Fusion Biologics and Adjuvants in Minimally Invasive Spine Surgery

  • Gurmit Singh
  • Wellington K. Hsu


The utilization of minimally invasive spine fusion is increasing due to several benefits associated with it including shorter hospital stays, lower blood loss, and improved functional outcomes. The selection of a proper biologic based on its properties of osteoconductivity, osteoinductivity, and osteogenecity determines the success of spinal arthrodesis. Autologous bone graft, specifically iliac crest bone graft (ICBG), remains the historic gold standard due to its inherent osteoconductive, osteogenic, and osteoinductive nature without the risk of immunogenic reaction or disease transmission. However, there has been a significant interest in the development of bone graft substitutes and enhancers to relieve the shortcomings, including donor site morbidity, postoperative complications, and limited graft availability, of iliac crest bone graft. As a result, there has been an expansion of graft options such as allografts, demineralized bone matrix, ceramics, and growth factors. Bone morphogenetic proteins have been increasingly utilized in the last decade due to their efficacious osteoinductive properties. However, since their approval, the bone morphogenetic protein (BMP) use has been scrutinized due to its associations with a number of complications. There is an increased focus to alleviate these complications by lowering the dose of growth factor required through improved delivery and localization systems. Lastly, more data are required to establish the clinical efficacy of newer technologies such as cell and synthetic peptide-based therapy that may serve as viable options in the future.


Allograft Autograft Biologics Bone graft Bone morphogenetic protein (BMP) Ceramics Demineralized bone Growth factors Minimally invasive Polyetheretherketone (PEEK) cage 


  1. 1.
    Tian NF, Wu YS, Zhang XL, Xu HZ, Chi YL, Mao FM. Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence. Eur Spine J. 2013;22(8):1741–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Parker SL, Adogwa O, Bydon A, Cheng J, McGirt MJ. Cost-effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis associated low-back and leg pain over two years. World Neurosurg. 2012;78(1–2):178–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine. 2002;27(16 Suppl 1):S26–31.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech. 2011;44(2):213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lewandrowski KU. Advances in spinal fusion: molecular science, biomechanics, and clinical management. Florida, USA: CRC Press; 2003.Google Scholar
  6. 6.
    Berven S, Tay BK, Kleinstueck FS, Bradford DS. Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. Eur Spine J. 2001;10(Suppl 2):S169–77.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lubelski D. The utility of allograft mesenchymal stem cells for spine fusion: a literature review. Global Spine J. 2012;2(2):109–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and bioactive agents in spinal fusion. Tissue Eng Part B Rev. 2017;23:540.PubMedCrossRefGoogle Scholar
  10. 10.
    Peelle MW, Rawlins BA, Frelinghuysen P. A novel source of cancellous autograft for ACDF surgery: the manubrium. J Spinal Disord Tech. 2007;20(1):36–41.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Putzier M, Strube P, Funk JF, Gross C, Mönig HJ, Perka C, et al. Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study. Eur Spine J. 2009;18(5):687–95.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Buser Z, Brodke DS, Youssef JA, Meisel HJ, Myhre SL, Hashimoto R, et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;25(4):509–16.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin. 2003;8(1):1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tuchman A, Brodke DS, Youssef JA, Meisel HJ, Dettori JR, Park JB, et al. Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review. Global Spine J. 2016;6(6):592–606.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U. Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J. 2005;14(6):551–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Flouzat-Lachaniette CH, Ghazanfari A, Bouthors C, Poignard A, Hernigou P, Allain J. Bone union rate with recombinant human bone morphogenic protein-2 versus autologous iliac bone in PEEK cages for anterior lumbar interbody fusion. Int Orthop. 2014;38(9):2001–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Sengupta DK, Truumees E, Patel CK, Kazmierczak C, Hughes B, Elders G, et al. Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine. 2006;31(9):985–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Ohtori S, Suzuki M, Koshi T, Takaso M, Yamashita M, Yamauchi K, et al. Single-level instrumented posterolateral fusion of the lumbar spine with a local bone graft versus an iliac crest bone graft: a prospective, randomized study with a 2-year follow-up. Eur Spine J. 2011;20(4):635–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine. 2003;28(2):134–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Armaghani SJ, Even JL, Zern EK, Braly BA, Kang JD, Devin CJ. The evaluation of donor site pain after harvest of tricortical anterior iliac crest bone graft for spinal surgery: a prospective study. Spine. 2016;41(4):E191–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84-a(5):716–20.CrossRefGoogle Scholar
  22. 22.
    Dang L, Sun Y, Wang S, Pan S, Li M, Zhang L, et al. A new source of autograft bone for interbody fusion in anterior cervical discectomy and fusion surgery: experience in 893 cases. Br J Neurosurg. 2016;31:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Witoon N, Tangviriyapaiboon T. Clinical and radiological outcomes of segmental spinal fusion in transforaminal lumbar interbody fusion with spinous process tricortical autograft. Asian Spine J. 2014;8(2):170–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Miura Y, Imagama S, Yoda M, Mitsuguchi H, Kachi H. Is local bone viable as a source of bone graft in posterior lumbar interbody fusion? Spine. 2003;28(20):2386–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Xiao Y, Li F, Chen Q. Transforaminal lumbar interbody fusion with one cage and excised local bone. Arch Orthop Trauma Surg. 2010;130(5):591–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Liu JM, Xiong X, Peng AF, Xu M, Chen XY, Long XH, et al. A comparison of local bone graft with PEEK cage versus iliac bone graft used in anterior cervical discectomy and fusion. Clin Neurol Neurosurg. 2017;155:30–5.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bevevino AJ, Kang DG, Lehman RA Jr, Van Blarcum GS, Wagner SC, Gwinn DE. Systematic review and meta-analysis of minimally invasive transforaminal lumbar interbody fusion rates performed without posterolateral fusion. J Clin Neurosci. 2014;21(10):1686–90.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Iwasaki K, Ikedo T, Hashikata H, Toda H. Autologous clavicle bone graft for anterior cervical discectomy and fusion with titanium interbody cage. J Neurosurg Spine. 2014;21(5):761–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ajiboye RM, Hamamoto JT, Eckardt MA, Wang JC. Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J. 2015;24(11):2567–72.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Johnson RG. Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine. 2014;39(9):695–700.PubMedCrossRefGoogle Scholar
  31. 31.
    Vaz K, Verma K, Protopsaltis T, Schwab F, Lonner B, Errico T. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J. 2010;4(3):75–86.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19(1):117–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Hostin R, O’Brien M, McCarthy I, Bess S, Gupta M, Klineberg E. Retrospective study of anterior interbody fusion rates and patient outcomes of using mineralized collagen and bone marrow aspirate in multilevel adult spinal deformity surgery. Clinical Spine Surg. 2016;29(8):E384–8.CrossRefGoogle Scholar
  34. 34.
    Neen D, Noyes D, Shaw M, Gwilym S, Fairlie N, Birch N. Healos and bone marrow aspirate used for lumbar spine fusion: a case controlled study comparing healos with autograft. Spine. 2006;31(18):E636–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Kamoda H, Yamashita M, Ishikawa T, Miyagi M, Arai G, Suzuki M, et al. Platelet-rich plasma combined with hydroxyapatite for lumbar interbody fusion promoted bone formation and decreased an inflammatory pain neuropeptide in rats. Spine. 2012;37(20):1727–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Hsu WK, Nickoli MS, Wang JC, Lieberman JR, An HS, Yoon ST, et al. Improving the clinical evidence of bone graft substitute technology in lumbar spine surgery. Global Spine J. 2012;2(4):239–48.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hee HT, Majd ME, Holt RT, Myers L. Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur Spine J. 2003;12(4):400–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Padilla S, Orive G, Sanchez M, Anitua E, Hsu WK. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. J Am Acad Orthop Surg. 2014;22(8):469–71.PubMedGoogle Scholar
  39. 39.
    Weiner BK, Walker M. Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine. 2003;28(17):1968–70; discussion 71.PubMedCrossRefGoogle Scholar
  40. 40.
    Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
  42. 42.
    Buck BE, Malinin TI, Brown MD. Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res. 1989;(240):129–36.Google Scholar
  43. 43.
    Mikhael MM, Huddleston PM, Nassr A. Postoperative culture positive surgical site infections after the use of irradiated allograft, nonirradiated allograft, or autograft for spinal fusion. Spine. 2009;34(22):2466–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Thalgott JS, Fogarty ME, Giuffre JM, Christenson SD, Epstein AK, Aprill C. A prospective, randomized, blinded, single-site study to evaluate the clinical and radiographic differences between frozen and freeze-dried allograft when used as part of a circumferential anterior lumbar interbody fusion procedure. Spine. 2009;34(12):1251–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Nather A, Thambyah A, Goh JC. Biomechanical strength of deep-frozen versus lyophilized large cortical allografts. Clin Biomech (Bristol, Avon). 2004;19(5):526–33.CrossRefGoogle Scholar
  46. 46.
