Advertisement

Arbuscular Mycorrhizal Fungi Alleviate Soil Salinity Stress in Arid and Semiarid Areas

  • Karima Bencherif
  • Yolande Dalpé
  • Anissa Lounès Hadj-Sahraoui
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 56)

Abstract

Soil salinization is an increasingly important problem in many parts of the world, particularly in the arid and semiarid areas. Soil salinity affects plant growth adversely, by disrupting their physiological mechanisms due to excessive Na+ and Cl ions toxicity toward cells. The toxic effects include disruption of enzyme structure and other macromolecules, disruption of photosynthetic efficiency, gas exchange, membrane organization, and water status. Salinity may directly or indirectly inhibit plant cell division, development, and productivity. To overcome the detrimental effects and to improve plant tolerance to stresses, particularly salt stress, plants adopt a wide variety of strategies including symbiotic association with soil fungi such as the arbuscular mycorrhizal fungi (AMF). The use of arbuscular mycorrhizal fungi proved to be an interesting way for the management of native flora and restoration of natural habitats with minimal chemical inputs. Unfortunately, the knowledge about restoration of salt-affected ecosystems using AMF biofertilizer is limited. This chapter aims to review the impact of salinity stress on plants and on AMF life cycle and physiology and to describe the effect of AMF biofertilizers on plant development underlying physiological, biochemical, and molecular plant mechanisms within the context of salinity stress.

Keywords

Mycorrhizal colonization Salinity stress Biofertilization Steppic areas Abiotic stress alleviation 

References

  1. Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372CrossRefGoogle Scholar
  2. Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868PubMedPubMedCentralGoogle Scholar
  3. Aliasgharzadeh N, Rastin SN, Towfighi H et al (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122CrossRefGoogle Scholar
  4. Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236CrossRefGoogle Scholar
  5. Alqarawi AA, Abd Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9:802–810CrossRefGoogle Scholar
  6. Aroca R, Ruiz-Lozano JM, Zamarreño AM et al (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55CrossRefGoogle Scholar
  7. Arora S, Vanza M (2017) Microbial approach for bioremediation of saline and sodic soils. In: Singh (ed) Bioremediation of salt affected soils: an Indian perspective. Springer, Berlin, pp 87–100CrossRefGoogle Scholar
  8. Bacera A, Bartoloni N, Cofré N, Soteras F, Cabello M (2014) Arbuscular mycorrhizal fungi in saline soils: vertical distribution at different soil depth. Braz J Microbiol 45:585–594CrossRefGoogle Scholar
  9. Badda N, Aggarwal A, Kadian N, Sharma N (2014) Influence of arbuscular mycorrhizal fungi and different salinity levels on growth enhancement and nutrient uptake of Gossypium arboreum L. Kavaka 43:14–21Google Scholar
  10. Barin M, Alisgharzad N, Olsson PA, Rasouli-Sadaghiani M (2013) Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Urmia northern Iran analyzed by use of lipid biomarkers and microscopy. Pedobiologia 56:225–232CrossRefGoogle Scholar
  11. Basu S, Rabara RC, Negiet S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Pathol 102:36–45CrossRefGoogle Scholar
  12. Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisols. Plant Soil 218:173–183CrossRefGoogle Scholar
  13. Bencherif K, Boutekrabta A, Fontaine J, Laruelle F, Dalpé Y, Lounès-Hadj Sahraoui A (2015) Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci Total Environ 533:488–494CrossRefGoogle Scholar
  14. Benkhaled L, Gomez AM, Ouarraqi E, Oihabi A (2007) Réponses physiologiques et biochimiques du tréfle (Trifolium alexandrinun L) à la double association Mycorhizes-Rhizobium sous une contrainte saline. Agronomie 23:571–580CrossRefGoogle Scholar
  15. Bowen GD (1987) The biology and physiology of infection and its development. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, pp 27–57Google Scholar
  16. Carillo P, Annunziata MG, Pontecorvo G et al (2011) Salinity stress and salt tolerance. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress plants-mechanisms and adaptations. InTech, Rijeka.  https://doi.org/10.5772/22331 CrossRefGoogle Scholar
  17. Carvalho LM, Correia PM, Caçador I, Martins-Louçao MA (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143CrossRefGoogle Scholar
  18. Chin K, DeFalco TA, Moeder W, Yoshioka K (2013) The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol 163:611–624CrossRefGoogle Scholar
  19. Diagne N, Baudin E, Svistoonoff S, Ouattara C, Diouf D, Kan A, Ndiaye C, Noba K, Bogusz D, Franche C, Duponnois R (2018) Effect of native and allochthonous arbuscular mycorrhizal fungi on Casuarina equisetifolia growth and its root bacterial community. Arid Land Res Manag.  https://doi.org/10.1080/15324982.2017.1406413 CrossRefGoogle Scholar
  20. Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd-Allah E (2017) Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24:1601–1608CrossRefGoogle Scholar
  21. ElHindi KM, Sharaf El-Din A, ElGorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24:170–179CrossRefGoogle Scholar
  22. Estrada B, Aroca MFJM et al (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782CrossRefGoogle Scholar
  23. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280CrossRefGoogle Scholar
  24. Evelin H, Giri B, Kapoor R (2012) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86CrossRefGoogle Scholar
  25. Fan L, Dalpé Y, Fang C, Dubé C, Khanizadeh S (2011) Influence of arbuscular mycorrhizae on biomass and root morphology of selected strawberry cultivars under salt stress. Botany 89:397–403CrossRefGoogle Scholar
  26. Feng G, Zhang FS, Xl L et al (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190CrossRefGoogle Scholar
  27. Garbaye J (2013) La symbiose mycorhizienne: Une association entre les plantes et les champignons. Collection Synthèse. QUAE editions, p 280Google Scholar
  28. Garg N, Pandey R (2016) High effectiveness of exotic arbuscular mycorrhizal fungi is reflected in improved rhizobial symbiosis and trehalose turnover in Cajanus cajan genotypes grown under salinity stress. Fungal Ecology 21:57–67CrossRefGoogle Scholar
  29. Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760CrossRefGoogle Scholar
  30. Guo X, Gong J (2014) Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24:79–94CrossRefGoogle Scholar
  31. Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmed P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signaling, omics and adaptations. Springer, New York, pp 301–354CrossRefGoogle Scholar
  32. Hashem A, Abd_Allah EF, Alqaraw AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under Salt Stress. Front Microbiol 7:1089CrossRefGoogle Scholar
  33. Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183CrossRefGoogle Scholar
  34. Jahromi F, Aroca R, Porcel R et al (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53CrossRefGoogle Scholar
  35. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  36. Juniper S, Abbott L (1993) VAM and soil salinity. Mycorrhiza 4:45–57CrossRefGoogle Scholar
  37. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379CrossRefGoogle Scholar
  38. Karaarslan E, Uyanoz R (2011) Occurrence of arbuscular mycorrhizal fungi in some native plants grown on saline soils around the lake Tuz in Turkey and its relations with some physical and chemical properties of soil. Sci Res Essays 6:4238–4245Google Scholar
  39. Khalloufi M, Andújar CM, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144.  https://doi.org/10.1016/j.jplph.2017.04.012 CrossRefPubMedGoogle Scholar
  40. Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the great effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to sever salt stress. Environ Exp Bot 65:245–252CrossRefGoogle Scholar
  41. Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline sodic and gypsum soils. Mycorrhiza 12:199–211CrossRefGoogle Scholar
  42. Lee Y, Krishnamoorthy R, Selvakumar G et al (2015) Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol 58:533–540CrossRefGoogle Scholar
  43. Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticultirae 3:30.  https://doi.org/10.3390/horticulturae3020030 CrossRefGoogle Scholar
  44. Mathur N, Singh J, Bohra S et al (2007) Arbuscular mycorrhizal status of medicinal halophytes in saline areas of Indian Thar desert. Int J Soil Sci 2:119–127CrossRefGoogle Scholar
  45. Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698.  https://doi.org/10.1016/j.pbi.2009.09.002 CrossRefPubMedGoogle Scholar
  46. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefGoogle Scholar
  47. Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467CrossRefGoogle Scholar
  48. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663CrossRefGoogle Scholar
  49. Muthukumar T, Bagyarag DJ, Ashwin R (2017) Arbuscular mycorrhizal fungi: Role in alleviating salt stress in crop plants. In: Bagyarag DJ, Jamaluddin (eds) Microbes for plant stress management, vol 1. New India, New Delhi, pp 221–243Google Scholar
  50. Ouziad F, Wilde P, Schmelzer E et al (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186CrossRefGoogle Scholar
  51. Péréz-Tienda J, Testillanob PS, Balestrinic R, Fiorillic V, Azcón-Aguilara C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:144–1055CrossRefGoogle Scholar
  52. Plenchette C (1991) Utilisation des mycorhizes en agriculture et horticulture. In: Strullu DG, Garbaye J, Perrin R, Plenchette C (eds) Les mycorhizes des arbres et des plantes cultivées. Lavoisier, Paris, pp 131–196Google Scholar
  53. Plouznikoof K, Declerck S, Calonne-Salmon M (2016) Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi. In: Vos CMF, Kazan K (eds) Belowground defence strategies in plants, signaling and communication in plants. Springer, Cham.  https://doi.org/10.1007/978-3-319-42319-7_1 CrossRefGoogle Scholar
  54. Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:74–84CrossRefGoogle Scholar
  55. Porcel R, Aroca R, Ruíz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi – a review. Agron Sustain Dev 32:181–200CrossRefGoogle Scholar
  56. Porcel R, Aroca R, Azcon R et al (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673CrossRefGoogle Scholar
  57. Powell JR, Rilling MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol Trans.  https://doi.org/10.1111/nph.15119 CrossRefGoogle Scholar
  58. Ramoliya PJ, Patel HM, Pandey AN (2004) Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For Ecol Manag 202:181–193CrossRefGoogle Scholar
  59. Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073CrossRefGoogle Scholar
  60. Rozema J, Arp W, Van Diggelen J et al (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:45Google Scholar
  61. Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502CrossRefGoogle Scholar
  62. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044CrossRefGoogle Scholar
  63. Sabir P, Ashraf M, Hussain M, Jamil A (2009) Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum Miliaceum L.) accessions. Pak J Bot 41:2957–2964Google Scholar
  64. Sanchez-Castro I, Ferrol N, Barea JM (2012) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. J Arid Environ 80:1–9CrossRefGoogle Scholar
  65. Saxena B, Shukla K, Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 76–106Google Scholar
  66. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296CrossRefGoogle Scholar
  67. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huanga Y (2009) Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Rev Can Microbiol 55:879–886CrossRefGoogle Scholar
  68. Sheng M, Tang M, Zhang FF et al (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430CrossRefGoogle Scholar
  69. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131CrossRefGoogle Scholar
  70. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  71. Sonjak S, Beguiristain T, Leyval C, Regvar M (2009) Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil 314:25–34CrossRefGoogle Scholar
  72. Taleisnik EL, Grunberg K (1994) Ion balance in tomato cultivars differing in salt tolerance. Sodium and potassium accumulation and fluxes under moderate salinity. Physiol Plant 92:528–534CrossRefGoogle Scholar
  73. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438CrossRefGoogle Scholar
  74. Wang FY, Liu RJ, Lin XJ, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137CrossRefGoogle Scholar
  75. Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561CrossRefGoogle Scholar
  76. Wu Z, Sawada T, Shiba K, Liu S, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2013) Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev 27:157–162CrossRefGoogle Scholar
  77. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Y amaguchishinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta (1)-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760CrossRefGoogle Scholar
  78. Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul.  https://doi.org/10.1007/s10725-018-0431-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karima Bencherif
    • 1
    • 2
  • Yolande Dalpé
    • 3
  • Anissa Lounès Hadj-Sahraoui
    • 2
  1. 1.Faculté des Sciences de la Nature et de la vieUniversité de DjelfaDjelfaAlgeria
  2. 2.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Université du Littoral Côte d’OpaleCalais cedexFrance
  3. 3.Agriculture et agroalimentaire CanadaCentre de recherche et développement d’OttawaOttawaCanada

Personalised recommendations