Microbial Ecology of Saline Ecosystems

  • Vishnuvardhan Reddy Sultanpuram
  • Thirumala Mothe
Part of the Soil Biology book series (SOILBIOL, volume 56)


In studies on microbial diversity and functioning of ecosystems of extreme environments, saline habitats are one of the important model systems. Microbial form of life is found over an extremely wide range of salt concentrations, from that of fresh water to hypersaline environments. Halophilic microorganisms are microbes that live in habitats of high ionic strength, and these organisms cope with hyperosmotic stress by utilizing various strategies. The ecology of these saline ecosystems is studied using various techniques, such as analysis of total community and specific biomarkers. Further, the usual culture-dependent and culture-independent techniques are also helpful in these studies. India has large numbers of biodiversity hotspots including diversified saline ecosystems. There are only limited reports on the culturable and yet to be cultivated halophilic bacteria from the country, which needs great endeavour in the future.


Saline habitats Microbial diversity Characterization studies India 


  1. Almeida-Dalmet S, Sikaroodi M, Gillevet PM, Litchfield CD, Baxter BK (2015) Temporal study of the microbial diversity of the north arm of Great Salt Lake, Utah, U.S. Microorganisms 3(3):310–326PubMedPubMedCentralCrossRefGoogle Scholar
  2. Antón J, Llobet-Brossa E, Rodrίguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523PubMedCrossRefGoogle Scholar
  3. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedPubMedCentralCrossRefGoogle Scholar
  4. Azmatunnisa M, Rahul K, Subhash Y, Sasikala C, Ramana C (2015) Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium. Int J Syst Evol Microbiol 65(4):1310–1315PubMedCrossRefGoogle Scholar
  5. Azmatunnisa Begum M, Varshini V, Rahul K, Chandana A, Sasikala C, Ramana C (2016) Description of Alteribacillus alkaliphilus sp. nov., reassignment of Bacillus iranensis (Bagheri et al. 2012) as Alteribacillus iranensis comb. nov. and emended description of the genus Alteribacillus. Int J Syst Evol Microbiol 66(11):4772–4778PubMedCrossRefGoogle Scholar
  6. Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518PubMedCrossRefGoogle Scholar
  7. Ballav S, Kerkar S, Thomas S, Augustine N (2015) Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J Biosci Bioeng 119(3):323–330PubMedCrossRefGoogle Scholar
  8. Behera P, Venkata Ramana V, Maharana B, Joseph N, Vaishampayan P, Singh N, Shouche Y, Bhadury P, Mishra S, Raina V, Suar M, Pattnaik A, Rastogi G (2017) Mangrovibacter phragmitis sp. nov., an endophyte isolated from the roots of Phragmites karka. Int J Syst Evol Microbiol 67(5):1228–1234PubMedCrossRefGoogle Scholar
  9. Benlloch S, Martίnez-Murcia AJ, Rodrίguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581CrossRefGoogle Scholar
  10. Benlloch S, Acinas SG, Martίnez-Murcia AJ, Rodrίguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31CrossRefGoogle Scholar
  11. Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Dane FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodrίguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bhatt H, Azmatunnisa Begum M, Chintalapati S, Chintalapati V, Singh S (2017) Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 67(11):4435–4442PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bolhuis H, te Poele EM, Rodrίguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boujelben I, Martínez-García M, van Pelt J et al (2014) Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie Van Leeuwenhoek 106:675–692PubMedCrossRefPubMedCentralGoogle Scholar
  15. Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, ChichesterGoogle Scholar
  16. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004a) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473PubMedPubMedCentralGoogle Scholar
  17. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004b) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedPubMedCentralCrossRefGoogle Scholar
  18. Casamayor EO, Massana R, Benlloch S, Øvreås L, Dίez B, Goddard VJ, Gasol JM, Joint I, Rodrίguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348PubMedCrossRefPubMedCentralGoogle Scholar
  19. Caumette P, Matheron R, Raymond N, Relexans J-C (1994) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol 13:273–286CrossRefGoogle Scholar
  20. Chandna P, Mayilraj S, Kuhad RC (2016) Bacillus pseudoflexus sp. nov., a moderately halophilic bacterium isolated from compost. Ann Microbiol 66:895–905CrossRefGoogle Scholar
  21. Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685PubMedPubMedCentralCrossRefGoogle Scholar
  22. Creel L (2003) Ripple effects: population and coastal regions. Measure Communication, Population Reference Bureau, WashingtonGoogle Scholar
  23. da Costa MS, Santos H, Galinski EA, Antranikian G (1998) An overview of the role and diversity of compatible solutes in bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153PubMedPubMedCentralGoogle Scholar
  24. DasSarma S (2006) Extreme halophiles are models for astrobiology. Microbe 1:120–126Google Scholar
  25. Dastager SG, Mawlankar R, Srinivasan K et al (2014) Fictibacillus enclensis sp. nov., isolated from marine sediment. Antonie Van Leeuwenhoek 105:461–469PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dastager S, Mawlankar R, Mual P, Verma A, Krishnamurthi S, Joseph N, Shouche Y (2015) Bacillus encimensis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 65(5):1421–1425PubMedCrossRefPubMedCentralGoogle Scholar
  27. Deep K, Poddar A, Das SK (2014) Photobacterium panuliri sp. nov., an alkalitolerant marine bacterium isolated from eggs of spiny lobster, Panulirus penicillatus from Andaman Sea. Curr Microbiol 69:660–668PubMedCrossRefPubMedCentralGoogle Scholar
  28. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dennis PP, Shimmin LC (1997) Evolutionary divergence and salinity-mediated selection in halophilic Archaea. Microbiol Mol Biol Rev 61:90–04PubMedPubMedCentralGoogle Scholar
  30. Divyasree B, Lakshmi K, Bharti D, Sasikala C, Ramana C (2016) Rhodovulum aestuarii sp. nov., isolated from a brackish water body. Int J Syst Evol Microbiol 66(1):165–171PubMedCrossRefPubMedCentralGoogle Scholar
  31. Donio MBS, Ronica FA, Viji VT et al (2013) Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus 2:149PubMedPubMedCentralCrossRefGoogle Scholar
  32. Donio MBS, Karthikeyan CS, Michaelbabu M, Uma G, Raja Jeya Sekar R, Citarasu T (2018) Haererehalobacter sp. JS1, a bioemulsifier producing halophilic bacterium isolated from Indian solar salt works. J Basic Microbiol 58:597–608CrossRefGoogle Scholar
  33. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213–218PubMedCrossRefGoogle Scholar
  34. Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085PubMedPubMedCentralCrossRefGoogle Scholar
  35. Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763PubMedCrossRefGoogle Scholar
  36. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293PubMedCrossRefGoogle Scholar
  37. Eugster HP (1980) Lake Magadi, Kenya, and its Pleistocene precursors. In: Nissenbaum A (ed) Hypersaline brines and evaporitic environments. Elsevier, Amsterdam, pp 195–232Google Scholar
  38. Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267Google Scholar
  39. Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:3443–3448PubMedPubMedCentralCrossRefGoogle Scholar
  40. Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 25–54Google Scholar
  41. Grant WD, Mwatha AA, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270CrossRefGoogle Scholar
  42. Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gupta S, Sharma P, Dev K et al (2015) A diverse group of halophilic bacteria exist in Lunsu, a natural salt water body of Himachal Pradesh, India. Springerplus 4:274PubMedPubMedCentralCrossRefGoogle Scholar
  44. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedPubMedCentralCrossRefGoogle Scholar
  45. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234CrossRefGoogle Scholar
  46. Ionescu D, Lipski A, Altendorf K, Oren A (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576:15–26CrossRefGoogle Scholar
  47. Jakher GR, Bhargava SC, Sinha RK (1990) Comparative limnology of Sambhar and Didwana lakes (Rajasthan, NW India). Hydrobiologia 197:245–256CrossRefGoogle Scholar
  48. Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159CrossRefGoogle Scholar
  49. Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer, BerlinCrossRefGoogle Scholar
  50. Jha B, Kumar Singh V, Weiss A, Hartmann A, Schmid M (2015) Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata. Int J Syst Evol Microbiol 65:3137–3142PubMedCrossRefGoogle Scholar
  51. Jose PA, Jebakumar SRD (2012) Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aquat Biosyst 8:23PubMedPubMedCentralCrossRefGoogle Scholar
  52. Joshi A, Thite S, Kulkarni G, Dhotre D, Joseph N, Venkata Ramana V, Polkade A, Shouche Y (2016) Nitrincola alkalisediminis sp. nov., an alkaliphilic bacterium isolated from an alkaline lake. Int J Syst Evol Microbiol 66(3):1254–1259PubMedCrossRefGoogle Scholar
  53. Joye SB, Samarkin VA, Orcutt BM, MacDonald IR, Hinrichs K-U, Elvert M, Teske AP, Lloyd KG, Lever MA, Montoya JP, Meile CD (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci 2:349–354CrossRefGoogle Scholar
  54. Kämpfer P, Rekha P, Busse H, Arun A, Priyanka P, Glaeser S (2018) Halomonas malpeensis sp. nov., isolated from rhizosphere sand of a coastal sand dune plant. Int J Syst Evol Microbiol 68(4):1037–1046PubMedCrossRefGoogle Scholar
  55. Karthikeyan P, Bhat SG, Chandrasekaran M (2013) Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi J Biol Sci 20(2):205–212PubMedPubMedCentralCrossRefGoogle Scholar
  56. Khalilova EA, Kotenko ST, Islammagomedova EA et al (2017) Extremophilic microbial communities of saline soils and their diversity in the regions of the Caspian depression. Arid Ecosyst 7:116–120CrossRefGoogle Scholar
  57. Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2006) Diversity of sulfatereducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298CrossRefGoogle Scholar
  58. Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43(4):1595–1603PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kumar R, Kaur G, Kumar A, Bala M, Singh N, Kaur N, Kumar N, Mayilraj S (2015a) Taxonomic description and genome sequence of Bacillus campisalis sp. nov., a member of the genus Bacillus isolated from a solar saltern. Int J Syst Evol Microbiol 65(10):3235–3240PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kumar R, Kaur G, Kumar N, Kumar A, Singh N, Bala M, Kaur N, Mayilraj S (2015b) Taxonomic description and genome sequence of Salinicoccus sediminis sp. nov., a halotolerant bacterium isolated from marine sediment. Int J Syst Evol Microbiol 65(11):3794–3799PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lakshmi K, Divyasree B, Sucharita K, Sasikala C, Ramana C (2015) Thiorhodococcus fuscus sp. nov., isolated from a lagoon. Int J Syst Evol Microbiol 65(11):3938–3943PubMedCrossRefGoogle Scholar
  62. Lanyi JK (1974) Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290PubMedPubMedCentralGoogle Scholar
  63. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634PubMedCrossRefGoogle Scholar
  64. Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic Archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886PubMedPubMedCentralCrossRefGoogle Scholar
  65. Leuko S, Goh F, Ibáñez-Peral R, Burns BP, Walker MR, Neilan BA (2008) Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 12:301–308CrossRefPubMedGoogle Scholar
  66. Lippert K, Galinski EA (1992) Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65CrossRefGoogle Scholar
  67. Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2004) Bacterial diversity of the inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:45–51PubMedCrossRefGoogle Scholar
  68. Malviya N, Yandigeri MS, Yadav AK et al (2014) Isolation and characterization of novel alkali-halophilic actinomycetes from the Chilika brackish water lake, India. Ann Microbiol 64:1829CrossRefGoogle Scholar
  69. Manikandan M, Kannan V, Pašić L (2009) Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J Microbiol Biotechnol 25:1007–1017CrossRefGoogle Scholar
  70. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895PubMedPubMedCentralCrossRefGoogle Scholar
  71. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250PubMedCrossRefGoogle Scholar
  72. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617PubMedCrossRefGoogle Scholar
  73. Mouné S, Caumette P, Matheron R, Willison JC (2002) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130CrossRefGoogle Scholar
  74. Narayan A, Patel V, Singh P, Patel A, Jain K, Karthikeyan K, Shah A, Madamwar D (2018) Response of microbial community structure to seasonal fluctuation on soils of Rann of Kachchh, Gujarat, India: representing microbial dynamics and functional potential. Ecol Genet Genomics 6:22–32CrossRefGoogle Scholar
  75. Noha MM, Wiegel J (2010) Halophilic thermophiles: a novel group of extremophiles. Saline Syst 9:5Google Scholar
  76. Nupur P, Srinivas T, Takaichi S, Anil Kumar P (2014) Rhodovulum mangrovi sp. nov., a phototrophic alphaproteobacterium isolated from a mangrove forest sediment sample. Int J Syst Evol Microbiol 64(9):3168–3173PubMedCrossRefGoogle Scholar
  77. Ochsenreiter T, Pfeifer F, Schleper C (2002) Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274PubMedCrossRefGoogle Scholar
  78. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  79. Oren A (2002a) Diversity of halophilic microorganisms: environments phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedCrossRefGoogle Scholar
  80. Oren A (2002b) Halophilic microorganisms and their environments. In: Seckbach J (ed) Cellular origin and life in extreme habitats. Kluwer Academic, DordrechtGoogle Scholar
  81. Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 263–282Google Scholar
  82. Oren A (2011) Ecology of halophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophile handbook, vol 1. Springer, Tokyo, pp 343–361CrossRefGoogle Scholar
  83. Oren A, Gurevich P (1995) Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149–158CrossRefGoogle Scholar
  84. Oren A, Rodrỉguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130PubMedGoogle Scholar
  85. Oren A, Shilo M (1981) Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch Microbiol 130:185–187CrossRefGoogle Scholar
  86. Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26CrossRefGoogle Scholar
  87. Pal D, Mathan Kumar R, Kaur N, Kumar N, Kaur G, Singh N, Krishnamurthi S, Mayilraj S (2017) Bacillus maritimus sp. nov., a novel member of the genus Bacillus isolated from marine sediment. Int J Syst Evol Microbiol 67(1):60–66PubMedCrossRefGoogle Scholar
  88. Panda AN, Mishra SR, Ray L et al (2018) Taxonomic description and genome sequence of Halobacillus marinus sp. nov., a novel strain isolated from Chilika Lake, India. J Microbiol 56:223–230PubMedCrossRefGoogle Scholar
  89. Parag B, Sasikala C, Ramana C (2015) Bacillus endolithicus sp. nov., isolated from pebbles. Int J Syst Evol Microbiol 65(12):4568–4573PubMedCrossRefGoogle Scholar
  90. Pašić L, Galán Bartual S, Poklar Ulrih N, Grabnar M, Herzog Velikonja B (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498PubMedCrossRefGoogle Scholar
  91. Pašić L, Poklar Ulrih N, Črnigoj M, Grabnar M, Herzog Velikonja B (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18PubMedCrossRefPubMedCentralGoogle Scholar
  92. Pastor JM, Salvador M, Argandona M et al (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28(6):782–801PubMedCrossRefPubMedCentralGoogle Scholar
  93. Patel R, Mevada V, Prajapati D, Dudhagara P, Koringa P, Joshi CG (2015) Metagenomic sequence of saline desert microbiota from wild ass sanctuary, Little Rann of Kutch, Gujarat, India. Genomics Data 3:137–139PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pathak AP, Sardar AG (2012) Isolation and characterization of carotenoid producing Haloarchaea from solar saltern of Mulund, Mumbai, India. Indian J Nat Prod Resour 3(4):483–488Google Scholar
  95. Paul D, Shreyas VK, Mhatre SS, Chowdhury SP, Shetty SA, Marathe NP, Bhute S, Shouche YS (2016) Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock. Front Microbiol 6:1553PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marassé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155PubMedCrossRefPubMedCentralGoogle Scholar
  97. Pikuta EV, Hoover RB (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209PubMedCrossRefPubMedCentralGoogle Scholar
  98. Prášil O, Bỉna D, Medová H, Rěháková K, Zapomělová E, Veselá J, Oren A (2009) Emission spectroscopy and kinetic fluorometry studies of phototrophic microbial communities along a salinity gradient in solar saltern evaporation ponds of Eilat, Israel. Aquat Microb Ecol 56:285–296CrossRefGoogle Scholar
  99. Rahul K, Sasikala C, Tushar L, Debadrita R, Ramana C (2014) Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 64(10):3553–3558PubMedCrossRefPubMedCentralGoogle Scholar
  100. Raju K, Sekar J, Vaiyapuri Ramalingam P (2016) Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. Int J Syst Evol Microbiol 66(2):1074–1079PubMedCrossRefPubMedCentralGoogle Scholar
  101. Rameshkumar N, Krishnan R, Lang E, Matsumura Y, Sawabe T, Sawabe T (2014) Zunongwangia mangrovi sp. nov., isolated from mangrove (Avicennia marina) rhizosphere, and emended description of the genus Zunongwangia. Int J Syst Evol Microbiol 64(2):545–550PubMedCrossRefPubMedCentralGoogle Scholar
  102. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623CrossRefGoogle Scholar
  103. Ray L, Mishra S, Panda A, Rastogi G, Pattanaik A, Adhya T, Suar M, Raina V (2014) Streptomyces barkulensis sp. nov., isolated from an estuarine lake. Int J Syst Evol Microbiol 64(4):1365–1372PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ray L, Mishra S, Panda A, Das S, Rastogi G, Pattanaik A, Adhya T, Suar M, Raina V (2016) Streptomyces chitinivorans sp. nov., a chitinolytic strain isolated from estuarine lake sediment. Int J Syst Evol Microbiol 66(8):3241–3248PubMedCrossRefPubMedCentralGoogle Scholar
  105. Reddy SV, Thirumala M, Farooq M et al (2015) Bacillus lonarensis sp. nov., an alkalitolerant bacterium isolated from a soda lake. Arch Microbiol 197:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71PubMedCrossRefPubMedCentralGoogle Scholar
  107. Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5:D796–D812PubMedCrossRefPubMedCentralGoogle Scholar
  108. Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810PubMedCrossRefPubMedCentralGoogle Scholar
  109. Rodriguez-Valera F (1993) Introduction to saline environments. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC, Boca Ratom, FL, pp 1–23Google Scholar
  110. Sahay H, Singh S, Kaushik R et al (2011) Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India. Biologia 66:741–747CrossRefGoogle Scholar
  111. Sahay H, Mahfooz S, Singh AK et al (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hypersaline Sambhar lake, India. World J Microbiol Biotechnol 28:3207–3217PubMedCrossRefGoogle Scholar
  112. Sahu AK, Quadri SR, Agasar D, Ruwaili JA, Jun-Li W, Dastager SG (2017) Allostreptomyces indica sp. nov., isolated from India. J Antibiot 70:1000–1003PubMedCrossRefGoogle Scholar
  113. Saiz-Jimenez C, Laiz L (2000) Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeterior Biodegrad 46:319–326CrossRefGoogle Scholar
  114. Saker R, Meklat A, Bouras N et al (2015) Diversity and antagonistic properties of culturable halophilic actinobacteria in soils of two arid regions of septentrional Sahara: M’zab and Zibans. Ann Microbiol 65:2241–2253CrossRefGoogle Scholar
  115. Sarafin Y, Donio MBS, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21(6):511–519PubMedPubMedCentralCrossRefGoogle Scholar
  116. Scholten JCM, Joye SB, Hollibaugh JT, Murrell JC (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda Lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:29–39PubMedCrossRefGoogle Scholar
  117. Shen S (2017) Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau. Acta Microbiol Sin 57(4):490–499Google Scholar
  118. Shivani Y, Subhash Y, Sasikala C, Ramana C (2016) Description of ‘Candidatus Marispirochaeta associata’ and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov. Int J Syst Evol Microbiol 66(12):5485–5492PubMedCrossRefGoogle Scholar
  119. Sidhu C, Thakur S, Sharma G, Tanuku N, Pinnaka A (2017) Oceanospirillum sanctuarii sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 67(9):3428–3434PubMedCrossRefGoogle Scholar
  120. Simachew A, Lanzén A, Gessesse A et al (2016) Prokaryotic community diversity along an increasing salt gradient in a soda ash concentration pond. Microb Ecol 71:326–338PubMedCrossRefGoogle Scholar
  121. Singh NK, Kaur C, Kumar N et al (2014) Bacillus aequororis sp. nov., isolated from marine sediment. Curr Microbiol 69:758–762PubMedCrossRefPubMedCentralGoogle Scholar
  122. Singh H, Kaur M, Kaur L, Sharma S, Mishra S, Tanuku N, Pinnaka A (2018) Bacillus lacus sp. nov., isolated from a water sample of a salt lake in India. Int J Syst Evol Microbiol 68(3):801–809CrossRefGoogle Scholar
  123. Sinha R, Krishnan K, Singh A, Thomas F, Jain A, John Kurian P (2017) Alteromonas pelagimontana sp. nov., a marine exopolysaccharide-producing bacterium isolated from the Southwest Indian ridge. Int J Syst Evol Microbiol 67(10):4032–4038PubMedCrossRefGoogle Scholar
  124. Sravanthi T, Tushar L, Sasikala C, Ramana C (2016) Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 66(4):1612–1619PubMedCrossRefGoogle Scholar
  125. Srinivas A, Divyasree B, Tushar L, Suresh G, Sasikala C, Ramana C (2016) Salinicoccus amylolyticus sp. nov., isolated from a saltern. Int J Syst Evol Microbiol 66(10):3814–3820PubMedCrossRefGoogle Scholar
  126. Stoeckenius W, Bivin D, McGinnis K (1985) Photoactive pigments in halobacteria from the Gavish sabkha. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. The Gavish sabkha. Springer, Berlin, pp 288–295CrossRefGoogle Scholar
  127. Subhash Y, Sasikala C, Ramana C (2014) Salinimicrobium sediminis sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 64(3):984–988PubMedCrossRefGoogle Scholar
  128. Sultanpuram V, Mothe T (2016) Salipaludibacillus aurantiacus gen. nov., sp. nov. a novel alkali tolerant bacterium, reclassification of Bacillus agaradhaerens as Salipaludibacillus agaradhaerens comb. nov. and Bacillus neizhouensis as Salipaludibacillus neizhouensis comb. nov. Int J Syst Evol Microbiol 66(7):2747–2753PubMedCrossRefGoogle Scholar
  129. Sultanpuram V, Mothe T (2018) Thalassorhabdus alkalitolerans gen. nov., sp. nov., a novel Bacillaceae member isolated from a marine sediment. Int J Syst Evol Microbiol 68:2969–2979PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sultanpuram V, Mothe T, Chintalapati S, Chintalapati V (2016a) Pelagirhabdus alkalitolerans gen. nov., sp. nov., an alkali-tolerant and thermotolerant bacterium isolated from beach sediment, and reclassification of Amphibacillus fermentum as Pelagirhabdus fermentum comb. nov. Int J Syst Evol Microbiol 66(1):84–90PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sultanpuram V, Mothe T, Mohammed F, Chintalapati S, Chintalapati V (2016b) Pontibacillus salipaludis sp. nov., a slightly halophilic bacterium isolated from a salt pan. Int J Syst Evol Microbiol 66(10):3884–3889PubMedCrossRefGoogle Scholar
  132. Sultanpuram V, Mothe T, Chintalapati S, Chintalapati V (2017a) Nesterenkonia cremea sp. nov., a bacterium isolated from a soda lake. Int J Syst Evol Microbiol 67(6):1861–1866PubMedCrossRefGoogle Scholar
  133. Sultanpuram VR, Mothe T, Chintalapati S et al (2017b) Bacillus alcaliphilum sp. nov., a bacterium isolated from a soda lake. Arch Microbiol 199:1303–1309PubMedCrossRefGoogle Scholar
  134. Thombre RS, Shinde VD, Oke RS, Dhar SK, Shouche YS (2016) Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Sci Rep 6:25642PubMedPubMedCentralCrossRefGoogle Scholar
  135. Upasani V, Desai S (1990) Sambhar Salt Lake. Chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Arch Microbiol 154:589–593CrossRefGoogle Scholar
  136. Vaidya B, Kumar R, Korpole S, Tanuku N, Pinnaka A (2015a) Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water. Int J Syst Evol Microbiol 65(7):2056–2063PubMedCrossRefGoogle Scholar
  137. Vaidya B, Kumar R, Sharma G, Srinivas T, Anil Kumar P (2015b) Xanthomarina gelatinilytica gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 65(11):3926–3932PubMedCrossRefGoogle Scholar
  138. Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enrίquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodrίguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former Lake Texcoco (Mexico). Extremophiles 12:247–254PubMedCrossRefPubMedCentralGoogle Scholar
  139. Vauclare P, Madern D, Girard E, Gabel F, Zaccai G, Franzetti B (2014) New insights into microbial adaptation to extreme saline environments. Bio Web Conf 2:02001CrossRefGoogle Scholar
  140. Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Philip H, Gerard M (2016) Metagenomic insights into the uncultured diversity and physiology of microbes in four Hypersaline Soda Lake brines. Front Microbiol 7:211PubMedPubMedCentralCrossRefGoogle Scholar
  141. Verma A, Mual P, Mayilraj S, Krishnamurthi S (2015) Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evol Microbiol 65(10):3248–3255PubMedCrossRefPubMedCentralGoogle Scholar
  142. Vishnuvardhan Reddy S, Thirumala M, Farooq M (2015a) Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake. Int J Syst Evol Microbiol 65(8):2441–2446PubMedCrossRefPubMedCentralGoogle Scholar
  143. Vishnuvardhan Reddy S, Thirumala M, Sasikala C, Venkata Ramana C (2015b) Salibacterium halotolerans gen. nov., sp. nov., a bacterium isolated from a salt pan, reclassification of Bacillus qingdaonensis as Salibacterium qingdaonense comb. nov. and Bacillus halochares as Salibacterium halochares comb. nov. Int J Syst Evol Microbiol 65(11):4270–4275PubMedCrossRefGoogle Scholar
  144. Vishnuvardhan Reddy S, Thirumala M, Farooq M, Sasikala C, Venkata Ramana C (2016) Marinococcus salis sp., nov., a moderately halophilic bacterium isolated from a salt marsh. Arch Micrbiol 198:1013–1018CrossRefGoogle Scholar
  145. Viver T, Cifuentes A, Díaz S, Rodríguez-Valdecantos G, González B, Antón J, Rosselló-Móra R (2015) Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns: evidence that unexplored sites constitute sources of cultivable novelty. Syst Appl Microbiol 38(4):266–275PubMedCrossRefGoogle Scholar
  146. Wang D, Tang Q (1989) Natronobacterium from soda lakes of China. In: Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 68–72Google Scholar
  147. Wang C-Y, Ng C-C, Chen T-W, Wu S-J, Shyu Y-T (2007) Microbial diversity analysis of former salterns in southern Taiwan by 16S rRNA-based methods. J Basic Microbiol 7:525–533CrossRefGoogle Scholar
  148. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol 72:5478–5485PubMedPubMedCentralCrossRefGoogle Scholar
  149. Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266PubMedCrossRefGoogle Scholar
  150. Yadav AN, Verma P, Kumar M et al (2015) Diversity and phylogenetic profiling of niche-specific bacilli from extreme environments of India. Ann Microbiol 65:611–629CrossRefGoogle Scholar
  151. Zaccai G, Eisenberg H (1990) Halophilic proteins and the influence of solvent on protein stabilization. Trends Biochem Sci 15:333–337PubMedCrossRefGoogle Scholar
  152. Zheng MP, Tang JY, Liu JY, Zhang FS (1993) Chinese saline lakes. Hydrobiologia 267:23–36CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vishnuvardhan Reddy Sultanpuram
    • 1
  • Thirumala Mothe
    • 1
  1. 1.Microbial Ecology Laboratory, Department of Applied BiosciencesMahatma Gandhi UniversityNalgondaIndia

Personalised recommendations