    Fölsch C, Mittelmeier W, Bilderbeek U, Timmesfeld N, von Garrel T, Peter MH. Effect of storage temperature on allograft bone. Transfus Med Hemother. 2012;39(1):36–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Urrutia J, Molina M. Fresh-frozen femoral head allograft as lumbar interbody graft material allows high fusion rate without subsidence. Orthop Traumatol Surg Res. 2013;99(4):413–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Demirkiran HG, Akel I, Yilmaz G, Ayvaz M, Alanay A, Yazici M. Long-segment posterior instrumentation and fusion with freeze-dried allograft in congenital scoliosis. Acta Orthop Traumatol Turc. 2012;46(4):275–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Graham RS, Samsell BJ, Proffer A, Moore MA, Vega RA, Stary JM, et al. Evaluation of glycerol-preserved bone allografts in cervical spine fusion: a prospective, randomized controlled trial. J Neurosurg Spine. 2015;22(1):1–10.PubMedCrossRefGoogle Scholar
  50. 50.
    Sarwat AM, O’Brien JP, Renton P, Sutcliffe JC. The use of allograft (and avoidance of autograft) in anterior lumbar interbody fusion: a critical analysis. Eur Spine J. 2001;10(3):237–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wimmer C, Krismer M, Gluch H, Ogon M, Stockl B. Autogenic versus allogenic bone grafts in anterior lumbar interbody fusion. Clin Orthop Relat Res. 1999;360:122–6.CrossRefGoogle Scholar
  52. 52.
    Tuchman A, Brodke DS, Youssef JA, Meisel HJ, Dettori JR, Park JB, et al. Autograft versus allograft for cervical spinal fusion: a systematic review. Global Spine J. 2017;7(1):59–70.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lee KJ, Roper JG, Wang JC. Demineralized bone matrix and spinal arthrodesis. Spine J. 2005;5(6 Suppl):217s–23s.PubMedCrossRefGoogle Scholar
  54. 54.
    Tilkeridis K, Touzopoulos P, Ververidis A, Christodoulou S, Kazakos K, Drosos GI. Use of demineralized bone matrix in spinal fusion. World J Orthop. 2014;5(1):30–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine. 2006;31(12):1299–306; discussion 307–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Fischer CR, Cassilly R, Cantor W, Edusei E, Hammouri Q, Errico T. A systematic review of comparative studies on bone graft alternatives for common spine fusion procedures. Eur Spine J. 2013;22(6):1423–35.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fu TS, Wang IC, Lu ML, Hsieh MK, Chen LH, Chen WJ. The fusion rate of demineralized bone matrix compared with autogenous iliac bone graft for long multi-segment posterolateral spinal fusion. BMC Musculoskelet Disord. 2016;17:3.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine. 2012;37(12):1083–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim DH, Lee N, Shin DA, Yi S, Kim KN, Ha Y. Matched comparison of fusion rates between hydroxyapatite demineralized bone matrix and autograft in lumbar interbody fusion. J Korean Neurosurg Soc. 2016;59(4):363–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kim SH, Lee JK, Jang JW, Park HW, Hur H. Polyetheretherketone cage with demineralized bone matrix can replace iliac crest autografts for anterior cervical discectomy and fusion in subaxial cervical spine injuries. J Korean Neurosurg Soc. 2017;60(2):211–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ito M, Kotani Y, Hojo Y, Abumi K, Kadosawa T, Minami A. Evaluation of hydroxyapatite ceramic vertebral spacers with different porosities and their binding capability to the vertebral body: an experimental study in sheep. J Neurosurg Spine. 2007;6(5):431–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Khan SN, Fraser JF, Sandhu HS, Cammisa FP Jr, Girardi FP, Lane JM. Use of osteopromotive growth factors, demineralized bone matrix, and ceramics to enhance spinal fusion. J Am Acad Orthop Surg. 2005;13(2):129–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Nickoli MS, Hsu WK. Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review. Global Spine J. 2014;4(3):211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Benzel EC. Spine surgery 2-vol set: techniques, complication avoidance, and management (Expert Consult—Online). California, USA: Elsevier Health Sciences; 2012.Google Scholar
  65. 65.
