The Role of Arbuscular Mycorrhiza in Sustainable Environment and Agriculture

  • Xiongfei Guo
Part of the Soil Biology book series (SOILBIOL, volume 55)


Arbuscular mycorrhizal (AM) fungi are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbiotic associations with more than 90% of terrestrial higher plants. They play an important role in promoting plant growth, improving plant disease resistance and stress resistance, and maintaining the sustainable development of agricultural ecosystem. In addition, mycorrhizal fungi can degrade residual organic pollutants such as pesticides and herbicides in soil and also improve the health of heavy metal-contaminated soils and therefore play a major role in the bioremediation of polluted soil environment. The role of AM fungi in agricultural development and environmental remediation was explored from the perspectives of crop yield, water use efficiency, pest control, improvement of crop quality, remediation of agricultural nonpoint source pollution, remediation of refractory organic pollution, and remediation of heavy metal pollution. This paper focused on the latest advances and summarized the two important functions to test mycorrhizal fungi to promote agricultural production and environmental restoration and prospected the future development trend.


Soil pollution Soil health Environment restoration Symbiotic association 



I would like to thank Dr. Qiang-Sheng Wu for helpful edits. This work was financially supported by China West Normal University Doctoral Startup Research Project (412666).


  1. Ahemad M (2014) Growth suppression of legumes in pyriproxyfen stressed soils: a comparative study. Emirates J Food Agric 26(1):66–72CrossRefGoogle Scholar
  2. Andrade SALD, Jorge RA, Silveira APDD (2005) Cadmium effect on the association of jack-bean (Canavalia ensiformis) andarbuscular mycorrhizal fungi. Sci Agric (Piracicaba Braz) 62(4):389–394CrossRefGoogle Scholar
  3. Andrade SALD, Silveira APD, Jorge RA, Abreu MFD (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremediation 10(1):1–13PubMedCrossRefGoogle Scholar
  4. Andrade SAL, Gratão PL, Schiavinato MA, Silveira APD, Azevedo RA, Mazzafera P (2009) Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere 75(10):1363–1370PubMedCrossRefGoogle Scholar
  5. Andrade SALD, Silveira APD, Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica, seedlings to increasing Zn and Cu concentrations in soil. Sci Total Environ 408(22):5381–5391PubMedCrossRefGoogle Scholar
  6. Antunes PM, De Varennes A, Zhang T, Goss MJ (2006) The tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J Agron Crop Sci 192:373–378CrossRefGoogle Scholar
  7. Asrar AWA, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18(1):93–98PubMedCrossRefGoogle Scholar
  8. Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvaja M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109(5):1009–1017PubMedCrossRefGoogle Scholar
  9. Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141CrossRefGoogle Scholar
  10. Bbosa D, Banadda N, Mulamba P (2012) Bio-remediation and physicochemical interaction of experimentally contaminated soils in Uganda with diesel. Open Environ Eng J 5(1):44–49CrossRefGoogle Scholar
  11. Binet P, Jean-Marie P, Corinne L (1998) Biodegradation of a polyaromatic hydrocarbon in the rhizospere of mycorrhizal plants. Uppsala, Sweden, p 30Google Scholar
  12. Borowicz VA (2010) The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress. Pedobiologia 53(4):265–270CrossRefGoogle Scholar
  13. Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12(5):224–230PubMedCrossRefGoogle Scholar
  14. Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292(5821):335–337CrossRefGoogle Scholar
  15. Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13(6):693–698PubMedCrossRefGoogle Scholar
  16. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface water with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  17. Carpio LA, Davies FT, Arnold MA (2005) Arbuscular mucorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown Bush Morning Glory (Ipomoea carnea ssp. fistulosa) under high production temperature. J Am Soc Hort Sci 130(1):131–139CrossRefGoogle Scholar
  18. Castillo P, Nico AI, Azcón-Aguilar C, Del Río Rincón C, Calvet C, Jiménez-Díaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55(5):705–713CrossRefGoogle Scholar
  19. Chen XH, Zhao B (2009) Arbuscular mycorrhizal fungi mediated uptake of nutrient elements by Chinese milk vetch (Astragalus sinicus L.) grown in lanthanum spiked soil. Biol Fertil Soils 45(6):675CrossRefGoogle Scholar
  20. Chen BD, Li XL, Zhu YG (2005) Characters of metal adsorption by AM fungal mycelium. Mycosystema 24(2):283–291Google Scholar
  21. Chen BD, Zhu YG, Smith FA (2006) Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere 62(9):1464–1473PubMedCrossRefGoogle Scholar
  22. Chen B, Xiao X, Zhu YG, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379(2-3):226–234PubMedCrossRefGoogle Scholar
  23. Citterio S, Prato N, Fumagalli P (2005a) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29PubMedCrossRefGoogle Scholar
  24. Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005b) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59(1):21–29PubMedCrossRefGoogle Scholar
  25. Clemens S (2001) Molecular mechanisms of plant tolerance and homeostasis. Planta 212(4):475–486PubMedCrossRefGoogle Scholar
  26. Davies JFT, Puryear JD, Newton RJ, Egilla JN, Saraiva GJA (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25(11):2389–2407CrossRefGoogle Scholar
  27. Dodd JC, Dougall TA, Clapp JP (2002) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK-the reclamation platform created during the building of the Channel tunnel between France and the UK. Biodivers Conserv 11(1):39–58CrossRefGoogle Scholar
  28. Dong Y, Zhu YG, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155(1):174–181PubMedCrossRefGoogle Scholar
  29. Donnelly PK, Flecher JS (1995) PCB metabolism by ectomycorrhizal fungi. Bull Environ Contam Toxicol 54:507–513PubMedCrossRefPubMedCentralGoogle Scholar
  30. Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58(6):1473–1483PubMedCrossRefPubMedCentralGoogle Scholar
  31. Elsen A, Gervacio D, Swennen R, Waele DD (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18(5):251–256PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ernst W, Verkleij J, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41(3):229–248CrossRefGoogle Scholar
  33. Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza-the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology 3(1):1–8CrossRefGoogle Scholar
  34. Garg N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66(1):9–26CrossRefGoogle Scholar
  35. Garmendia I, Goicoechea N, Aguirreolea J (2005) Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza 15(5):345–356PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114CrossRefGoogle Scholar
  37. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530PubMedCrossRefPubMedCentralGoogle Scholar
  38. Giovanni N, Simon E (1998) Soil contamination by crude oil: impact on the mycorrhizosphere and on revegetation potential of forest tress. Environ Pollut 99(1):37–43CrossRefGoogle Scholar
  39. González J, Moreno AM, Pérez L, Larrea MT, Miranda A, Prieto P, Rosa CDL, Mosso A, Sánchez M, Álvarez A, Vázquez A (2002) Characterization of contaminated soils. Microbiological, physical and chemical studies [C]//man and soil at the third millennium. Proceedings International Congress of the European Society for Soil Conservation, pp 1829–1839.Google Scholar
  40. González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323PubMedCrossRefPubMedCentralGoogle Scholar
  41. Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229(5):1023–1034PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guda T, Labella C, Chan R, Hale R (2014) Quality of bone healing: perspectives and assessment techniques. Wound Repair Regen 22(S1):39–49PubMedCrossRefPubMedCentralGoogle Scholar
  43. He XL, Guo H, Wang Y (2013) Effects of soil moisture and AM fungi on the soil physicochemical property in the rhizosphere of Astragalus adsurgens. J Hebei Univ (Nat Sci Ed) 33(5):508–513, 519.Google Scholar
  44. Hernández-Montiel LG, Rueda-Puente EO, Cordoba-Matson MV, Holguín-Peña JR, Zulueta-Rodríguezc R (2013) Mutualistic interaction of rhizobacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Fusarium oxysporum in Carica papaya seedlings. Crop Prot 47:61–66CrossRefGoogle Scholar
  45. Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bożek M, Siuta A, Kuta E (2006) The rare, endemic zinc violets of Central Europe originate from Viola lutea, Huds. Plant Syst Evol 257(3/4):205–222CrossRefGoogle Scholar
  46. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Cheminform 68(1):139–146Google Scholar
  47. Hu JL, Lin XG, Wang JH, Shen WS, Wu S, Peng SP, Mao TT (2010) Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber fusarium wilt in greenhouse soils. Pedosphere 20(5):586–593CrossRefGoogle Scholar
  48. Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytoremediation 4(3):205–221CrossRefGoogle Scholar
  49. Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72(7):1092–1097PubMedCrossRefGoogle Scholar
  50. Jautris JE, Corinne L (2003) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie 23(5-6):495–502CrossRefGoogle Scholar
  51. Jia JL, Li GH, Zhong Y (2004) The relationship between abiotic factors and microbial activities of microbial eco-system in contaminated soil with petroleum hydrocarbons. Chin J Environ Sci 25(3):110–114. (in Chinese)Google Scholar
  52. Karasawa T, Hodge A, Fitter AH (2012) Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae, and its host plant Plantago lanceolata, in cooled soil. Plant Cell Environ 35(4):819–828PubMedCrossRefGoogle Scholar
  53. Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121(1):1–6CrossRefGoogle Scholar
  54. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268CrossRefGoogle Scholar
  55. Kjøller R, Rosendahl S (1997) The presence of the arbuscular mycorrhizal fungus Glomus intraradices influences enzymatic activities of the root pathogen Aphanomyces euteiches in pea roots. Mycorrhiza 6(6):487–491CrossRefGoogle Scholar
  56. Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148(1):163–168CrossRefGoogle Scholar
  57. Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67(5):624–640CrossRefGoogle Scholar
  58. Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  59. Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915PubMedCrossRefGoogle Scholar
  60. Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH (2010) Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. J Hazard Mater 181(1):497–507PubMedCrossRefGoogle Scholar
  61. Leyval C (2005) Effect of arbuscular mycorrhizal (AM) fungi on heavy metal and radionuclide transfer to plants. Biogeochem Trace Elem Rhizosphere 2005:419–429CrossRefGoogle Scholar
  62. Li M, Liu RJ, Christie P, Li XL (2005) Influence of three arbuscular mycorrhizal fungi and phosphorous on growth and nutrient status of taro. Commun Soil Sci Plant Anal 36(17–18):2383–2396CrossRefGoogle Scholar
  63. Lin AJ, Zhang XH, Wong MH, Ye ZH, Lou LQ, Wang YS, Zhu YG (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 9(6):473–481CrossRefGoogle Scholar
  64. Lins CEL, Cavalcante UMT, Sampaio EVSB, Messias AS, Maia LC (2006) Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a copper contaminated soil. Appl Soil Ecol 31(3):181–185CrossRefGoogle Scholar
  65. Lioussanne L, Jolicoeur M, St-Arnaud M (2009) Role of the modification in root exudation induced by arbuscular mycorrhizal colonization on the intraradical growth of Phytophthora nicotianae in tomato. Mycorrhiza 19(6):443–448PubMedCrossRefGoogle Scholar
  66. Liu RJ, Chen YL (2007) Mycorrhizology. Science Press, Beijing, pp 290–314Google Scholar
  67. Lu XP, Du Q, Yan Y, Ma K, Wang ZJ, Jiang Q (2012) Effects of soil rhizosphere microbial community and soil factors on arbuscular mycorrhizal fungi in different salinized soils. Acta Ecol Sin 32(13):4071–4078CrossRefGoogle Scholar
  68. Madejón E, Doronila AI, Sanchezpalacios JT, Madejón P, Baker AJM (2010) Arbuscular mycorrhizal fungi (AMF) and biosolids enhance the growth of a native Australian grass on sulphidic gold mine tailings. Restor Ecol 18(Supplement s1):175–183CrossRefGoogle Scholar
  69. Marques APGC, Oliveira RS, Samardjieva KA, Pissarra J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145(3):691–699PubMedCrossRefGoogle Scholar
  70. Marques APGC, Rangel AOSS, Castro PML (2011) Remediation of heavy metal contaminated soils: an overview of site remediation techniques. Crit Rev Environ Sci Technol 41(10):879–914CrossRefGoogle Scholar
  71. Meharg AA, Cairney JWG, Maguire N (1997a) Mineralisation of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34:2495–2504CrossRefGoogle Scholar
  72. Meharg AA, Dennis GR, Cairney JWG (1997b) Biotransformation of 2,4,6-trinitrotoluene (TNT) by ectomycorrhizal basidiomycetes. Chemosphere 35:513–521CrossRefGoogle Scholar
  73. Mei ZM, Yuan PF, Yin T, Lu J, Zhu G (2010) Discussion on technology to soil pollution remediation. Shanghai Geol 31:128–132Google Scholar
  74. Mena-Violante HG, Ocampojimenez O, Dendooven L, Martínez-Soto G, González-Castañeda J, Davies FTJ, Olalde-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16(4):261–267PubMedCrossRefGoogle Scholar
  75. Menendez A, Martinez A, Chiocchio V, Venedikian N, Ocampo JA, Godeas A (1999) Influence of the insecticide dimethoate on arbucular mycorrhizal colonisation and growth in soybean plants. Int Microbiol 2(1):43–45PubMedGoogle Scholar
  76. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653PubMedCrossRefGoogle Scholar
  77. Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178Google Scholar
  78. Nogueira MA, Magalhães GC, Cardoso EJBN (2004) Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J Plant Nutr 27(1):141–156CrossRefGoogle Scholar
  79. Nogueira MA, Nehls U, Hampp R, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant and Soil 298(1/2):273–284CrossRefGoogle Scholar
  80. Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EV (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol Ecol 85(1):37–50PubMedCrossRefGoogle Scholar
  81. Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides, (L.)]. J Hazard Mater 177(1):465–474PubMedCrossRefGoogle Scholar
  82. Qiu L, Bi YL, Jiang B, Wang ZG (2017) Effects of plastic film mulching and inoculation with AM fungi on soil physicochemical properties of maize rhizosphere in semiarid areas. Mycosystema 36(7):904–913Google Scholar
  83. Redon PO, Béguiristain T, Leyval C (2009) Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza 19(3):187–195PubMedCrossRefGoogle Scholar
  84. Requena N, Serrano E, Ocon A, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68(1):33–40PubMedCrossRefGoogle Scholar
  85. Rillig MC, Mummey DL (2010) Mycorrhizas and soil structure. New Phytol 171(1):41–53CrossRefGoogle Scholar
  86. Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil, increased Zn- uptake but no increase in P-uptake or yield. Plant Soil 250(2):225–239CrossRefGoogle Scholar
  87. Sarand I, Timone S, Nurmiaho-Lassia E, Koivula T, Haahtela K, Romantschuk M, Sen R (1998) Microbio biofilm and plasmid harboring degradative fluorescent pseudomonads in Scots pine mycorrhizo-spheres developed on petroleum contaminated soil. TEMS Microbiol Ecol 27(2):115–126CrossRefGoogle Scholar
  88. Shen H, Liu Y, Li XL, Chen BD, Feng G, Bai SL (2005) Influence of arbuscular mycorrhizal fungus (Glomus caledonium) on maize seedlings grown in copper contaminated soil. Plant Nutr Fertil Sci 11(2):199–204Google Scholar
  89. Słomka A, Kuta E, Szarek-Łukaszewska G, Godzik B, Kapusta P, Tylko G, Bothe H (2011) Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps. J Plant Physiol 168(11):1191–1199PubMedCrossRefGoogle Scholar
  90. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, LondonGoogle Scholar
  91. Solísdomínguez FA, Valentínvargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409(6):1009–1016CrossRefGoogle Scholar
  92. Sommer P, Burguera G, Wieshammer G, Strauss J (2002) Effects of mycorrizal associations on the metal uptake by willows from polluted soils: implication for soil remediation by phytoextraction. Mitt Osterr Bodenkd Gessel 66:113–119Google Scholar
  93. Souza LAD, Andrade SALD, Souza SCRD, Schiavinato MA (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34(2):523–531CrossRefGoogle Scholar
  94. Straker CJ, Weiersbye IM, Witkowski ETF (2007) Arbuscular mycorrhiza status of gold and uranium tailings and surrounding soils of South Africa’s deep level gold mines: I. Root colonization and spore levels. S Afr J Bot 73:218–225CrossRefGoogle Scholar
  95. Sudová R, Vosátka M (2007) Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant Soil 296(1/2):77–83CrossRefGoogle Scholar
  96. Sudová R, Pavlíkova D, Macek T, Vosátka M (2007) The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Appl Soil Ecol 35:163–173CrossRefGoogle Scholar
  97. Sudová R, Doubková P, Vosátka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40(1):19–29CrossRefGoogle Scholar
  98. Sun JQ, Liu RJ, Min LI (2012) Advances in the study of increasing plant stress resistance and mechanisms by arbuscular mycorrhizal fungi. Plant Physiol J 48(9):845–852Google Scholar
  99. Tao XZ, Tang CY, Wu P, Zhang CP, Wang ZK (2017) Distribution and food exposure risk assessment of heavy metals inmature rice on the coal mining area. Guizhou, Ecology & Environmental SciencesGoogle Scholar
  100. Torres-Barragán A, Zavale-Tamejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum) under field conditions. Mycorrhiza 6(4):253–257CrossRefGoogle Scholar
  101. Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65(1):74–81PubMedCrossRefGoogle Scholar
  102. Turnau K, Kottke I, Oberwinkler F (2010) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123(2):313–324CrossRefGoogle Scholar
  103. Tylka GL, Hussey RS, Roncadori RW (1991) Interactions of vesicular-arbuscular mycorrhizal fungi, phosphorus, and heterodera glycines on soybean. J Nematol 23(1):122–133PubMedPubMedCentralGoogle Scholar
  104. Usman ARA, Mohamed HM (2009) Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 76:893–899PubMedCrossRefGoogle Scholar
  105. Wang QR, Liu XM, Cui YS, Dong YT (2001) Concept and advances of applied bioremediation for organic pollutants in soil and water. Acta Ecol Sin 21(1):159–163Google Scholar
  106. Wang SG, Lin XG, Yin R, Hou YL (2003) Effects of di-n-butyl phthalate on mycorrhizal and non-mycorrhizal cowpea plants. Biol Plant 47(4):637–639CrossRefGoogle Scholar
  107. Wang FY, Lin XG, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269(1–2):225–232CrossRefGoogle Scholar
  108. Wong CC, Wu SC, Kuek C, Khan AG, Wong MH (2010) The role of mycorrhizae associated with vetiver grown in Pb-/Zn-contaminated soils: greenhouse study. Restor Ecol 15(1):60–67CrossRefGoogle Scholar
  109. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol (2090-4614):1–20.CrossRefGoogle Scholar
  110. Yang YR, Tan M, Sulpice R, Chen H, Tian S, Ban YH (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33(3):612–625CrossRefGoogle Scholar
  111. Zeng SC, Su ZY, Chen BG, Yu YC (2005) Effects of VA mycorrhiza (VAM) on nutrient acquisition and transmission of plants. J Southw Forestry College 25(1):72–75Google Scholar
  112. Zhang XH, Guo YL, Lin AJ, Huang YZ (2008a) Effects of arbuscular mycorrhizal fungi colonization on toxicity of soil contaminated by heavy metals to Vicia faba. Chin J Environ Eng 2(2):274–278Google Scholar
  113. Zhang LD, Zhang JL, Christie P, Li XL (2008b) Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biol Fertil Soils 45(2):205–211CrossRefGoogle Scholar
  114. Zhang GQ, Wang XJ, Sun XW (2009) Interaction of abuscular mycorrhizal fungi with plant intraspecific competition. Pratacultural Science, 2009Google Scholar
  115. Zhang HH, Tang M, Chen H, Zheng CL, Niu ZC (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46(5):306–311CrossRefGoogle Scholar
  116. Zhang GY, Raza W, Wang XH, Ran W, Shen QR (2012) Systemic modification of cotton root exudates induced by arbuscular mycorrhizal fungi and Bacillus vallismortis HJ-5 and their effects on Verticillium wilt disease. Appl Soil Ecol 61:85–91CrossRefGoogle Scholar
  117. Zhang ZF, Zhang JC, Huang YQ (2014) Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New Forests 45(4):545–556CrossRefGoogle Scholar
  118. Zheng S, Wang C, Shen Z, Quan Y, Liu X (2015) Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Int J Phytoremediation 17(1–6):208–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiongfei Guo
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringChina West Normal UniversityNanchongChina
  2. 2.College of Resources and Environmental SciencesSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations