Advertisement

History and Evolution of Minimally Invasive Spine Surgery

  • R. Nick HernandezEmail author
  • Jonathan Nakhla
  • Rodrigo Navarro-Ramirez
  • Roger Härtl
Chapter

Abstract

Minimally invasive spine surgery (MISS) is a combination of specialized techniques, instruments, and technology for performing operations with less disruption of the adjacent tissues that surround the spine than traditional, open approaches. Three surgical objectives have driven the evolution of MISS: minimize tissue disruption, achieve bilateral decompression via a unilateral approach, and achieve indirect neural decompression. MISS began with the treatment of herniated lumbar intervertebral discs and has evolved tremendously since to be applicable to the treatment of a variety of spinal pathologies involving the entirety of the spinal column, including foraminotomies, fusion procedures, tumor resections, and fixation of traumatic fractures. The key elements of MISS include a small access approach to limit exposure-related tissue damage, magnification and illumination with the use of a microscope or endoscope, supplemental localization such as computer-assisted navigation, and surgical instruments that facilitate minimal access to the relevant spinal anatomy, all contributing to the goal of leaving the smallest possible operative footprint while achieving good clinical outcomes. The rapid advancement in technology has allowed the field to evolve significantly, such that traditional procedures that previously required larger exposures with increased morbidity are being effectively and efficiently performed in a minimally invasive fashion. In this chapter, the authors present a review of the history and evolution of MISS.

Keywords

Minimally invasive spine surgery Tubular spine surgery History of spine surgery Evolution of spine surgery Technology in spine surgery 

References

  1. 1.
    Marketos SG, Skiadas P. Hippocrates: the father of the spine surgery. Spine (Phila Pa 1976). 1999;24:1381–7.CrossRefGoogle Scholar
  2. 2.
    Elsberg CA. Extradural spinal tumors: primary, secondary, metastatic. Surg Gynec and Obst. 1928;46:1.Google Scholar
  3. 3.
    Clymer G, Mixter WJ, Mella H. Experience with spinal cord tumors during the past ten years. Arch Neurol Psychiatr. 1921;5:213.Google Scholar
  4. 4.
    Stookey B. Compression of the spinal cord due to ventral extradural cervical chondromas. Arch Neurol Psychiatr. 1928;20:275.CrossRefGoogle Scholar
  5. 5.
    Schmorl G, Junghanns H. Die gesunde und kranke wirbelsaule im rontgenbild: pathologisch-anatomische untersuchungen. In: Junghanns H, editor. Archiv und atlas der normalen und pathologischen anatomie in typischen rontgenbildern. Leipsig: G. Thieme; 1932. p. 182.Google Scholar
  6. 6.
    Mixter WJ, Barr JS. Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med. 1934;211:210–5.CrossRefGoogle Scholar
  7. 7.
    Love J. Protruded intervertebral disks with a note regarding hypertrophy of ligamenta flava. JAMA. 1939;113:2029–35.Google Scholar
  8. 8.
    Yasargil MG. Microsurgical operation of herniated lumbar disc. In: Wullenweber R, Brock M, Hamer J, Klinger M, Spoerri O, editors. Lumbar disc adult hydrocephalus, Advances in Neurosurgery, vol. 4. Berlin, Heiderlberg: Springer; 1977. p. 81.CrossRefGoogle Scholar
  9. 9.
    Williams RW. Microlumbar discectomy: a conservative surgical approach to the virgin herniated lumbar disc. Spine (Phila Pa 1976). 1978;3:175–82.CrossRefGoogle Scholar
  10. 10.
    Kambin P, Casey K, O’Brien E, Zhou L. Transforaminal arthroscopic decompression of lateral recess stenosis. J Neurosurg. 1996;84:462–7.  https://doi.org/10.3171/jns.1996.84.3.0462.CrossRefPubMedGoogle Scholar
  11. 11.
    Pool J. Direct visualization of dorsal nerve roots of the cauda equina by means of a myeloscope. Arch Neurol Psychiatr. 1938;39:1308–12.CrossRefGoogle Scholar
  12. 12.
    Smith L. Enzyme dissolution of the nucleus pulposus in humans. JAMA. 1964;187:137–40.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jansen EF, Balls AK. Chymopapain: a new crystalline proteinase from papaya latex. J Biol Chem. 1941;137:459–60.Google Scholar
  14. 14.
    Thongtrangan I, Le H, Park J, Kim DH. Minimally invasive spinal surgery: a historical perspective. Neurosurg Focus. 2004;16:E13.  https://doi.org/10.3171/foc.2004.16.1.14.CrossRefPubMedGoogle Scholar
  15. 15.
    Watts C, Dickhaus E. Chemonucleolysis: a note of caution. Surg Neurol. 1986;26:236–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Hijikata S. Percutaneous nucleotomy. A new concept technique and 12 years’ experience. Clin Orthop Relat Res. 1989;238:9–23.CrossRefGoogle Scholar
  17. 17.
    Friedman WA. Percutaneous discectomy: an alternative to chemonucleolysis? Neurosurgery. 1983;13:542–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kanter SL, Friedman WA. Percutaneous discectomy: an anatomical study. Neurosurgery. 1985;16:141–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Maroon JC, Onik G. Percutaneous automated discectomy: a new method for lumbar disc removal. Technical note. J Neurosurg. 1987;66:143–6.  https://doi.org/10.3171/jns.1987.66.1.0143.CrossRefPubMedGoogle Scholar
  20. 20.
    Onik G, Mooney V, Maroon JC, Wiltse L, Helms C, Schweigel J, et al. Automated percutaneous discectomy: a prospective multi-institutional study. Neurosurgery. 1990;26:228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Forst R, Hausmann G. Nucleoscopy—a new examination technique. Arch Orthop Trauma Surg. 1983;101:219–21.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schreiber A, Suezawa Y, Leu H. Does percutaneous nucleotomy with discoscopy replace conventional discectomy? Eight years of experience and results in treatment of herniated lumbar disc. Clin Orthop Rel Res. 1989;238:35–42.CrossRefGoogle Scholar
  23. 23.
    Choy DS, Case RB, Fielding W, Hughes J, Liebler W, Ascher P. Percutaneous laser nucleolysis of lumbar disks. N Engl J Med. 1987;317:771–2.  https://doi.org/10.1056/NEJM198709173171217.CrossRefGoogle Scholar
  24. 24.
    Brouwer PA, Brand R, van den Akker-van Marie ME, Jacobs WC, Schenk B, van den Berg-Huijsmans AA, et al. Percutaneous laser disc decompression versus conventional microdiscectomy for patients with sciatica: two-year results of a randomised controlled trial. Interv Neuroradiol. 2017;23:313–24.  https://doi.org/10.1177/1591019917699981.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain: prospective outcome study with a minimum 2-year follow-up. Spine (Phila Pa 1976). 2002;27:966–73.CrossRefGoogle Scholar
  26. 26.
    Gibson JN, Waddell G. Surgical interventions for lumbar disc prolapse: updated Cochrane review. Spine (Phila Pa 1976). 2007;32:1735–47.  https://doi.org/10.1097/BRS.0b013e3180bc2431.CrossRefGoogle Scholar
  27. 27.
    Faubert C, Caspar W. Lumbar percutaneous discectomy. Initial experience in 28 cases. Neuroradiology. 1991;33:407–10.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Foley KT, Smith MM. Microendoscopic discectomy. Tech Neurosurg. 1997;3:301–7.Google Scholar
  29. 29.
    Nowitzke AM. Assessment of the learning curve for lumbar microendoscopic discectomy. Neurosurgery. 2005;56:755–62.  https://doi.org/10.1227/01.NEU.0000156470.79032.7B.CrossRefGoogle Scholar
  30. 30.
    Rong LM, Xie PG, Shi DH, Dong JW, Liu B, Feng F, et al. Spinal surgeons’ learning curve for lumbar microendoscopic discectomy: a prospective study of our first 50 and latest 10 cases. Chin Med J. 2008;121:2148–51.CrossRefGoogle Scholar
  31. 31.
    Ahn J, Iqbal A, Manning BT, Leblang S, Bohl DD, Mayo BC, et al. Minimally invasive lumbar decompression-the surgical learning curve. Spine J. 2016;16:909–16.  https://doi.org/10.1016/j.spinee.2015.07.455.CrossRefPubMedGoogle Scholar
  32. 32.
    Palmer S. Use of a tubular retractor system in microscopic lumbar discectomy: 1 year prospective results in 135 patients. Neurosurg Focus. 2002;13:E5.  https://doi.org/10.3171/foc.2002.13.2.6.CrossRefGoogle Scholar
  33. 33.
    He J, Xiao S, Wu Z, Yuan Z. Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. Eur Spine J. 2016;25:1373–81.  https://doi.org/10.1007/s00586–016–4523–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Dasenbrock HH, Juraschek SP, Schultz LR, Witham TF, Sciubba DM, Wolinsky JP, et al. The efficacy of minimally invasive discectomy compared with open discectomy: a meta-analysis of prospective randomized controlled trials. J Neurosurg Spine. 2012;16:452–62.  https://doi.org/10.3171/2012.1.SPINE11404.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Spetzger U, Bertalanffy H, MHT R, Gilsback JM. Unilateral laminotomy for bilateral decompression of lumbar spinal stenosis. Part II: clinical experiences. Acta Neurochir. 1997;139:397–403. doi:10.1007%2FBF01808874.PubMedCrossRefGoogle Scholar
  36. 36.
    Guiot BH, Khoo LT, Fessler RG. A minimally invasive technique for decompression of the lumbar spine. Spine (Phila Pa 1976). 2002;27:432–8.CrossRefGoogle Scholar
  37. 37.
    Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(Suppl 5):S146–54.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Palmer S, Turner R, Palmer R. Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system. Neurosurg Focus. 2002;13:E4.PubMedGoogle Scholar
  39. 39.
    Phan K, Mobbs RJ. Minimally invasive versus open laminectomy for lumbar stenosis: a systematic review and meta-analysis. Spine (Phila Pa 1976). 2016;41:E91–100.  https://doi.org/10.1097/BRS.0000000000001161.CrossRefGoogle Scholar
  40. 40.
    Mayer HM, Heider F. “Slalom”: microsurgical cross-over decompression for multilevel degenerative lumbar stenosis. Biomed Res Int. 2016;2016:9074257.  https://doi.org/10.1155/2016/9074257.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schöller K, Alimi M, Cong GT, Christos P, Härtl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery. 2017;80(3):355–67.  https://doi.org/10.1093/neuros/nyw091.CrossRefPubMedGoogle Scholar
  42. 42.
    Sandhu FA, Santiago P, Fessler RG, Palmer S. Minimally invasive surgical treatment of lumbar synovial cysts. Neurosurgery. 2004;54:107–11.  https://doi.org/10.1227/01.NEU.0000097269.79994.2F.CrossRefPubMedGoogle Scholar
  43. 43.
    Foley KT, Smith MM, Rampersaud YR. Microendoscopic approach to far-lateral lumbar disc herniation. Neurosurg Focus. 1999;7:e5.  https://doi.org/10.3171/foc.1999.7.6.6.CrossRefPubMedGoogle Scholar
  44. 44.
    Haji FA, Cenic A, Crevier L, Murty N, Redd K. Minimally invasive approach for the resection of spinal neoplasm. Spine (Phila Pa 1976). 2011;36:E1018–26.  https://doi.org/10.1097/BRS.0b013e31820019f9.CrossRefGoogle Scholar
  45. 45.
    Tredway TL, Musleh W, Christie SD, Khavkin Y, Fessler RG, Curry DJ. A novel minimally invasive technique for spinal cord untethering. Neurosurgery. 2007;60(Suppl 2):ONS70–4.  https://doi.org/10.1227/01.NEU.0000249254.63546.D7.CrossRefGoogle Scholar
  46. 46.
    Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg. 1953;10:154–68.  https://doi.org/10.3171/jns.1953.10.2.0154.CrossRefGoogle Scholar
  47. 47.
    Magerl F. External skeletal fixation of the lower thoracic and the lumbar spine. In: Uhthoff HK, Stahl E, editors. Current concepts of external fixation of fractures. Berlin, Heidelberg: Springer; 1982. p. 353–66.  https://doi.org/10.1007/978–3–642–68448–7_40.CrossRefGoogle Scholar
  48. 48.
    Leu HF, Hauser RK. Percutaneous endoscopic lumbar spine fusion. Neurosurg Clin N Am. 1996;7:107–17.PubMedCrossRefGoogle Scholar
  49. 49.
    Matthews HH, Long BH. Endoscopy assisted percutaneous anterior interbody fusion with subcutaneous suprafascial internal fixation: evolution of technique and surgical considerations. Orthop Int Ed. 1995;3:496–500.Google Scholar
  50. 50.
    Lowery GL, Kulkarni SS. Posterior percutaneous spine instrumentation. Eur Spine J. 2000;9(Suppl 1):S126–30.  https://doi.org/10.1007/PL00008318.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg. 2002;97(Suppl 1):7–12.PubMedGoogle Scholar
  52. 52.
    Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18:741–9.  https://doi.org/10.1016/j.jocn.2010.09.019.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery. Clin Neurosurg. 2002;49:499–517.PubMedGoogle Scholar
  54. 54.
    Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine (Phila Pa 1976). 2003;28(Suppl 15):S26–35.  https://doi.org/10.1097/01.BRS.0000076895.52418.5E.CrossRefGoogle Scholar
  55. 55.
    Wong AP, Smith ZA, Stadler JA III, Hu XY, Yan JZ, Li XF, et al. Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): surgical technique, long-term 4-year prospective outcomes, and complications compared with an open TLIF cohort. Neurosurg Clin N Am. 2014;25:279–304.  https://doi.org/10.1016/j.nec.2013.12.007.CrossRefGoogle Scholar
  56. 56.
    Wu RH, Fraser JF, Härtl R. Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine (Phila Pa 1976). 2010;35:2273–81.  https://doi.org/10.1097/BRS.0b013e3181cd42cc.CrossRefGoogle Scholar
  57. 57.
    Carpenter N. Spondylolisthesis. Br J Surg. 1932;19:374–86.CrossRefGoogle Scholar
  58. 58.
    Burns BH. An operation for spondylolisthesis. Lancet. 1933;221:1233.  https://doi.org/10.1016/S0140–6736(00)85724–4.CrossRefGoogle Scholar
  59. 59.
    Obenchain TG. Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. 1991;1:145–9.  https://doi.org/10.1089/lps.1991.1.145.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zucherman JF, Zdeblick TA, Bailey SA, Mahvi D, Hsu KY, Kohrs D. Instrumented laparoscopic spinal fusion. Preliminary results. Spine (Phila Pa 1976). 1995;20:2029–34.CrossRefGoogle Scholar
  61. 61.
    Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1997;22:691–9.  https://doi.org/10.1097/00007632–199703150–00023.CrossRefGoogle Scholar
  62. 62.
    Bateman DK, Millhouse PW, Shahi N, Kadam AB, Maltenfort MG, Koerner JD, et al. Anterior lumbar spine surgery: a systematic review and meta-analysis of associated complications. Spine J. 2015;26:S1529–94.  https://doi.org/10.1016/j.spinee.2015.02.040.CrossRefGoogle Scholar
  63. 63.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43.  https://doi.org/10.1016/j.spinee.2005.08.012.CrossRefGoogle Scholar
  64. 64.
    Inoue S, Watanabe T, Hirose A, Tanaka T, Matsui N, Saegusa O, et al. Anterior discectomy and interbody fusion for lumbar disc herniation. A review of 350 cases. Clin Orthop Relat Res. 1984;183:22–31.Google Scholar
  65. 65.
    Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010;35(Suppl 26):S331–7.  https://doi.org/10.1097/BRS.0b013e3182022db0.CrossRefGoogle Scholar
  66. 66.
    Jacobaeus HC. Possibility of the use of cystoscope for investigation of serious cavities. Munch Med Wochenschr. 1910;57:2090–2.Google Scholar
  67. 67.
    Mack MJ, Regan JJ, Bobechko WP, Acuff TE. Application of thoracoscopy for diseases of the spine. Ann Thorac Surg. 1993;56:736–8.  https://doi.org/10.1016/0003–4975(93)90966-L.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rosenthal DJ, Rosenthal DR, Simone A. Removal of a protruded thoracic disc using microsurgical endos- copy: a new technique. Spine (Phila Pa 1976). 1994;19:1087–91.CrossRefGoogle Scholar
  69. 69.
    Kasliwal MK, Tan LA, Fessler RG. Minimally invasive spinal decompression and stabilization techniques II: clinical applications and results. In: Steinmetz MP, Benzel EC, editors. Benzel’s spine surgery: techniques, complication avoidance, and management. 4th ed. Philadelphia: Elsevier; 2017. p. 1474–98.Google Scholar
  70. 70.
    Jho HD. Endoscopic microscopic transpedicular thoracic discectomy. Technical note. J Neurosurg. 1997;87:125–9.  https://doi.org/10.3171/jns.1997.87.1.0125.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jho HD. Endoscopic transpedicular thoracic discectomy. Neurosurg Focus. 2000;9:e4.  https://doi.org/10.3171/foc.2000.9.4.5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Perez-Cruet MJ, Kim BS, Sandhu F, Samartzis D, Fessler RG. Thoracic microendoscopic discectomy. J Neurosurg Spine. 2004;1:58–63.  https://doi.org/10.3171/spi.2004.1.1.0058.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine (Phila Pa 1976). 2010;35(Suppl 26):S338–46.  https://doi.org/10.1097/BRS.0b013e3182023113.CrossRefGoogle Scholar
  74. 74.
    Uribe JS, Dakwar E, Le TV, Christian G, Serrano S, Smith WD. Minimally invasive surgery treatment for thoracic spine tumor removal: a mini-open, lateral approach. Spine (Phila Pa 1976). 2010;35(Suppl 26):S347–54.  https://doi.org/10.1097/BRS.0b013e3182022d0f.CrossRefGoogle Scholar
  75. 75.
    Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(Suppl 3):324–9.  https://doi.org/10.3171/spi.2003.99.3.0324.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ringel F, Stoffel M, Stuer C, Meyer B. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery. 2006;59(Suppl 2):ONS361–6.  https://doi.org/10.1227/01.NEU.0000223505.07815.74.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Smith GW, Robinson RA. The treatment of certain cervical spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40:607–24.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Cloward R. The anterior approach for removal of ruptured cervical disks. J Neurosurg. 1958;15:602–17.PubMedCrossRefGoogle Scholar
  79. 79.
    Orozco Delclos R, Llovet Tapies J. Osteosintesis en las fracturas de raquis cervical. Nota de tecnica. Rev Ortop Traumatol. 1970;14:285–8.Google Scholar
  80. 80.
    Ruetten S, Komp M, Merk H, Godolias G. Full-endoscopic anterior decompression versus conventional anterior decompression and fusion in cervical disc herniations. Int Orthop. 2009;33:1677–82.  https://doi.org/10.1007/s00264–008–0684-y.CrossRefPubMedGoogle Scholar
  81. 81.
    Horgan MA, Hsu FP, Frank EH. A novel endoscopic approach for anterior odontoid screw fixation: technical note. Minim Invasive Neurosurg. 1999;42:142–5.  https://doi.org/10.1055/s-2008–1053387.CrossRefPubMedGoogle Scholar
  82. 82.
    Chi YL, Wang XY, Xu HZ, Lin Y, Huang QS, Mao FM, et al. Management of odontoid fractures with percutaneous anterior odontoid screw fixation. Eur Spine J. 2007;16:1157–64.  https://doi.org/10.1007/s00586–007–0331–0.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Snyder GM, Bernhardt M. Anterior cervical fractional interspace decompression for treatment of cervical radiculopathy. A review of the first 66 cases. Clin Orthop. 1989;246:92–9.Google Scholar
  84. 84.
    Hankinson HL, Wilson CB. Use of operating microscope in anterior cervical discectomy without fusion. J Neurosurg. 1975;43:452–6.  https://doi.org/10.3171/jns.1975.43.4.0452.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Jho HD. Microsurgical anterior cervical foraminotomy for radiculopathy: a new approach to cervical disc herniation. J Neurosurg. 1996;84:155–60.  https://doi.org/10.3171/jns.1996.84.2.0155.CrossRefGoogle Scholar
  86. 86.
    Jho HD. Decompression via microsurgical anterior foraminotomy for cervical spondylotic myelopathy: technical note. J Neurosurg. 1997;86:297–302.  https://doi.org/10.3171/jns.1997.86.2.0297.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Roh SW, Kim DH, Cardoso AC, Fessler RG. Endoscopic foraminotomy using MED system in cadaveric specimens. Neurosurg Focus. 2000;4:E4.  https://doi.org/10.3171/foc.1998.4.2.5.CrossRefGoogle Scholar
  88. 88.
    Fessler RG, Khoo LT. Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery. 2002;51(Suppl 2):S37–45.  https://doi.org/10.1097/00006123–200211002–00006.CrossRefGoogle Scholar
  89. 89.
    Adamson TE. Microendoscopic posterior cervical laminoforaminotomy for unilateral radiculopathy: results of a new technique in 100 cases. J Neurosurg. 2001;95(Suppl 1):51–7.  https://doi.org/10.3171/spi.2001.95.1.0051.CrossRefGoogle Scholar
  90. 90.
    Song Z, Zhang Z, Hao J, Shen J, Zhou N, Xu S, et al. Microsurgery or open cervical foraminotomy for cervical radiculopathy? A systematic review. Int Orthop. 2016;40:1335–43.  https://doi.org/10.1007/s00264–016–3193–4.CrossRefGoogle Scholar
  91. 91.
    Wang MY, Levi AD. Minimally invasive lateral mass screw fixation in the cervical spine: initial clinical experience with long-term follow-up. Neurosurgery. 2006;58:907–12.  https://doi.org/10.1227/01.NEU.0000209929.38213.72.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Wang MY, Green BA, Coscarella E, Baskaya MK, Levi A, Guest JD. Minimally invasive cervical expansile laminoplasty: an initial cadaveric study. Neurosurgery. 2003;52:370–3.  https://doi.org/10.1227/01.NEU.0000043933.32287.EE.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Benglis DM, Guest JD, Wang MY. Clinical feasibility of minimally invasive cervical laminoplasty. Neurosurg Focus. 2008;25:E3.  https://doi.org/10.3171/FOC/2008/25/8/E3.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ahmad F, Sherman JD, Wang MY. Percutaneous trans-facet screws for supplemental posterior cervical fixation: technical case report. World Neurosurg. 2012;78:716.e1–4.  https://doi.org/10.1016/j.wneu.2011.12.092.CrossRefGoogle Scholar
  95. 95.
    Goel A, Shah A. Facetal distraction as treatment for single and multilevel cervical spondylotic radiculopathy and myelopathy: a preliminary report. Technical note. J Neurosurg Spine. 2011;14:689–96.  https://doi.org/10.3171/2011.2.SPINE10601.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    McCormack BM, Bundoc RC, Ver MR, Ignacio JM, Berven SH, Eyster EF. Percutaneous posterior cervical fusion with the DTRAX Facet System for single-level radiculopathy: results in 60 patients. J Neurosurg Spine. 2013;18:245–54.  https://doi.org/10.3171/2012.12.SPINE12477.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26:73–99.  https://doi.org/10.1007/s10143–003–0262–0.CrossRefPubMedGoogle Scholar
  98. 98.
    Kalfas IH, Kormos DW, Murphy MA, McKenzie RL, Barnett GH, Bell GR, et al. Application of frameless stereotaxy to pedicle screw fixation of the spine. J Neurosurg. 1995;83:641–7.  https://doi.org/10.3171/jns.1995.83.4.0641.CrossRefPubMedGoogle Scholar
  99. 99.
    Härtl R, Lam KS, Wang J, Korge A, Kandziora F, Audige L. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79:162–72.  https://doi.org/10.1016/j.wneu.2012.03.011.CrossRefPubMedGoogle Scholar
  100. 100.
    Foley KT, Simon DA, Rampersaud R. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine (Phila Pa 1976). 2001;26:347–51.CrossRefGoogle Scholar
  101. 101.
    Shin BJ, James AR, Njoku IU, Härtl R. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17:113–22.  https://doi.org/10.3171/2012.5.SPINE11399.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014;20:196–203.  https://doi.org/10.3171/2013.11.SPINE13413.CrossRefGoogle Scholar
  103. 103.
    Lian X, Navarro-Ramirez R, Berlin C, Jada A, Moriguchi Y, Zhang Q, et al. Total 3D Airo® navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int. 2016;2016:1.  https://doi.org/10.1155/2016/5027340.CrossRefGoogle Scholar
  104. 104.
    Phan K, Hogan JA, Mobbs RJ. Cost-utility of minimally invasive versus open transforaminal lumbar interbody fusion: systematic review and economic evaluation. Eur Spine J. 2015;24:2503–13.  https://doi.org/10.1007/s00586–015–4126–4.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Vertuani S, Nilsson J, Borgman B, Buseghin G, Leonard C, Assietti R, et al. A cost-effectiveness analysis of minimally invasive versus open surgery techniques for lumbar spinal fusion in Italy and the United Kingdom. Value Health. 2015;18:810–6.  https://doi.org/10.1016/j.jval.2015.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Cahill KS, Levi AD, Cummock MD, Liao W, Wang MY. A comparison of acute hospital charges after tubular versus open microdiskectomy. World Neurosurg. 2013;80:208–12.  https://doi.org/10.1016/j.wneu.2012.08.015.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Goldstein CL, Phillips FM, Rampersaud YR. Comparative effectiveness and economic evaluations of open versus minimally invasive posterior or transforaminal lumbar interbody fusion: a systematic review. Spine (Phila Pa 1976). 2016;41(Suppl 8):S74–89.  https://doi.org/10.1097/BRS.0000000000001462.CrossRefGoogle Scholar
  108. 108.
    Nandyala SV, Fineberg SJ, Pelton M, Singh K. Minimally invasive transforaminal lumbar interbody fusion: one surgeon’s learning curve. Spine J. 2014;14:1460–5.  https://doi.org/10.1016/j.spinee.2013.08.045.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472:1711–7.  https://doi.org/10.1007/s11999–014–3495-z.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Helms CA, Onik G, Davis WG. Automated percutaneous lumbar discectomy. Skeletal Radiol. 1989;18:579–83.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Perez-Cruet MJ, Foley KT, Isaacs RE, Rice-Wyllie L, Wellington R, Smith MM, et al. Microendoscopic lumbar discectomy: technical note. Neurosurgery. 2002;51:S129–36.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Khoo LT, Palmer S, Laich DT, Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2002;51(Suppl 2):166–81.  https://doi.org/10.1227/01.NEU.0000031068.83783.7B.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Nick Hernandez
    • 1
    Email author
  • Jonathan Nakhla
    • 1
  • Rodrigo Navarro-Ramirez
    • 1
  • Roger Härtl
    • 1
  1. 1.Department of NeurosurgeryWeill Cornell Brain and Spine Center, Weill Cornell Medicine, New York-Presbyterian HospitalNew YorkUSA

Personalised recommendations