    Asazuma T, Masuoka K, Motosuneya T, Tsuji T, Yasuoka H, Fujikawa K. Posterior lumbar interbody fusion using dense hydroxyapatite blocks and autogenous iliac bone: clinical and radiographic examinations. J Spinal Disord Tech. 2005;18(Suppl):S41–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee JH, Chang BS, Jeung UO, Park KW, Kim MS, Lee CK. The first clinical trial of Beta-Calcium Pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion. Clin Orthop Surg. 2011;3(3):238–44.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rodgers WB, Gerber EJ, Rodgers JA. Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with beta-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg. 2012;6:24–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Thalgott JS, Giuffre JM, Klezl Z, Timlin M. Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J. 2002;2(1):63–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Alimi M, Navarro-Ramirez R, Parikh K, Njoku I, Hofstetter CP, Tsiouris AJ, et al. Radiographic and clinical outcome of Silicate-substituted Calcium Phosphate (Si-CaP) Ceramic bone graft in spinal fusion procedures. Clinical Spine Surg. 2016;30(6): E845–E852.PubMedCrossRefGoogle Scholar
  70. 70.
    Nandyala SV, Marquez-Lara A, Fineberg SJ, Pelton M, Singh K. Prospective, randomized, controlled trial of silicate-substituted calcium phosphate versus rhBMP-2 in a minimally invasive transforaminal lumbar interbody fusion. Spine. 2014;39(3):185–91.PubMedCrossRefGoogle Scholar
  71. 71.
    Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine. 2002;27(16 Suppl 1):S10–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Faundez A, Tournier C, Garcia M, Aunoble S, Le Huec JC. Bone morphogenetic protein use in spine surgery-complications and outcomes: a systematic review. Int Orthop. 2016;40(6):1309–19.PubMedCrossRefGoogle Scholar
  73. 73.
    Ye F, Zeng Z, Wang J, Liu H, Wang H, Zheng Z. Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: a meta-analysis of randomized controlled trials. J Bone Miner Metab. 2017;36:119.PubMedCrossRefGoogle Scholar
  74. 74.
    Ong KL, Villarraga ML, Lau E, Carreon LY, Kurtz SM, Glassman SD. Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine. 2010;35(19):1794–800.PubMedCrossRefGoogle Scholar
  75. 75.
    Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA. 2009;302(1):58–66.PubMedCrossRefGoogle Scholar
  76. 76.
    Oliveira ORG, Martins SPR, Lima WG, Gomes MM. The use of bone morphogenetic proteins (BMP) and pseudarthrosis, a literature review(). Rev Bras Ortop. 2017;52(2):124–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011;11(6):471–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.PubMedCrossRefGoogle Scholar
  79. 79.
    Parajon A, Alimi M, Navarro-Ramirez R, Christos P, Torres-Campa JM, Moriguchi Y, et al. Minimally invasive transforaminal lumbar interbody fusion: meta-analysis of the fusion rates. What is the optimal graft material? Neurosurgery. 2017;81:958.PubMedCrossRefGoogle Scholar
  80. 80.
    Singh K, Nandyala SV, Marquez-Lara A, Cha TD, Khan SN, Fineberg SJ, et al. Clinical sequelae after rhBMP-2 use in a minimally invasive transforaminal lumbar interbody fusion. Spine J. 2013;13(9):1118–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Malham GM, Ellis NJ, Parker RM, et al. Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF). Clin Spine Surg. 2017;30(2):E90–8. Scholar
  82. 82.
    Woods KRM, Billys JB, Hynes RA. Technical description of oblique lateral interbody fusion at L1–L5 (OLIF25) and at L5–S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545–53. Scholar
  83. 83.
    Vaccaro AR, Anderson DG, Patel T, Fischgrund J, Truumees E, Herkowitz HN, et al. Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine. 2005;30(24):2709–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Vaccaro AR, Lawrence JP, Patel T, Katz LD, Anderson DG, Fischgrund JS, et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis: a long-term (>4 years) pivotal study. Spine. 2008;33(26):2850–62.PubMedCrossRefGoogle Scholar
  85. 85.
    Johnsson R, Stromqvist B, Aspenberg P. Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine. 2002;27(23):2654–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Hofstetter CP, Hofer AS, Levi AD. Exploratory meta-analysis on dose-related efficacy and morbidity of bone morphogenetic protein in spinal arthrodesis surgery. J Neurosurg Spine. 2016;24(3):457–75.PubMedCrossRefGoogle Scholar
  87. 87.
