimally invasive pedicle screw placement. Spine J. 2011;11(3):213–7.CrossRefGoogle Scholar
  9. 9.
    Park Y, Ha JW, Lee YT, Sung NY. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J. 2011;11(4):295–302.CrossRefGoogle Scholar
  10. 10.
    Patel RD, Graziano GP, Vanderhave KL, Patel AA, Gerling MC. Facet violation with the placement of percutaneous pedicle screws. Spine (Phila Pa 1976). 2011;36(26):E1749–52.CrossRefGoogle Scholar
  11. 11.
    Yson SC, Sembrano JN, Sanders PC, Santos ER, Ledonio CG, Polly DW Jr. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine (Phila Pa 1976). 2013;38(4):E251–8.CrossRefGoogle Scholar
  12. 12.
    Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res. 1984;189:125–41.Google Scholar
  13. 13.
    Lowery GL, Kulkarni SS. Posterior percutaneous spine instrumentation. Eur Spine J. 2000;9(Suppl 1):S126–30.CrossRefGoogle Scholar
  14. 14.
    Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus. 2001;10(4):E10.CrossRefGoogle Scholar
  15. 15.
    Powers CJ, Podichetty VK, Isaacs RE. Placement of percutaneous pedicle screws without imaging guidance. Neurosurg Focus. 2006;20(3):E3.CrossRefGoogle Scholar
  16. 16.
    Schizas C, Michel J, Kosmopoulos V, Theumann N. Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J. 2007;16(5):613–7.CrossRefGoogle Scholar
  17. 17.
    Wood MJ, Mannion RJ. Improving accuracy and reducing radiation exposure in minimally invasive lumbar interbody fusion. J Neurosurg Spine. 2010;12(5):533–9.CrossRefGoogle Scholar
  18. 18.
    Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(3 Suppl):324–9.PubMedGoogle Scholar
  19. 19.
    Nakashima H, Sato K, Ando T, Inoh H, Nakamura H. Comparison of the percutaneous screw placement precision of isocentric C-arm 3-dimensional fluoroscopy-navigated pedicle screw implantation and conventional fluoroscopy method with minimally invasive surgery. J Spinal Disord Tech. 2009;22(7):468–72.CrossRefGoogle Scholar
  20. 20.
    Park P, Foley KT, Cowan JA, Marca FL. Minimally invasive pedicle screw fixation utilizing O-arm fluoroscopy with computer-assisted navigation: feasibility, technique, and preliminary results. Surg Neurol Int. 2010;1:44.CrossRefGoogle Scholar
  21. 21.
    Mroz TE, Abdullah KG, Steinmetz MP, Klineberg EO, Lieberman IH. Radiation exposure to the surgeon during percutaneous pedicle screw placement. J Spinal Disord Tech. 2011;24(4):264–7.CrossRefGoogle Scholar
  22. 22.
    Slomczykowski M, Roberto M, Schneeberger P, Ozdoba C, Vock P. Radiation dose for pedicle screw insertion. Fluoroscopic method versus computer-assisted surgery. Spine (Phila Pa 1976). 1999;24(10):975–82; discussion 83.CrossRefGoogle Scholar
  23. 23.
    von Jako R, Finn MA, Yonemura KS, Araghi A, Khoo LT, Carrino JA, et al. Minimally invasive percutaneous transpedicular screw fixation: increased accuracy and reduced radiation exposure by means of a novel electromagnetic navigation system. Acta Neurochir. 2011;153(3):589–96.CrossRefGoogle Scholar
  24. 24.
    Idler C, Rolfe KW, Gorek JE. Accuracy of percutaneous lumbar pedicle screw placement using the oblique or “owl’s-eye” view and novel guidance technology. J Neurosurg Spine. 2010;13(4):509–15.CrossRefGoogle Scholar
  25. 25.
    Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–8.CrossRefGoogle Scholar
  26. 26.
    Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976). 2001;26(14):1511–5.CrossRefGoogle Scholar
  27. 27.
    Wiesner L, Kothe R, Ruther W. Anatomic evaluation of two different techniques for the percutaneous insertion of pedicle screws in the lumbar spine. Spine (Phila Pa 1976). 1999;24(15):1599–603.CrossRefGoogle Scholar
  28. 28.
    Harris EB, Massey P, Lawrence J, Rihn J, Vaccaro A, Anderson DG. Percutaneous techniques for minimally invasive posterior lumbar fusion. Neurosurg Focus. 2008;25(2):E12.CrossRefGoogle Scholar
  29. 29.
    Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18(6):741–9.CrossRefGoogle Scholar
  30. 30.
    Hubbe U, Kogias E, Vougioukas VI. Image guided percutaneous trans-pedicular screw fixation of the thoracic spine. A clinical evaluation. Acta Neurochir (Wien). 2009;151(5):545–9; discussion 9.CrossRefGoogle Scholar
  31. 31.
    Kakarla UK, Little AS, Chang SW, Sonntag VK, Theodore N. Placement of percutaneous thoracic pedicle screws using neuronavigation. World Neurosurg. 2010;74(6):606–10.CrossRefGoogle Scholar
  32. 32.
    Larson AN, Santos ER, Polly DW Jr, Ledonio CG, Sembrano JN, Mielke CH, et al. Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation. Spine (Phila Pa 1976). 2012;37(3):E188–94.CrossRefGoogle Scholar
  33. 33.
    Kotani Y, Abumi K, Ito M, Takahata M, Sudo H, Ohshima S, et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique. Spine (Phila Pa 1976). 2007;32(14):1543–50.CrossRefGoogle Scholar
  34. 34.
    Nottmeier EW, Seemer W, Young PM. Placement of thoracolumbar pedicle screws using three-dimensional image guidance: experience in a large patient cohort. J Neurosurg Spine. 2009;10(1):33–9.CrossRefGoogle Scholar
  35. 35.
    Bledsoe JM, Fenton D, Fogelson JL, Nottmeier EW. Accuracy of upper thoracic pedicle screw placement using three-dimensional image guidance. Spine J. 2009;9(10):817–21.CrossRefGoogle Scholar
  36. 36.
    Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO. Intraoperative computed tomography image-guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus. 2010;28(3):E11.CrossRefGoogle Scholar
  37. 37.
    Harstall R, Heini PF, Mini RL, Orler R. Radiation exposure to the surgeon during fluoroscopically assisted percutaneous vertebroplasty: a prospective study. Spine (Phila Pa 1976). 2005;30(16):1893–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jonathan N. Sembrano
    • 1
    Email author
  • Sharon C. Yson
    • 1
  • David W. PollyJr.
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations