Getting Acquainted with the Fractional Laplacian

  • Nicola Abatangelo
  • Enrico ValdinociEmail author
Part of the Springer INdAM Series book series (SINDAMS, volume 33)


These are the handouts of an undergraduate minicourse at the Università di Bari (see Fig. 1), in the context of the 2017 INdAM Intensive Period “Contemporary Research in elliptic PDEs and related topics”. Without any intention to serve as a throughout epitome to the subject, we hope that these notes can be of some help for a very initial introduction to a fascinating field of classical and modern research.


Fractional calculus Functional Analysis Applications 



It is a great pleasure to thank the Università degli Studi di Bari for its very warm hospitality and the Istituto Nazionale di Alta Matematica for the strong financial and administrative support which made this minicourse possible. And of course special thanks go to all the participants, for their patience in attending the course, their competence, empathy and contagious enthusiasm. This work was supported by INdAM and ARC Discovery Project N.E.W. Nonlocal Equations at Work.


  1. 1.
    N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. 35(12), 5555–5607 (2015). MR3393247 MathSciNetzbMATHGoogle Scholar
  2. 2.
    N. Abatangelo, L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(2), 439–467 (2017). MR3610940 MathSciNetzbMATHGoogle Scholar
  3. 3.
    N. Abatangelo, S. Jarohs, A. Saldaña, Positive powers of the Laplacian: from hypersingular integrals to boundary value problems. Commun. Pure Appl. Anal. 17(3), 899–922 (2018). MR3809107 MathSciNetzbMATHGoogle Scholar
  4. 4.
    N. Abatangelo, S. Jarohs, A. Saldaña, Green function and Martin kernel for higher-order fractional Laplacians in balls. Nonlinear Anal. 175, 173–190 (2018). MR3830727 MathSciNetzbMATHGoogle Scholar
  5. 5.
    N. Abatangelo, S. Jarohs, A. Saldaña, On the loss of maximum principles for higher-order fractional Laplacians. Proc. Am. Math. Soc. 146(11), 4823–4835 (2018). MR3856149 MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. Affili, S. Dipierro, E. Valdinoci, Decay estimates in time for classical and anomalous diffusion. arXiv e-prints (2018), available at 1812.09451Google Scholar
  7. 7.
    M. Allen, L. Caffarelli, A. Vasseur, A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221(2), 603–630 (2016). MR3488533 MathSciNetzbMATHGoogle Scholar
  8. 8.
    F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J.J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, 2010); Real Sociedad Matemática Española, Madrid, 2010. MR2722295 Google Scholar
  9. 9.
    D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics, 2nd edn., vol. 116 (Cambridge University Press, Cambridge, 2009). MR2512800
  10. 10.
    V.E. Arkhincheev, É.M. Baskin, Anomalous diffusion and drift in a comb model of percolation clusters. J. Exp. Theor. Phys. 73, 161–165 (1991)Google Scholar
  11. 11.
    A.V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them. Pac. J. Math. 10, 419–437 (1960). MR0115096 MathSciNetGoogle Scholar
  12. 12.
    R. Bañuelos, K. Bogdan, Lévy processes and Fourier multipliers. J. Funct. Anal. 250(1), 197–213 (2007). MR2345912 MathSciNetzbMATHGoogle Scholar
  13. 13.
    B. Barrios, I. Peral, F. Soria, E. Valdinoci, A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213(2), 629–650 (2014). MR3211862 MathSciNetzbMATHGoogle Scholar
  14. 14.
    R.F. Bass, D.A. Levin, Harnack inequalities for jump processes. Potential Anal. 17(4), 375–388 (2002). MR1918242 MathSciNetGoogle Scholar
  15. 15.
    A. Bendikov, Asymptotic formulas for symmetric stable semigroups. Expo. Math. 12(4), 381–384 (1994). MR1297844
  16. 16.
    J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121 (Cambridge University Press, Cambridge, 1996). MR1406564
  17. 17.
    R.M. Blumenthal, R.K. Getoor, Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960). MR0119247 MathSciNetzbMATHGoogle Scholar
  18. 18.
    K. Bogdan, T. Byczkowski, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Stud. Math. 133(1), 53–92 (1999). MR1671973
  19. 19.
    K. Bogdan, T. Żak, On Kelvin transformation. J. Theor. Probab. 19(1), 89–120 (2006). MR2256481
  20. 20.
    M. Bonforte, A. Figalli, J.L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDE 11(4), 945–982 (2018). MR3749373 MathSciNetzbMATHGoogle Scholar
  21. 21.
    L. Brasco, S. Mosconi, M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55(2), 23, 32 (2016). MR3461371
  22. 22.
    C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15(2), 657–699 (2016). MR3461641
  23. 23.
    C. Bucur, Local density of Caputo-stationary functions in the space of smooth functions. ESAIM Control Optim. Calc. Var. 23(4), 1361–1380 (2017). MR3716924 MathSciNetzbMATHGoogle Scholar
  24. 24.
    C. Bucur, E. Valdinoci, Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20 (Springer, Cham, 2016); Unione Matematica Italiana, Bologna. MR3469920
  25. 25.
    C. Bucur, L. Lombardini, E. Valdinoci, Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(3), 655–703 (2019)MathSciNetzbMATHGoogle Scholar
  26. 26.
    X. Cabré, M. Cozzi, A gradient estimate for nonlocal minimal graphs. Duke Math. J. 168(5), 775–848 (2019)MathSciNetzbMATHGoogle Scholar
  27. 27.
    X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367(2), 911–941 (2015). MR3280032 MathSciNetzbMATHGoogle Scholar
  28. 28.
    L.A. Caffarelli, Further regularity for the Signorini problem. Commun. Partial Differ. Equ. 4(9), 1067–1075 (1979). MR542512 MathSciNetzbMATHGoogle Scholar
  29. 29.
    L. Caffarelli, F. Charro, On a fractional Monge-Ampère operator. Ann. PDE 1(1), 4, 47 (2015). MR3479063
  30. 30.
    L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007). MR2354493 MathSciNetzbMATHGoogle Scholar
  31. 31.
    L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009). MR2494809
  32. 32.
    L. Caffarelli, L. Silvestre, Hölder regularity for generalized master equations with rough kernels, in Advances in Analysis: The Legacy of Elias M. Stein. Princeton Mathematical Series, vol. 50 (Princeton University Press, Princeton, 2014), pp. 63–83. MR3329847
  33. 33.
    L.A. Caffarelli, J.L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29(4), 1393–1404 (2011). MR2773189
  34. 34.
    L. Caffarelli, F. Soria, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS) 15(5), 1701–1746 (2013). MR3082241 MathSciNetzbMATHGoogle Scholar
  35. 35.
    M. Caputo, Linear models of dissipation whose Q is almost frequency independent. II. Fract. Calc. Appl. Anal. 11(1), 4–14 (2008). Reprinted from Geophys. J. R. Astr. Soc. 13(1967), no. 5, 529–539. MR2379269 MathSciNetzbMATHGoogle Scholar
  36. 36.
    A. Carbotti, S. Dipierro, E. Valdinoci, Local Density of Solutions to Fractional Equations. Graduate Studies in Mathematics (De Gruyter, Berlin, 2019)Google Scholar
  37. 37.
    A. Carbotti, S. Dipierro, E. Valdinoci, Local density of Caputo-stationary functions of any order. Complex Var. Elliptic Equ. (to appear).
  38. 38.
    R. Carmona, W.C. Masters, B. Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91(1), 117–142 (1990). MR1054115 MathSciNetzbMATHGoogle Scholar
  39. 39.
    A. Cesaroni, M. Novaga, Symmetric self-shrinkers for the fractional mean curvature flow. ArXiv e-prints (2018), available at 1812.01847Google Scholar
  40. 40.
    A. Cesaroni, S. Dipierro, M. Novaga, E. Valdinoci, Fattening and nonfattening phenomena for planar nonlocal curvature flows. Math. Ann. (to appear).
  41. 41.
    E. Cinti, C. Sinestrari, E. Valdinoci, Neckpinch singularities in fractional mean curvature flows. Proc. Am. Math. Soc. 146(6), 2637–2646 (2018). MR3778164 MathSciNetzbMATHGoogle Scholar
  42. 42.
    E. Cinti, J. Serra, E. Valdinoci, Quantitative flatness results and BV-estimates for stable nonlocal minimal surfaces. J. Differ. Geom. (to appear)Google Scholar
  43. 43.
    J. Coville, Harnack type inequality for positive solution of some integral equation. Ann. Mat. Pura Appl. 191(3), 503–528 (2012). MR2958346 MathSciNetzbMATHGoogle Scholar
  44. 44.
    J.C. Cox, The valuation of options for alternative stochastic processes. J. Finan. Econ. 3(1–2), 145–166 (1976). Google Scholar
  45. 45.
    M. Cozzi, E. Valdinoci, On the growth of nonlocal catenoids. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (to appear)Google Scholar
  46. 46.
    J. Dávila, M. del Pino, J. Wei, Nonlocal s-minimal surfaces and Lawson cones. J. Differ. Geom. 109(1), 111–175 (2018). MR3798717 MathSciNetzbMATHGoogle Scholar
  47. 47.
    C.-S. Deng, R.L. Schilling, Exact Asymptotic Formulas for the Heat Kernels of Space and Time-Fractional Equations, ArXiv e-prints (2018), available at 1803.11435Google Scholar
  48. 48.
    A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011). MR2737788 MathSciNetzbMATHGoogle Scholar
  49. 49.
    E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). MR2944369 MathSciNetzbMATHGoogle Scholar
  50. 50.
    S. Dipierro, H.-C. Grunau, Boggio’s formula for fractional polyharmonic Dirichlet problems. Ann. Mat. Pura Appl. 196(4), 1327–1344 (2017). MR3673669 MathSciNetzbMATHGoogle Scholar
  51. 51.
    S. Dipierro, E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion. Bull. Math. Biol. 80(7), 1849–1870 (2018). MR3814763 MathSciNetzbMATHGoogle Scholar
  52. 52.
    S. Dipierro, G. Palatucci, E. Valdinoci, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting. Commun. Math. Phys. 333(2), 1061–1105 (2015). MR3296170 MathSciNetzbMATHGoogle Scholar
  53. 53.
    S. Dipierro, O. Savin, E. Valdinoci, Graph properties for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 55(4), 86, 25 (2016). MR3516886
  54. 54.
    S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions. Rev. Mat. Iberoam. 33(2), 377–416 (2017). MR3651008 MathSciNetzbMATHGoogle Scholar
  55. 55.
    S. Dipierro, O. Savin, E. Valdinoci, All functions are locally s-harmonic up to a small error. J. Eur. Math. Soc. (JEMS) 19(4), 957–966 (2017). MR3626547 MathSciNetzbMATHGoogle Scholar
  56. 56.
    S. Dipierro, O. Savin, E. Valdinoci, Boundary behavior of nonlocal minimal surfaces. J. Funct. Anal. 272(5), 1791–1851 (2017). MR3596708 MathSciNetzbMATHGoogle Scholar
  57. 57.
    S. Dipierro, N. Soave, E. Valdinoci, On stable solutions of boundary reaction-diffusion equations and applications to nonlocal problems with Neumann data. Indiana Univ. Math. J. 67(1), 429–469 (2018). MR3776028 MathSciNetzbMATHGoogle Scholar
  58. 58.
    S. Dipierro, O. Savin, E. Valdinoci, Local approximation of arbitrary functions by solutions of nonlocal equations. J. Geom. Anal. 29(2), 1428–1455 (2019)MathSciNetzbMATHGoogle Scholar
  59. 59.
    S. Dipierro, O. Savin, E. Valdinoci, Definition of fractional Laplacian for functions with polynomial growth. Rev. Mat. Iberoam (to appear)Google Scholar
  60. 60.
    S. Dipierro, J. Serra, E. Valdinoci, Improvement of flatness for nonlocal phase transitions. Amer. J. Math. (to appear)Google Scholar
  61. 61.
    B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15(4), 536–555 (2012). MR2974318
  62. 62.
    L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998). MR1625845
  63. 63.
    M.M. Fall, T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems. J. Funct. Anal. 263(8), 2205–2227 (2012). MR2964681 MathSciNetzbMATHGoogle Scholar
  64. 64.
    M.M. Fall, T. Weth, Liouville theorems for a general class of nonlocal operators. Potential Anal. 45(1), 187–200 (2016). MR3511811 MathSciNetzbMATHGoogle Scholar
  65. 65.
    A. Farina, E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions (World Scientific Publishing, Hackensack, 2009), pp. 74–96. MR2528756
  66. 66.
    P. Felmer, A. Quaas, Boundary blow up solutions for fractional elliptic equations. Asymptot. Anal. 78(3), 123–144 (2012). MR2985500
  67. 67.
    A. Figalli, J. Serra, On stable solutions for boundary reactions: a De Giorgi-type result in dimension 4 + 1, preprint at arXiv:1705.02781 (2017, submitted)Google Scholar
  68. 68.
    R.L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2016). MR3530361 MathSciNetzbMATHGoogle Scholar
  69. 69.
    R.K. Getoor, First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961). MR0137148 MathSciNetzbMATHGoogle Scholar
  70. 70.
    T. Ghosh, M. Salo, G. Uhlmann, The Calderón problem for the fractional Schrödinger equation. ArXiv e-prints (2016), available at 1609.09248Google Scholar
  71. 71.
    D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (Springer, Berlin, 2001). Reprint of the 1998 edition. MR1814364
  72. 72.
    E. Giusti, Direct Methods in the Calculus of Variations (World Scientific Publishing, River Edge, 2003). MR1962933 Google Scholar
  73. 73.
    Q. Han, F. Lin, Elliptic Partial Differential Equations. Courant Lecture Notes in Mathematics, 2nd edn., vol. 1 (Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, 2011). MR2777537
  74. 74.
    N. Jacob, Pseudo-Differential Operators and Markov Processes. Mathematical Research, vol. 94 (Akademie Verlag, Berlin, 1996). MR1409607
  75. 75.
    M. Kaßmann, Harnack-Ungleichungen Für nichtlokale Differentialoperatoren und Dirichlet-Formen (in German). Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 336 (Universität Bonn, Mathematisches Institut, Bonn, 2001). Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2000. MR1941020
  76. 76.
    M. Kaßmann, A new formulation of Harnack’s inequality for nonlocal operators. C. R. Math. Acad. Sci. Paris 349(11–12), 637–640 (2011). (English, with English and French summaries). MR2817382 MathSciNetzbMATHGoogle Scholar
  77. 77.
    M. Kaßmann, Jump processes and nonlocal operators, in Recent Developments in Nonlocal Theory (De Gruyter, Berlin, 2018), pp. 274–302. MR3824215
  78. 78.
    V. Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions. Proc. Lond. Math. Soc. 80(3), 725–768 (2000). MR1744782 MathSciNetzbMATHGoogle Scholar
  79. 79.
    N.V. Krylov, On the paper “All functions are locally s-harmonic up to a small error” by Dipierro, Savin, and Valdinoci. ArXiv e-prints (2018), available at 1810.07648Google Scholar
  80. 80.
    T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data. Commun. Math. Phys. 337(3), 1317–1368 (2015). MR3339179 MathSciNetzbMATHGoogle Scholar
  81. 81.
    M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017). MR3613319
  82. 82.
    N.S. Landkof, Foundations of Modern Potential Theory (Springer, New York, 1972). Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR0350027
  83. 83.
    H.C. Lara, G. Dávila, Regularity for solutions of non local parabolic equations. Calc. Var. Partial Differ. Equ. 49(1–2), 139–172 (2014). MR3148110
  84. 84.
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010). An introduction to mathematical models. MR2676137
  85. 85.
    F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001). MR1829592
  86. 86.
    F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations. preprint at arXiv:0704.0320v1 (2007, submitted)Google Scholar
  87. 87.
    B. Mandelbrot, The variation of certain speculative prices. J. Bus. 36, 394 (1963)Google Scholar
  88. 88.
    J.M. Mazón, J.D. Rossi, J. Toledo, The heat content for nonlocal diffusion with non-singular kernels. Adv. Nonlinear Stud. 17(2), 255–268 (2017). MR3641640
  89. 89.
    R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37(31), R161–R208 (2004). MR2090004 MathSciNetzbMATHGoogle Scholar
  90. 90.
    E. Montefusco, B. Pellacci, G. Verzini, Fractional diffusion with Neumann boundary conditions: the logistic equation. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2175–2202 (2013). MR3082317 MathSciNetzbMATHGoogle Scholar
  91. 91.
    R. Musina, A.I. Nazarov, On fractional Laplacians. Commun. Partial Differ. Equ. 39(9), 1780–1790 (2014). MR3246044 MathSciNetzbMATHGoogle Scholar
  92. 92.
    G. Palatucci, O. Savin, E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat. Pura Appl. 192(4), 673–718 (2013). MR3081641 MathSciNetzbMATHGoogle Scholar
  93. 93.
    V. Pareto, Cours D’économie Politique, vol. I/II (F. Rouge, Lausanne, 1896)Google Scholar
  94. 94.
    I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198 (Academic Press, San Diego, CA, 1999). An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. MR1658022
  95. 95.
    G. Pólya, On the zeros of an integral function represented by Fourier’s integral. Messenger 52, 185–188 (1923)zbMATHGoogle Scholar
  96. 96.
    M. Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy (French). Acta Math. 81, 1–223 (1949). MR0030102 Google Scholar
  97. 97.
    X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014). (English, with English and French summaries). MR3168912 MathSciNetzbMATHGoogle Scholar
  98. 98.
    W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1966). MR0210528 Google Scholar
  99. 99.
    A. Rüland, M. Salo, The fractional Calderón problem: low regularity and stability. ArXiv e-prints (2017), available at 1708.06294Google Scholar
  100. 100.
    A. Rüland, M. Salo, Quantitative approximation properties for the fractional heat equation. ArXiv e-prints (2017), available at 1708.06300Google Scholar
  101. 101.
    L.A. Sakhnovich, Levy Processes, Integral Equations, Statistical Physics: Connections and Interactions. Operator Theory: Advances and Applications, vol. 225 (Birkhäuser/Springer, Basel, 2012). MR2963050
  102. 102.
    L. Saloff-Coste, The heat kernel and its estimates, in Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57 (Mathematical Society of Japan, Tokyo, 2010), pp. 405–436. MR2648271
  103. 103.
    S. Salsa, Equazioni a Derivate Parziali. Metodi, Modelli e Applicazioni (Italian), 2nd edn. (Springer, Milano, 2010)Google Scholar
  104. 104.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Gordon and Breach Science Publishers, Yverdon, 1993). Theory and applications; Edited and with a foreword by S. M. Nikolskiı̆; Translated from the 1987 Russian original; Revised by the authors. MR1347689
  105. 105.
    T. Sandev, A. Schulz, H. Kantz, A. Iomin, Heterogeneous diffusion in comb and fractal grid structures. Chaos Solitons Fractals 114, 551–555 (2018). MR3856678 MathSciNetzbMATHGoogle Scholar
  106. 106.
    R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012). MR2879266 MathSciNetzbMATHGoogle Scholar
  107. 107.
    R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators. Proc. R. Soc. Edinburgh Sect. A 144(4), 831–855 (2014). MR3233760 MathSciNetzbMATHGoogle Scholar
  108. 108.
    E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30 (Princeton University Press, Princeton, 1970). MR0290095
  109. 109.
    P.R. Stinga, J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010). MR2754080
  110. 110.
    J.F. Toland, The Peierls-Nabarro and Benjamin-Ono equations. J. Funct. Anal. 145(1), 136–150 (1997). MR1442163 MathSciNetzbMATHGoogle Scholar
  111. 111.
    E. Valdinoci, From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. SeMA 49, 33–44 (2009). MR2584076 MathSciNetzbMATHGoogle Scholar
  112. 112.
    E. Valdinoci, All functions are (locally) s-harmonic (up to a small error)—and applications, in Partial Differential Equations and Geometric Measure Theory. Lecture Notes in Mathematics, vol. 2211 (Springer, Cham, 2018), pp. 197–214. MR3790948
  113. 113.
    J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857–885 (2014). MR3177769 MathSciNetzbMATHGoogle Scholar
  114. 114.
    J.L. Vázquez, The Dirichlet problem for the fractional p-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016). MR3456825 MathSciNetzbMATHGoogle Scholar
  115. 115.
    J.L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lecture Notes in Mathematics, vol. 2186 (Springer, Cham, 2017), pp. 205–278. MR3588125

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Département de mathématiqueUniversité Libre de BruxellesIxellesBelgium
  2. 2.Department of Mathematics and StatisticsUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations