Advertisement

Harnack and Pointwise Estimates for Degenerate or Singular Parabolic Equations

  • Fatma Gamze Düzgün
  • Sunra MosconiEmail author
  • Vincenzo Vespri
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 33)

Abstract

In this paper we give both a historical and technical overview of the theory of Harnack inequalities for nonlinear parabolic equations in divergence form. We start reviewing the elliptic case with some of its variants and geometrical consequences. The linear parabolic Harnack inequality of Moser is discussed extensively, together with its link to two-sided kernel estimates and to the Li-Yau differential Harnack inequality. Then we overview the more recent developments of the theory for nonlinear degenerate/singular equations, highlighting the differences with the quadratic case and introducing the so-called intrinsic Harnack inequalities. Finally, we provide complete proofs of the Harnack inequalities in some paramount case to introduce the reader to the expansion of positivity method.

Keywords

Degenerate and singular parabolic equations Pointwise estimates Harnack estimates Weak solutions Intrinsic geometry 

2010 Mathematics Subject Classification

35K67 35K92 35K20 

Notes

Acknowledgements

We would like to thank an anonymous referee for helping us improve the quality of a first version of the paper. S. Mosconi and V. Vespri are members of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica). F. G. Düzgün is partially funded by Hacettepe University BAP through project FBI-2017-16260; S. Mosconi is partially funded by the grant PdR 2016–2018 - linea di intervento 2: “Metodi Variazionali ed Equazioni Differenziali” of the University of Catania.

References

  1. 1.
    D.G. Aronson, Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)MathSciNetCrossRefGoogle Scholar
  3. 3.
    G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium. Prikl. Mat. Mech. 16, 67–78 (1952)MathSciNetGoogle Scholar
  4. 4.
    G.I. Barenblatt, A.S. Monin, Flying sources and the microstructure of the ocean: a mathematical theory. Uspekhi Mat. Nauk. 37, 125–126 (1982)MathSciNetGoogle Scholar
  5. 5.
    G.I. Barenblatt, V.M. Entov, V.M. Rizhnik, Motion of Fluids and Gases in Natural Strata (Nedra, Moscow, 1984)Google Scholar
  6. 6.
    M. Barlow, M. Murugan, Stability of the elliptic Harnack inequality. Ann. Math. 187, 777–823 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Bögelein, F. Duzaar, G. Mingione, The regularity of general parabolic systems with degenerate diffusion. Mem. Am. Math. Soc. 221(1041), x+143 pp. (2013)Google Scholar
  8. 8.
    V. Bögelein, F. Ragnedda, S. Vernier Piro, V. Vespri, Moser-Nash kernel estimates for degenerate parabolic equations. J. Funct. Anal. 272, 2956–2986 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. Bombieri, E. Giusti, Harnack’s inequality for elliptic differential equations on minimal surfaces. Invent. Math. 15, 24–46 (1972)MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Bombieri, E. De Giorgi, M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. Arch. Rat. Mech. Anal. 32, 255–267 (1965)MathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Bonforte, J.L. Vazquez, Positivity, local smoothing and Harnack inequalities for very fast diffusion equations. Adv. Math. 223, 529–578 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Bonforte, R.G. Iagar, J.L. Vazquez, Local smoothing effects, positivity, and Harnack inequalities for the fast p-Laplacian equation. Adv. Math. 224, 2151–2215 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M.V. Calahorrano Recalde, V. Vespri, Harnack estimates at large: sharp pointwise estimates for nonnegative solutions to a class of singular parabolic equations. Nonlinear Anal. 121, 153–163 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M.V. Calahorrano Recalde, V. Vespri, Backward pointwise estimates for nonnegative solutions to a class of singular parabolic equations. Nonlinear Anal. 144, 194–203 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Y.Z. Chen, E. DiBenedetto, On the local behaviour of solutions of singular parabolic equations. Arch. Ration. Mech. Anal. 103, 319–346 (1988)CrossRefGoogle Scholar
  16. 16.
    S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T.H. Colding, W.P. Minicozzi II, Harmonic functions on manifolds. Ann. Math. 146, 725–747 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3, 25–43 (1957)MathSciNetzbMATHGoogle Scholar
  19. 19.
    E. DiBenedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Sc. Norm. Sup. Pisa Cl. Sc. Serie IV 13, 487–535 (1986)MathSciNetzbMATHGoogle Scholar
  20. 20.
    E. DiBenedetto, Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations. Arch. Ration. Mech. Anal. 100, 129–147 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. DiBenedetto, Degenerate Parabolic Equations. Universitext (Springer, New York, 1993)CrossRefGoogle Scholar
  22. 22.
    E. DiBenedetto, A. Friedman, Hölder estimates for non-linear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)MathSciNetzbMATHGoogle Scholar
  23. 23.
    E. DiBenedetto, U. Gianazza, Some properties of De Giorgi classes. Rend. Istit. Mat. Univ. Trieste 48, 245–260 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    E. DiBenedetto, Y.C. Kwong, Intrinsic Harnack estimates and extinction profile for certain singular parabolic equations. Trans. Am. Math. Soc. 330, 783–811 (1992)CrossRefGoogle Scholar
  25. 25.
    E. DiBenedetto, N.S. Trudinger, Harnack inequalities for quasi-minima of Variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 295–308 (1984)MathSciNetCrossRefGoogle Scholar
  26. 26.
    E. DiBenedetto, U. Gianazza, V. Vespri, Harnack Estimates for quasi-linear degenerate parabolic differential equation. Acta Math. 200, 181–209 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    E. DiBenedetto, U. Gianazza, V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9, 385–422 (2010)Google Scholar
  28. 28.
    E. DiBenedetto, U. Gianazza, V. Vespri, Harnack estimates and Hölder continuity for solutions to singular parabolic partial differential equations in the sub-critical range. Manuscripta Math. 131, 231–245 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    E. DiBenedetto, U. Gianazza, V. Vespri, A new approach to the expansion of positivity set of non-negative solutions to certain singular parabolic partial differential equations. Proc. Am. Math. Soc. 138, 3521–3529 (2010)MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. DiBenedetto, U. Gianazza, V. Vespri, Liouville-type theorems for certain degenerate and singular parabolic equations. C. R. Acad. Sci. Paris Ser. I 348, 873–877 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    E. DiBenedetto, U. Gianazza, V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics (Springer, New York/Heidelberg, 2012)Google Scholar
  32. 32.
    F. Duzaar, G. Mingione, K. Steffen, Parabolic systems with polynomial growth and regularity. Mem. Am. Math. Soc. 214(1005), x+118 pp. (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    E.B. Fabes, N. Garofalo, Parabolic B.M.O. and Harnack’s inequality. Proc. Am. Math. Soc. 50, 63–69 (1985)Google Scholar
  34. 34.
    E.B. Fabes, D.W. Stroock, A new proof of Moser’s parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal. 96, 327–338 (1986)CrossRefGoogle Scholar
  35. 35.
    A. Farina, A Bernstein-type result for the minimal surface equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14, 1231–1237 (2015)MathSciNetzbMATHGoogle Scholar
  36. 36.
    E. Ferretti, M.V. Safonov, Growth theorems and Harnack inequality for second order parabolic equations, in Harmonic Analysis and Boundary Value Problems (Fayetteville, AR, 2000). Contemporary Mathematics, vol. 277 (American Mathematical Society, Providence, 2001), pp. 87–112Google Scholar
  37. 37.
    S. Fornaro, M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations. Adv. Differ. Equ. 13, 139–168 (2008)MathSciNetzbMATHGoogle Scholar
  38. 38.
    S. Fornaro, V. Vespri, Harnack estimates for non negative weak solutions of singular parabolic equations satisfying the comparison principle. Manuscrpita Math. 141, 85–103 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Fornaro, M. Sosio, V. Vespri, Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete Contin. Dyn. Syst. Ser. A 35, 5909–5926 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    U. Gianazza, V. Vespri, Parabolic De Giorgi classes of order p and the Harnack inequality. Calc. Var. Partial Differ. Equ. 26, 379–399 (2006)MathSciNetCrossRefGoogle Scholar
  41. 41.
    U. Gianazza, V. Vespri, A Harnack inequality for solutions of doubly nonlinear parabolic equations. J. Appl. Funct. Anal. 1, 271–284 (2006)MathSciNetzbMATHGoogle Scholar
  42. 42.
    U. Gianazza, M. Surnachev, V. Vespri, On a new proof of Hölder continuity of solutions of p-Laplace type parabolic equations. Adv. Calc. Var. 3, 263–278 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    E. Giusti, Direct Methods in the Calculus of Variations (World Scientific Publishing Co., Inc., River Edge, 2003)CrossRefGoogle Scholar
  44. 44.
    A. Grigor’yan, The heat equation on non-compact Riemannian manifolds. Matem. Sbornik 182, 55–87 (1991). Engl. transl. Math. USSR Sb. 72, 47–77 (1992)Google Scholar
  45. 45.
    J. Hadamard, Extension à l’ équation de la chaleur d’ un theoreme de A. Harnack. Rend. Circ. Mat. Palermo 3, 337–346 (1954)CrossRefGoogle Scholar
  46. 46.
    R.S. Hamilton, A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1, 113–126 (1993)MathSciNetCrossRefGoogle Scholar
  47. 47.
    C.G.A. von Harnack, Die Grundlagen der Theorie des logaritmischen Potentiales und der eindeutigen Potentialfunktion in der Ebene (Teubner, Leipzig, 1887)zbMATHGoogle Scholar
  48. 48.
    M.A. Herrero, M. Pierre, The Cauchy problem for u t =  Δ(u m) when 0 < m < 1. Trans. Am. Math. Soc. 291, 145–158 (1985)MathSciNetzbMATHGoogle Scholar
  49. 49.
    C. Imbert, L. Silvestre, An introduction to fully nonlinear parabolic equations, in An Introduction to the Kḧler-Ricci Flow. Lecture Notes in Mathematics vol. 2086 (Springer, Cham, 2013), pp. 7–88Google Scholar
  50. 50.
    A.V. Ivanov, Regularity for doubly nonlinear parabolic equations. J. Math. Sci. 83, 22 (1997)MathSciNetCrossRefGoogle Scholar
  51. 51.
    F. John, L. Nirenberg, On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)MathSciNetCrossRefGoogle Scholar
  52. 52.
    A.S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations. Russ. Math. Surv. 42, 169–222 (1987)CrossRefGoogle Scholar
  53. 53.
    S. Kamin, J.L. Vázquez, Fundamental solutions and asymptotic behavior for the p-Laplacian equation. Rev. Mat. Iberoamericana 4, 339–354 (1988)MathSciNetCrossRefGoogle Scholar
  54. 54.
    M. Kassmann, Harnack inequalities: an introduction. Bound. Value Probl. 2007, 81415 (2007)MathSciNetCrossRefGoogle Scholar
  55. 55.
    J. Kinnunen, Regularity for a doubly nonlinear parabolic equation, in Geometric Aspects of Partial Differential Equations. RIMS Kôkyûroku, vol. 1842 (Kyoto University, 2013), pp. 40–60Google Scholar
  56. 56.
    J. Kinnunen, T. Kuusi, Local behavior of solutions to doubly nonlinear parabolic equations. Math. Ann. 337, 705–728 (2007)MathSciNetCrossRefGoogle Scholar
  57. 57.
    N.V. Krylov, Fully nonlinear second order elliptic equations: recent development. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 4 25, 569–595 (1997)MathSciNetzbMATHGoogle Scholar
  58. 58.
    N.V. Krylov, M.V. Safonov, A certain property of solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175 (1980) (in Russian). Translated in Math. of the USSR Izv. 16, 151–164 (1981)Google Scholar
  59. 59.
    B.L. Kotschwar, Hamilton’s gradient estimate for the heat kernel on complete manifolds. Proc. Am. Math. Soc. 135, 3013–3019 (2007)MathSciNetCrossRefGoogle Scholar
  60. 60.
    M. Küntz, P. Lavallée, Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J. Phys. D: Appl. Phys. 34, 2547–2554 (2001)CrossRefGoogle Scholar
  61. 61.
    T. Kuusi, G. Mingione, Nonlinear potential theory of elliptic systems. Nonlinear Anal. 138, 277–299 (2016)MathSciNetCrossRefGoogle Scholar
  62. 62.
    O.A. Ladyzenskaya, N.A. Solonnikov, N.N. Uraltzeva, Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, RI, 1967)Google Scholar
  63. 63.
    E.M. Landis, Second Order Equations of Elliptic and Parabolic Type. Translations of Mathematical Monographs, vol. 171 (American Mathematical Society, Providence, RI, 1998; Nauka, Moscow, 1971)Google Scholar
  64. 64.
    P. Li, Harmonic functions on complete Riemannian manifolds, in Handbook of Geometric Analysis, vol. I. Advanced Lectures in Mathematics, vol. 7 (Higher Education Press and International Press, Beijing/Boston, 2008), pp. 195–227Google Scholar
  65. 65.
    P. Li, S.T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  66. 66.
    F. Lin, Q.S. Zhang, On ancient solutions of the heat equation. Arxiv preprint. arXiv:1712.04091v2Google Scholar
  67. 67.
    D. Maldonado, On the elliptic Harnack inequality. Proc. Am. Math. Soc. 145, 3981–3987 (2017)MathSciNetCrossRefGoogle Scholar
  68. 68.
    J.H. Michael, L.M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of \(\mathbb {R}^{N}\). Commun. Pure Appl. Math. 26, 361–379 (1973)Google Scholar
  69. 69.
    G. Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations. Appl. Math. 51, 355–426 (2006)MathSciNetCrossRefGoogle Scholar
  70. 70.
    J. Moser, On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14, 577–591 (1961)MathSciNetCrossRefGoogle Scholar
  71. 71.
    J. Moser, A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)MathSciNetCrossRefGoogle Scholar
  72. 72.
    J. Moser, On a pointwise estimate for parabolic differential equations. Commun. Pure Appl. Math. 24, 727–740 (1971)MathSciNetCrossRefGoogle Scholar
  73. 73.
    R. Müller, Differential Harnack Inequalities and the Ricci Flow. EMS Series of Lectures in Mathematics (European Mathematical Society (EMS), Zürich, 2006)Google Scholar
  74. 74.
    J. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)MathSciNetCrossRefGoogle Scholar
  75. 75.
    B. Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico. Rend. Sem. Mat. Univ. Padova 23, 422–434 (1954)MathSciNetzbMATHGoogle Scholar
  76. 76.
    M.M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)CrossRefGoogle Scholar
  77. 77.
    F. Ragnedda, S. Vernier Piro, V. Vespri, Pointwise estimates for the fundamental solutions of a class of singular parabolic problems. J. Anal. Math. 121, 235–253 (2013)MathSciNetCrossRefGoogle Scholar
  78. 78.
    L. Saloff-Coste, A note on Poincare, Sobolev and Harnack inequalities. Duke Math. J. 65, 27–38 (1992)zbMATHGoogle Scholar
  79. 79.
    L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)MathSciNetCrossRefGoogle Scholar
  80. 80.
    L. Saloff-Coste, Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Notes Series, vol. 289 (Cambridge University Press, Cambridge, 2001)Google Scholar
  81. 81.
    J. Serrin, Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)MathSciNetCrossRefGoogle Scholar
  82. 82.
    R.E. Showalter, N.J. Walkington, Diffusion of fluid in a fissured medium with micro-stricture. SIAM J. Mat. Anal. 22, 1702–1722 (1991)CrossRefGoogle Scholar
  83. 83.
    Ph. Souplet, Q.S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38, 1045–1053 (2006)MathSciNetCrossRefGoogle Scholar
  84. 84.
    A.F. Tedeev, V. Vespri, Optimal behavior of the support of the solutions to a class of degenerate parabolic systems. Interfaces Free Bound. 17, 143–156 (2015)MathSciNetCrossRefGoogle Scholar
  85. 85.
    E.V. Teixeira, J.M. Urbano, An intrinsic Liouville theorem for degenerate parabolic equations. Arch. Math. 102, 483–487 (2014)MathSciNetCrossRefGoogle Scholar
  86. 86.
    N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic partial differential equations. Commun. Pure Appl. Math. 20, 721–747 (1967)CrossRefGoogle Scholar
  87. 87.
    N.S. Trudinger, Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21, 205–226 (1968)MathSciNetCrossRefGoogle Scholar
  88. 88.
    N.S. Trudinger, A new proof of the interior gradient bound for the minimal surface equation in N dimensions. Proc. Nat. Acad. Sci. U.S.A. 69, 821–823 (1972)MathSciNetCrossRefGoogle Scholar
  89. 89.
    K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math. 138, 219–240 (1977)MathSciNetCrossRefGoogle Scholar
  90. 90.
    J.M. Urbano, The Method of Intrinsic Scaling. Lecture Notes in Mathematics, vol. 1930 (Springer, Berlin, 2008)Google Scholar
  91. 91.
    J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and its Applications, vol. 33 (Oxford University Press, Oxford, 2006)Google Scholar
  92. 92.
    J.L. Vázquez, The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs (Oxford Science Publications, Clarendon Press, Oxford, 2012)Google Scholar
  93. 93.
    D.V. Widder, The role of the Appell transformation in the theory of heat conduction. Trans. Am. Math. Soc. 109, 121–134 (1963)MathSciNetCrossRefGoogle Scholar
  94. 94.
    S.T. Yau, Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fatma Gamze Düzgün
    • 1
  • Sunra Mosconi
    • 2
    Email author
  • Vincenzo Vespri
    • 3
  1. 1.Department of MathematicsHacettepe UniversityAnkaraTurkey
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di CataniaCataniaItaly
  3. 3.Dipartimento di Matematica e Informatica “U. Dini”Università di FirenzeFirenzeItaly

Personalised recommendations