    Lykissas MG, Aichmair A, Sama AA, Hughes AP, Lebl DR, Cammisa FP, et al. Nerve injury and recovery after lateral lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a cohort-controlled study. Spine J. 2014;14(2):217–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD. Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg. 2007;89(3):342–5.CrossRefGoogle Scholar
  89. 89.
    Bannwarth M, Kleiber JC, Marlier B, Eap C, Duntze J, Litre CF. Ectopic bone formation with joint impingement after posterior lumbar fusion with rhBMP-2. Orthop Traumatol Surg Res. 2016;102(2):255–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Michielsen J, Sys J, Rigaux A, Bertrand C. The effect of recombinant human bone morphogenetic protein-2 in single-level posterior lumbar interbody arthrodesis. J Bone Joint Surg Am. 2013;95(10):873–80.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Than KD, Rahman SU, McKeever PE, Wang AC, La Marca F, Park P. Symptomatic calcified perineural cyst after use of bone morphogenetic protein in transforaminal lumbar interbody fusion: a case report. Spine J. 2013;13(8):e31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Balseiro S, Nottmeier EW. Vertebral osteolysis originating from subchondral cyst end plate defects in transforaminal lumbar interbody fusion using rhBMP-2. Report of two cases. Spine J. 2010;10(7):e6–e10.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Vaidya R, Sethi A, Bartol S, Jacobson M, Coe C, Craig JG. Complications in the use of rhBMP-2 in PEEK cages for interbody spinal fusions. J Spinal Disord Tech. 2008;21(8):557–62.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Siddiqui MMA, Sta.Ana ARP, Yeo W, Yue WM. Bone morphogenic protein is a viable adjunct for fusion in minimally invasive transforaminal lumbar interbody fusion. Asian Spine J. 2016;10(6):1091–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Langenfeld EM, Langenfeld J. Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors. Mol Cancer Res. 2004;2(3):141–9.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Cooper GS, Kou TD. Risk of cancer after lumbar fusion surgery with recombinant human bone morphogenic protein-2 (rh-BMP-2). Spine. 2013;38(21):1862–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kelly MP, Savage JW, Bentzen SM, Hsu WK, Ellison SA, Anderson PA. Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis. J Bone Joint Surg Am. 2014;96(17):1417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Herford AS. Emerging biomaterials and techniques in tissue regeneration, an issue of oral and maxillofacial Surgery Clinics of North America, E-Book. California, USA: Elsevier Health Sciences; 2016.Google Scholar
  99. 99.
    Lee SS, Hsu EL, Mendoza M, Ghodasra J, Nickoli MS, Ashtekar A, et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater. 2015;4(1):131–41.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Chen L, Liu HL, Gu Y, Feng Y, Yang HL. Lumbar interbody fusion with porous biphasic calcium phosphate enhanced by recombinant bone morphogenetic protein-2/silk fibroin sustained-released microsphere: an experimental study on sheep model. J Mater Sci Mater Med. 2015;26(3):126.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Singh K, Nandyala SV, Marquez-Lara A, Fineberg SJ. Epidemiological trends in the utilization of bone morphogenetic protein in spinal fusions from 2002 to 2011. Spine. 2014;39(6):491–6.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine. 2006;31(10):E277–84.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Buttermann GR. Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J. 2008;8(3):426–35.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Dimar JR 2nd, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am. 2009;91(6):1377–86.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Adogwa O, Parker SL, Shau D, Mendelhall SK, Aaronson O, Cheng J, et al. Cost per quality-adjusted life year gained of revision fusion for lumbar pseudoarthrosis: defining the value of surgery. J Spinal Disord Tech. 2015;28(3):101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Hsu WK, Wang JC. The use of bone morphogenetic protein in spine fusion. Spine J. 2008;8(3):419–25.PubMedCrossRefGoogle Scholar
  107. 107.
    Werle S, AbuNahleh K, Boehm H. Bone morphogenetic protein 7 and autologous bone graft in revision surgery for non-union after lumbar interbody fusion. Arch Orthop Trauma Surg. 2016;136(8):1041–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Schroeder J, Kueper J, Leon K, Liebergall M. Stem cells for spine surgery. World J Stem Cells. 2015;7(1):186–94.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ammerman JM, Libricz J, Ammerman MD. The role of Osteocel Plus as a fusion substrate in minimally invasive instrumented transforaminal lumbar interbody fusion. Clin Neurol Neurosurg. 2013;115(7):991–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Wheeler DL, Lane JM, Seim HB 3rd, Puttlitz CM, Itescu S, Turner AS. Allogeneic mesenchymal progenitor cells for posterolateral lumbar spine fusion in sheep. Spine J. 2014;14(3):435–44.PubMedCrossRefGoogle Scholar
  111. 111.
    Nunley PD, Kerr EJ 3rd, Utter PA, Cavanaugh DA, Frank KA, Moody D, et al. Preliminary results of bioactive amniotic suspension with allograft for achieving one and two-level lumbar interbody fusion. Int J Spine Surg. 2016;10:12.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sardar Z, Alexander D, Oxner W, du Plessis S, Yee A, Wai EK, et al. Twelve-month results of a multicenter, blinded, pilot study of a novel peptide (B2A) in promoting lumbar spine fusion. J Neurosurg Spine. 2015;22(4):358–66.PubMedCrossRefGoogle Scholar
  113. 113.
    Wang JC, Mummaneni PV, Haid RW. Current treatment strategies for the painful lumbar motion segment: posterolateral fusion versus interbody fusion. Spine. 2005;30(16 Suppl):S33–43.PubMedCrossRefGoogle Scholar
  114. 114.
    Rao S, McKellop H, Chao D, Schildhauer TA, Gendler E, Moore TM. Biomechanical comparison of bone graft used in anterior spinal reconstruction. Freeze-dried demineralized femoral segments versus fresh fibular segments and tricortical iliac blocks in autopsy specimens. Clin Orthop Relat Res. 1993;289:131–5.Google Scholar
  115. 115.
    Barnes B, Rodts GE Jr, Haid RW Jr, Subach BR, McLaughlin MR. Allograft implants for posterior lumbar interbody fusion: results comparing cylindrical dowels and impacted wedges. Neurosurgery. 2002;51(5):1191–8; discussion 8.PubMedCrossRefGoogle Scholar
  116. 116.
    Arnold PM, Robbins S, Paullus W, Faust S, Holt R, McGuire R. Clinical outcomes of lumbar degenerative disc disease treated with posterior lumbar interbody fusion allograft spacer: a prospective, multicenter trial with 2-year follow-up. Am J Orthop (Belle Mead NJ). 2009;38(7):E115–22.Google Scholar
  117. 117.
    Wan Z, Dai M, Miao J, Li G, Wood KB. Radiographic analysis of PEEK cage and FRA in adult spinal deformity fused to sacrum. Clinical Spine Surg. 2014;27(6):327–35.Google Scholar
  118. 118.
    Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine. 2000;25(11):1437–46.PubMedCrossRefGoogle Scholar
  119. 119.
    Phan K, Hogan JA, Assem Y, Mobbs RJ. PEEK-Halo effect in interbody fusion. J Clin Neurosci. 2016;24:138–40.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EY, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34(37):9264–77.PubMedCrossRefGoogle Scholar
  121. 121.
    Johansson P, Jimbo R, Naito Y, Kjellin P, Currie F, Wennerberg A. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone. Int J Nanomedicine. 2016;11:1435–42.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J. 2015;15(5):1041–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Kienle A, Graf N, Wilke HJ. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Spine J. 2016;16(2):235–42.PubMedCrossRefGoogle Scholar
  124. 124.
    Olivares-Navarrete R, Gittens RA, Schneider JM, Hyzy SL, Haithcock DA, Ullrich PF, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012;12(3):265–72.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Guyer RD, Abitbol JJ, Ohnmeiss DD, Yao C. Evaluating osseointegration into a deeply porous titanium scaffold: a biomechanical comparison with PEEK and allograft. Spine. 2016;41(19):E1146–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Rubshtein AP, Trakhtenberg I, Makarova EB, Triphonova EB, Bliznets DG, Yakovenkova LI, et al. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration. Mater Sci Eng C Mater Biol Appl. 2014;35:363–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Lee JH, Jeon DW, Lee SJ, Chang BS, Lee CK. Fusion rates and subsidence of morselized local bone grafted in titanium cages in posterior lumbar interbody fusion using quantitative three-dimensional computed tomography scans. Spine. 2010;35(15):1460–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gurmit Singh
    • 1
  • Wellington K. Hsu
    • 1
  1. 1.Department of Orthopaedic SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations