Big Data Modeling Approaches for Engineering Applications

  • Bryn Crawford
  • Hamid Khayyam
  • Abbas S. MilaniEmail author
  • Reza N. Jazar


Engineering is intrinsically a field in which the application of science and mathematics is utilized to solve problems in pursuit of the design, operation, maintenance, and other faculties of systems in complex systems. Many of these systems contain nonlinear interactions and as such, require tools of varying robustness and power to describe them. Forecasting of future states or designing such systems is very costly, time consuming, and computationally intensive, due to finite project timelines and technical constraints within industry. Increasing the calculation power will provide us with daily data production in modeling and analysis of complex dynamic systems to exceed 2.5 exabyte by 2020, which is a 44-fold increase from those seen in 2010, illustrating the rapid changes in this area. “Big data” is a relatively amorphous term used to describe the rise in data volumes that are difficult to capture, store, manage, process, and analyze, using traditional database methods and tools. The new reality of big data has and shall continue to have profound implications on modeling, as new and highly valuable information can be extracted for decision-making.

Volume, often considered to be the primary characteristic of big data, refers to the absolute size of the dataset being considered. Variety in big datasets also provides additional challenges. Given the great diversity of data sources, including sensors, images, video feeds, financial transactions, location data, text documents, and others, reconciling these sources into unified modeling strategies is not straightforward. When considering so many different types of data, big data modeling strategies typically address three distinct types of data: structures data, semi-structured data, and unstructured data.

In this chapter, a review of classical machine learning methods will be provided, including a selection of clustering, classification, and regression methods. Then it will detail the six approaches for applying scalable machine learning solutions to big data, specifically, representation learning methods for data reduction. Deep learning for capturing highly nonlinear behavior, distributed and parallel learning, transfer learning for cross-domain and cross-task learning activities, active learning, and kernel-based learning will address the challenges associated with big data.


  1. 1.
    Dobre, T. G., & Sanchez Marcano, J. G. (2007). Chemical engineering: Modelling, simulation and similitude. Weinheim: Wiley-VCH Verlag GmbH & KGaA.CrossRefGoogle Scholar
  2. 2.
    Rodrigues, A. E., & Minceva, M. (2005). Modelling and simulation in chemical engineering: Tools for process innovation. Computers & Chemical Engineering, 29, 1167–1183.CrossRefGoogle Scholar
  3. 3.
    Rasmuson, A., Andersson, B., Olsson, L., & Andersson, R. (2014). Mathematical modeling in chemical engineering. New York: Cambridge University Press.CrossRefGoogle Scholar
  4. 4.
    Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.CrossRefGoogle Scholar
  5. 5.
    Alvaro, A., Manadhata, P., & Rajan, S. (2013). Big data analytics for security intelligence. Cloud Security Alliance. Retrieved from
  6. 6.
    McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Barton, D. (2012). Big data. The management revolution. Harvard Business Review, 90(10), 61–67.Google Scholar
  7. 7.
    Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115.CrossRefGoogle Scholar
  8. 8.
    IBM. (2015). What is the big data analysis. Retrieved from
  9. 9.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey & Company. Retrieved September 12, 2018, from
  10. 10.
    Lund, S. (2013). Game changers: Five opportunities for US growth and renewal. McKinsey & Company. Retrieved September 26, 2018, from
  11. 11.
    Chen, C., & Zhang, C. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Journal of Information Sciences, 275, 314–347.CrossRefGoogle Scholar
  12. 12.
    Dijcks, J. P. (2012). Oracle: Big data for the enterprise. Oracle White Paper.Google Scholar
  13. 13.
    Abawajy, J. (2015). Comprehensive analysis of big data variety landscape. International Journal of Parallel, Emergent and Distributed Systems, 30(1), 5–14.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Minelli, M., Chambers, M., & Dhiraj, A. (2012). Big data, big analytics: Emerging business intelligence and analytic trends for today’s businesses. Wiley.Google Scholar
  15. 15.
    IBM. (2015). Bringing big data to the enterprise. Retrieved from
  16. 16.
    Sathi, A. (2012). Big data analytics: Disruptive technologies for changing the game. MC Press.Google Scholar
  17. 17.
