Advertisement

Singularities in the Calculus of Variations

  • Connor MooneyEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 33)

Abstract

In these notes we discuss the regularity of minimizers of convex functionals in the calculus of variations, with a focus on the vectorial case. We first treat the theory of linear elliptic systems and give some consequences. Then we discuss important singular solutions of De Giorgi, Giusti-Miranda, and Maz’ya to linear elliptic systems, and of Sverak-Yan in the nonlinear case. At the end we discuss the parabolic theory.

Keywords

Elliptic and parabolic systems Singular minimizers Blowup 

References

  1. 1.
    E. De Giorgi, Sulla differenziabilità e l’analicità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino cl. Sci. Fis. Fat. Natur. 3, 25–43 (1957)zbMATHGoogle Scholar
  2. 2.
    I. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. UMI 4, 135–137 (1968)MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (Princeton University Press, Princeton, 1983)zbMATHGoogle Scholar
  4. 4.
    E. Giusti, M. Miranda, Un esempio di soluzione discontinua per un problem di minimo relativo ad un integrale regolare del calcolo delle variazioni. Boll. Un. Mat. Ital. 2, 1–8 (1968)zbMATHGoogle Scholar
  5. 5.
    C. Mooney, Finite time blowup for parabolic systems in two dimensions. Arch. Ration. Mech. Anal. 223, 1039–1055 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Mooney, O. Savin, Some singular minimizers in low dimensions in the calculus of variations. Arch. Ration. Mech. Anal. 221, 1–22 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.B. Morrey, Multiple Integrals in the Calculus of Variations (Springer, Heidelberg, 1966)zbMATHGoogle Scholar
  8. 8.
    J. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions of regularity. Theory of Non Linear Operators, Abhandlungen Akad. der Wissen. der DDR (1997), Proceedings of a Summer School held in Berlin (1975)Google Scholar
  10. 10.
    J. Nečas, V. Šverák, On regularity of solutions of nonlinear parabolic systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 18, 1–11 (1991)Google Scholar
  11. 11.
    J. Stará, O. John, J. Malý, Counterexample to the regularity of weak solution of the quasilinear parabolic system. Comment. Math. Univ. Carol. 27, 123–136 (1986)MathSciNetzbMATHGoogle Scholar
  12. 12.
    V. Šverák, X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions. Cal. Var. PDE 10(3), 213–221 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. Šverák, X. Yan, Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA 99(24), 15,269–15,276 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math. 138, 219–240 (1977)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.UC IrvineIrvineUSA

Personalised recommendations