Advertisement

Monotonicity Formulas for Static Metrics with Non-zero Cosmological Constant

  • Stefano Borghini
  • Lorenzo MazzieriEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 33)

Abstract

In this paper we adopt the approach presented in Agostiniani and Mazzieri (J Math Pures Appl 104:561–586, 2015; Commun Math Phys 355:261–301, 2017) to study non-singular vacuum static space-times with non-zero cosmological constant. We introduce new integral quantities, and under suitable assumptions we prove their monotonicity along the level set flow of the static potential. We then show how to use these properties to derive a number of sharp geometric and analytic inequalities, whose equality case can be used to characterize the rotational symmetry of the underlying static solutions. As a consequence, we are able to prove some new uniqueness statements for the de Sitter and the anti-de Sitter metrics. In particular, we show that the de Sitter solution has the least possible surface gravity among three-dimensional static metrics with connected boundary and positive cosmological constant.

Keywords

Static metrics Splitting theorem (Anti)-de Sitter solution Overdetermined boundary value problems 

MSC (2010)

35B06 53C21 83C57 35N25 

Notes

Acknowledgements

The authors would like to thank P. T. Chruściel for his interest in our work and for stimulating discussions during the preparation of the manuscript. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and are partially founded by the GNAMPA Project “Principi di fattorizzazione, formule di monotonia e disuguaglianze geometriche”.

References

  1. 1.
    V. Agostiniani, L. Mazzieri, Riemannian aspects of potential theory. J. Math. Pures Appl. 104(3), 561–586 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. Agostiniani, L. Mazzieri, Monotonicity formulas in potential theory (2016). https://arxiv.org/abs/1606.02489.
  3. 3.
    V. Agostiniani, L. Mazzieri, Comparing monotonicity formulas for electrostatic potentials and static metrics. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28(1), 7–20 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. Agostiniani, L. Mazzieri, On the geometry of the level sets of bounded static potentials. Commun. Math. Phys. 355(1), 261–301 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Agostiniani, S. Borghini, L. Mazzieri, On the torsion problem for domains with multiple boundary components (in preparation)Google Scholar
  6. 6.
    V. Agostiniani, M. Fogagnolo, L. Mazzieri, Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature. arXiv preprint arXiv:1812.05022 (2018)Google Scholar
  7. 7.
    L. Ambrosio, G. Da Prato, A. Mennucci, Introduction to measure theory and integration, in Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 10 (Edizioni della Normale, Pisa 2011)Google Scholar
  8. 8.
    L. Ambrozio, On static three-manifolds with positive scalar curvature. J. Differ. Geom. 107(1), 1–45 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Borghini, L. Mazzieri, On the mass of static metrics with positive cosmological constant-II. 2017. ArXiv Preprint Server https://arxiv.org/abs/1711.07024
  10. 10.
    S. Borghini, L. Mazzieri, On the mass of static metrics with positive cosmological constant: I. Classical and Quantum Gravity 35(12), 125001 (2018)Google Scholar
  11. 11.
    S. Borghini, G. Mascellani, L. Mazzieri, Some sphere theorems in linear potential theory. Trans. Am. Math. Soc. (2019).  https://doi.org/10.1030/tran/7637
  12. 12.
    W. Boucher, G.W. Gibbons, G.T. Horowitz, Uniqueness theorem for anti-de Sitter spacetime. Phys. Rev. D (3) 30(12), 2447–2451 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    P.T. Chruściel, On analyticity of static vacuum metrics at non-degenerate horizons. Acta Phys. Polon. B 36(1), 17–26 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    P.T. Chruściel, Remarks on rigidity of the de sitter metric. http://homepage.univie.ac.at/piotr.chrusciel/papers/deSitter/deSitter2.pdf
  15. 15.
    P.T. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. De Giorgi, Complementi alla teoria della misura (n − 1)-dimensionale in uno spazio n-dimensionale, in Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960–1961 (Editrice Tecnico Scientifica, Pisa, 1961)Google Scholar
  17. 17.
    E. De Giorgi, Frontiere Orientate di Misura Minima (Editr. Tecnico scientifica, 1961)Google Scholar
  18. 18.
    W. De Sitter, On the curvature of space. Proc. Kon. Ned. Akad. Wet 20, 229–243 (1917)Google Scholar
  19. 19.
    H. Federer, The Gauss–Green theorem. Trans. Am. Math. Soc. 58, 44–76 (1945)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Federer, A note on the Gauss-Green theorem. Proc. Am. Math. Soc. 9, 447–451 (1958)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Federer, Geometric measure theory, in Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York, 1969)Google Scholar
  22. 22.
    M. Fogagnolo, L. Mazzieri, A. Pinamonti, Geometric aspects of p-capacitary potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire. https://doi.org/10.1016/j.anihpc.2018.11.005
  23. 23.
    G.W. Gibbons, S.A. Hartnoll, C.N. Pope, Bohm and Einstein-Sasaki metrics, black holes, and cosmological event horizons. Phys. Rev. D (3) 67(8), 084024 (2003)Google Scholar
  24. 24.
    O. Hijazi, S. Montiel, Uniqueness of the AdS spacetime among static vacua with prescribed null infinity. Adv. Theor. Math. Phys. 18(1), 177–203 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    O. Hijazi, S. Montiel, S. Raulot, Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant. Ann. Glob. Anal. Geom. 47(2), 167–178 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Kottler, Über die physikalischen grundlagen der Einsteinschen gravitationstheorie. Ann. Phys. (Berlin) 361(14), 401–462 (1918)Google Scholar
  27. 27.
    S.G. Krantz, H.R. Parks, A primer of real analytic functions, in Birkhäuser Advanced Texts: Basler Lehrbücher, 2nd edn. [Birkhäuser Advanced Texts: Basel Textbooks] (Birkhäuser, Boston, 2002)Google Scholar
  28. 28.
    J. Lafontaine, Sur la géométrie d’une généralisation de l’équation différentielle d’Obata. J. Math. Pures Appl. (9) 62(1), 63–72 (1983)Google Scholar
  29. 29.
    L. Lindblom, Static uniform-density stars must be spherical in general relativity. J. Math. Phys. 29(2), 436–439 (1988)MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Łojasiewicz, Introduction to Complex Analytic Geometry (Birkhäuser, Basel, 1991). Translated from the Polish by Maciej KlimekGoogle Scholar
  31. 31.
    H. Nariai, On a new cosmological solution of Einstein’s fieldequations of gravitation. Sci. Rep. Tohoku Univ. Ser. I 35(1), 62–67 (1951)MathSciNetzbMATHGoogle Scholar
  32. 32.
    M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Penrose, Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66–68 (1963)MathSciNetCrossRefGoogle Scholar
  34. 34.
    J. Qing, On the uniqueness of AdS space-time in higher dimensions. Ann. Henri Poincaré 5(2), 245–260 (2004)MathSciNetCrossRefGoogle Scholar
  35. 35.
    K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory. Gen. Relativ. Gravit. 35(5), 951–959 (2003). Translated from the original German article [Sitzungsber. Königl. Preussich. Akad. Wiss. Berlin Phys. Math. Kl. 1916, 189–196] by S. Antoci and A. LoingerGoogle Scholar
  36. 36.
    J. Serrin, Isolated singularities of solutions of quasi-linear equations. Acta Math. 113, 219–240 (1965)MathSciNetCrossRefGoogle Scholar
  37. 37.
    J. Souček, V. Souček, Morse-Sard theorem for real-analytic functions. Comment. Math. Univ. Carol. 13, 45–51 (1972)MathSciNetzbMATHGoogle Scholar
  38. 38.
    X. Wang, The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)MathSciNetCrossRefGoogle Scholar
  39. 39.
    X. Wang, On the uniqueness of the AdS spacetime. Acta Math. Sin. (Engl. Ser.) 21(4), 917–922 (2005)Google Scholar
  40. 40.
    H.F. Weinberger, Remark on the preceding paper of Serrin. Arch. Ration. Mech. Anal. 43, 319–320 (1971)MathSciNetCrossRefGoogle Scholar
  41. 41.
    H.M. Zum Hagen, On the analyticity of static vacuum solutions of Einstein’s equations. Proc. Camb. Philos. Soc. 67, 415–421 (1970)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Università degli Studi di TrentoPovoItaly

Personalised recommendations