    Khayyam, H., Naebe, M., Zabihi, O., Zamani, R., Atkiss, S., & Fox, B. (2015). Dynamic prediction models and optimization of Polyacrylonitrile (PAN) stabilization processes for production of carbon fiber. IEEE Transactions on Industrial Informatics, 11, 887–896.CrossRefGoogle Scholar
  18. 18.
    Alag, S., Agogino, A., & Morjaria, M. (2001). A methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnostics. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), Special Issue on AI in Equipment Service, 15(4), 307–319.zbMATHGoogle Scholar
  19. 19.
    Hernán, D., Loaiza, B. H., Caicedo, E., Ibarra-Castanedo, C., Bendada, A. H., & Maldague, X. (2009). Defect characterization in infrared non-destructive testing with learning machines. Non-Destructive Testing and Evaluation International, 42(7), 630–643.Google Scholar
  20. 20.
    Khayyam, H., Fakhrhoseini, S. M., Church, J. S., Milani, A. S., Bab-Hadiashar, A., & Jazar, R. N. (2017). Predictive modelling and optimization of carbon fiber mechanical properties through high temperature furnace. Applied Thermal Engineering, 125, 1539–1554.CrossRefGoogle Scholar
  21. 21.
    Kabir, G., Sadiq, R., & Tesfamariam, S. (2016). A fuzzy Bayesian belief network for safety assessment of oil and gas pipelines. Structure and Infrastructure Engineering, 12(8), 874–889.CrossRefGoogle Scholar
  22. 22.
    Madsen, A. L., & Kjærulff, U. B. (2007). Applications of HUGIN to diagnosis and control of autonomous vehicles. Studies in fuzziness and soft computing. Berlin: Springer.zbMATHGoogle Scholar
  23. 23.
    Fernandes, H., Zhang, H., Figueiredo, A., Malheiros, F., Ignacio, L. H., Sfarra, S., & Guimaraes, G. (2018). Machine learning and infrared thermography for fiber orientation assessment on randomly-oriented strands parts. In Sensors 2018 (pp. 288–306).Google Scholar
  24. 24.
    Hu, H., Wen, Y., Chua, T., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2, 652–687.CrossRefGoogle Scholar
  25. 25.
    Chen, X. W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525.CrossRefGoogle Scholar
  26. 26.
    Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2), 169–194.CrossRefGoogle Scholar
  28. 28.
    Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. New York: Elsevier.zbMATHGoogle Scholar
  29. 29.
    Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999.CrossRefGoogle Scholar
  30. 30.
    Abd, A. M., & Abd, S. M. (2017). Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Studies in Construction Materials, 6, 8–15.CrossRefGoogle Scholar
  31. 31.
    Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine Learning, 46, 131–159.zbMATHCrossRefGoogle Scholar
  32. 32.
    Cholette, M. E., Borghesani, P., Gialleonardo, E. D., & Braghin, F. (2017). Using support vector machines for the computationally efficient identification of acceptable design parameters in computer-aided engineering applications. Expert Systems with Applications, 81, 39–52.CrossRefGoogle Scholar
  33. 33.
    Rokach, L., & Maimon, O. (2014). Data mining with decision trees: Theory and applications. World Scientific.Google Scholar
  34. 34.
    Pourret, O., Naim, P., & Marcot, B. (2008). Bayesian networks: A practical guide to applications. West Sussex: Wiley.zbMATHCrossRefGoogle Scholar
  35. 35.
    Shatovskaya, T., Repka, V., & Good, A. (2006). Application of the Bayesian networks in the informational modeling. In 2006 international conference—Modern problems of radio engineering, telecommunications, and computer science (pp. 108–108).Google Scholar
  36. 36.
    Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an eclipse-based software fault prediction tool using naïve Bayes algorithm. Expert Systems with Applications, 38(3), 2347–2353.CrossRefGoogle Scholar
  37. 37.
    Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.Google Scholar
  38. 38.
    Janssens, D., Wets, G., Brijs, T., Vanhoof, K., Arentze, T., & Timmermans, H. (2006). Integrating Bayesian networks and decision trees in a sequential rule-based transportation model. European Journal of Operational Research, 175, 16–34.zbMATHCrossRefGoogle Scholar
  39. 39.
    Cosma, G., Brown, D., Archer, M., Khan, M., & Graham Pockley, A. (2017). A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Systems with Applications, 70, 1–19.CrossRefGoogle Scholar
  40. 40.
    Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.Google Scholar
  41. 41.
    Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.zbMATHCrossRefGoogle Scholar
  42. 42.
    Datla, M. V. (2015). Bench marking of classification algorithms: Decision trees and random forests—A case study using R. In 2015 international conference on trends in automation, communications and computing technology (I-TACT-15) (pp. 1–7).Google Scholar
  43. 43.
    Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In Nonlinear estimation and classification. Springer.Google Scholar
  44. 44.
    Zhang, C. X., Zhang, J. S., & Zhang, G. Y. (2008). An efficient modified boosting method for solving classification problems. Journal of Computational and Applied Mathematics, 214, 381–392.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Li, F., & Pengfei, L. (2013). The research survey of system identification method. In 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC).Google Scholar
  46. 46.
    Hunter, D., Yu, H., Pukish, M. S., III, Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper neural network sizes and architectures—A comparative study. IEEE Transactions on Industrial Informatics, 8, 228–240.CrossRefGoogle Scholar
  47. 47.
    Davim, P. (2012). Computational methods for optimizing manufacturing technology models and techniques. Hershey: Engineering Science Reference.CrossRefGoogle Scholar
  48. 48.
    Cherkassky, V., & Mulier, F. M. (2007). Learning from data: Concepts, theory, and methods. Chichester: Wiley.zbMATHCrossRefGoogle Scholar
  49. 49.
    Kermani, B. G., Schiffman, S. S., & Nagle, H. T. (2005). Performance of the Levenberg–Marquardt neural network training method in electronic nose applications. Sensors and Actuators B: Chemical, 110, 13–22.CrossRefGoogle Scholar
  50. 50.
    Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 989–993.CrossRefGoogle Scholar
  51. 51.
    Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15, 1667–1689.zbMATHCrossRefGoogle Scholar
  52. 52.
    Gunn, S. R. (1998). ISIS Technical Report—Support vector machines for classification and regression. Retrieved July 8, 2018, from
  53. 53.
    Vapnik, V., Golowich, S. E., & Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. In Advances in neural information processing systems (Vol. 9).Google Scholar
  54. 54.
    Hu, W., Yan, L., Liu, K., & Wang, H. (2016). A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Processing Letters, 43, 155–172.CrossRefGoogle Scholar
  55. 55.
    Cai, Z. J., Lu, S., & Zhang, X. B. (2009). Tourism demand forecasting by support vector regression and genetic algorithm. In 2nd IEEE international Conference on Computer science and information technology (ICCSIT) 2009 (pp. 144–146).Google Scholar
  56. 56.
    Vapnik, V. (1998). Statistical learning theory. Wiley.Google Scholar
  57. 57.
    Tu, W., & Sun, S. (2012). Cross-domain representation-learning framework with combination of class-separate and domain-merge objectives. In Proceedings of the 1st International Workshop on Cross Domain Knowledge Discovery in Web and Social Network Mining, 2012 (pp. 18–25). Beijing.Google Scholar
  58. 58.
    Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhang, C., Zhang, K., Yuan, Q., Peng, H., Zheng, Y., Hanratty, T., Wang, S., & Han, J. (2017). Regions, periods, activities: Uncovering urban dynamics via cross-modal representation learning. In Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017 (pp. 361–370).Google Scholar
  60. 60.
    Natarajan, N., & Dhillon, I. S. (2014). Inductive matrix completion for predicting gene–disease associations. Bioinformatics, 30(12), 60–68.CrossRefGoogle Scholar
  61. 61.
    Wang, S., Tang, J., Aggarwal, C., & Liu, H. (2016). Linked document embedding for classification. In Proceedings of the 25th ACM International Conference on Information and Knowledge Management 2016 (pp. 115–124).Google Scholar
  62. 62.
    Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 (pp. 1225–1234).Google Scholar
  63. 63.
    Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 (pp. 1105–1114).Google Scholar
  64. 64.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web 2015 (pp. 1067–1077).Google Scholar
  65. 65.
    LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature, 521, 436–444.CrossRefGoogle Scholar
  66. 66.
    Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Computer Society Conference On Computer Vision and Pattern Recognition, 2005 (CVPR 2005), IEEE (Vol. 1. pp. 886–893).Google Scholar
  67. 67.
    Hinton, G., Deng, L., Yu, D., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., Dahl, G., & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.CrossRefGoogle Scholar
  68. 68.
    Seide, F., Li, G., & Yu, D. (2011). Conversational speech transcription using context-dependent deep neural networks. In INTERSPEECH. ISCA (pp. 437–440).Google Scholar
  69. 69.
    Suthaharan, S. (2013). Big data classification: Problems and challenges in network intrusion prediction with machine learning. In ACM Sigmetrics: Big Data Analytics Workshop. Pittsburgh: ACM.Google Scholar
  70. 70.
    Fan, C., Xiao, F., & Zhao, Y. (2017). A short-term building cooling load prediction method using deep learning algorithms. Applied Energy, 195, 222–233.CrossRefGoogle Scholar
  71. 71.
    Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.CrossRefGoogle Scholar
  72. 72.
    Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv technical report. Retrieved August 12, 2018, from
  73. 73.
    Mathworks. (2018). Practical deep learning examples with MATLAB. Retrieved August 14, 2018, from
  74. 74.
    Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Peteiro-Barral, D., & Guijarro-Berdiñas, B. (2013). A survey of methods for distributed machine learning. Progress in Artificial Intelligence, 2, 1–11.CrossRefGoogle Scholar
  76. 76.
    Giordana, A., & Neri, F. (1995). Search-intensive concept induction. Evolutionary Computation, 3(4), 375–416.CrossRefGoogle Scholar
  77. 77.
    Tsoumakas, G., & Vlahavas, I. (2009). Distributed data mining. In J. Erickson (Ed.), Database technologies: Concepts, methodologies, tools, and applications (pp. 157–171). Hershey: IGI Global.CrossRefGoogle Scholar
  78. 78.
    Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. Cambridge: The MIT Press.Google Scholar
  79. 79.
    Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis in Machine Intelligence, 20(3), 226–239.CrossRefGoogle Scholar
  80. 80.
    Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning, 36(1), 85–103.CrossRefGoogle Scholar
  81. 81.
    Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge Data Engineering, 22(10), 1345–1359.CrossRefGoogle Scholar
  82. 82.
    Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In ECCV 2016: European Conference on Computer Vision (pp. 694–711).Google Scholar
  83. 83.
    Dai, W., Xue, G., Yang, Q. & Yu, Y. (2007). Transferring naive bayes classifiers for text classification. In Proceedings of the 22rd AAAI Conference on Artificial Intelligence, Vancouver, Canada (pp. 540–545).Google Scholar
  84. 84.
    Ling, X., Xue, G.-R., Dai, W., Jiang, Y., Yang, Q., & Yu, Y. (2008). Can Chinese web pages be classified with English data source? In Proceedings of the 17th International Conference on World Wide Web (pp. 969–978). Beijing: ACMGoogle Scholar
  85. 85.
    Pan, S. J., Kwok, J. T., Yang, Q., & Pan, J. J. (2007). Adaptive localization in a dynamic WiFi environment through multi-view learning. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (pp. 1108–1113). Vancouver.Google Scholar
  86. 86.
    Kuhlmann, G. & Stone, P. (2007). Graph-based domain mapping for transfer learning in general games. In 18th European Conference on Machine Learning, ser. Lecture Notes in Computer Science (pp. 188–200). Warsaw: Springer.Google Scholar
  87. 87.
    Jiang, J., & Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (pp. 264–271). Prague: Association for Computational Linguistics.Google Scholar
  88. 88.
    Lawrence, N. D., & Platt, J. C. (2004). Learning to learn with the informative vector machine. In Proceedings of the 21st International Conference on Machine Learning. Banff: ACM.Google Scholar
  89. 89.
    Schwaighofer, A., Tresp, V., & Yu, K. (2005). Learning Gaussian process kernels via hierarchical Bayes. In Proceedings of the 17th Annual Conference on Neural Information Processing Systems (pp. 1209–1216). Cambridge: MIT Press.Google Scholar
  90. 90.
    Evgeniou, T., & Pontil, M. (2004). Regularized multi-task learning. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 109–117). Seattle: ACM.Google Scholar
  91. 91.
    Hoi, S. C. H., Jin, R., Zhu, J., & Lyu, M. R. (2006). Batch mode active learning and its application to medical image classification. In Proceedings of the International Conference on Machine Learning (ICML) 2006 (pp. 417–424).Google Scholar
  92. 92.
    King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L. N., Sparkes, A., Whelan, K. E., & Clare, A. (2009). The automation of science. Science, 324(5923), 85–89.CrossRefGoogle Scholar
  93. 93.
    Berger, A. L., Della Pietra, V. J., & Della Pietra, S. A. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), 39–71.Google Scholar
  94. 94.
    Flaherty, P., Jordan, M., & Arkin, A. (2006). Robust design of biological experiments. In Proceedings of Advances in Neural Information Processing Systems (NIPS) (Vol. 18, pp. 363–370). MIT Press.Google Scholar
  95. 95.
    Grira, N., Crucianu, M., & Boujemaa, N. (2005). Active semi-supervised fuzzy clustering for image database categorization. In Proceedings of the ACM Workshop on Multimedia Information Retrieval (MIR) (pp. 9–16). ACM Press.Google Scholar
  96. 96.
    Hauptmann, A., Lin, W., Yan, R., Yang, J., & Chen, M. Y. (2006). Extreme video retrieval: Joint maximization of human and computer performance. In Proceedings of the ACM Workshop on Multimedia Image Retrieval (pp. 385–394). ACM Press.Google Scholar
  97. 97.
    Moskovitch, R., Nissim, N., Stopel, D., Feher, C., Englert, R., & Elovici. Y. (2007). Improving the detection of unknown computer worms activity using active learning. In Proceedings of the German Conference on AI (pp. 489–493). Springer Publishing.Google Scholar
  98. 98.
    Settles, B. (2010). Active learning literature survey. Madison: University of Wisconsin. Retrieved August 2, 2018, from Scholar
  99. 99.
    Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the International Conference on Machine Learning (ICML) (pp. 331–339). Morgan Kaufmann.Google Scholar
  100. 100.
    Müller, K. R., Mika, S., Rätsch, G., Tsuda, K., & Schölkopf, B. (2001). An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2), 181–201.CrossRefGoogle Scholar
  101. 101.
    Slavakis, K., Bouboulis, P., & Theodoridis, S. (2012). Adaptive multiregression in reproducing kernel Hilbert spaces: The multiaccess MIMO channel case. IEEE Transactions on Neural Network Learning Systems, 23(2), 260–276.CrossRefGoogle Scholar
  102. 102.
    Theodoridis, S., Slavakis, K., & Yamada, I. (2011). Adaptive learning in a world of projections. IEEE Signal Processing Magazine, 28(1), 97–123.CrossRefGoogle Scholar
  103. 103.
    Slavakis, K., Theodoridis, S., & Yamada, I. (2008). Online kernel-based classification using adaptive projection algorithms. IEEE Transactions on Signal Processing, 56(7), 2781–2796.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Mika, S., Schölkopf, B., Smola, A. J., Müller, K.-R., Scholz, M., & Rätsch, G. (1999). Kernel PCA and de-noising in feature spaces. In Advances in Neural Information Processing Systems 11 (pp. 536–542). Cambridge: MIT Press.Google Scholar
  105. 105.
    LeCun, Y. A., Jackel, L. D., Bottou, L., Brunot, A., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Müller, U. A., Säckinger, E., Simard, P. Y., & Vapnik, V. N. (1995). Learning algorithms for classification: A comparison on handwritten digit recognition. In Neural networks: The statistical mechanics perspective (pp. 261–276). Singapore: World Scientific Publishing.Google Scholar
  106. 106.
    Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., & Müller, K. R. (2000). Engineering support vector machine kernels that recognize translation initiation sites in DNA. Bioinformatics, 16, 799–807.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bryn Crawford
    • 1
  • Hamid Khayyam
    • 2
  • Abbas S. Milani
    • 1
    Email author
  • Reza N. Jazar
    • 3
    • 4
  1. 1.School of Engineering, University of British Columbia (UBC)KelownaCanada
  2. 2.School of EngineeringRMIT UniversityMelbourneAustralia
  3. 3.Xiamen University of TechnologyXiamenChina
  4. 4.School of Engineering, RMIT UniversityBundooraAustralia

Personalised recommendations