Ecological Intensification: Managing Biocomplexity and Biodiversity in Agriculture Through Pollinators, Pollination and Deploying Biocontrol Agents against Crop and Pollinator Diseases, Pests and Parasites

  • Peter G. KevanEmail author
  • Les Shipp
  • Guy Smagghe


Ecological intensification refers to the practical management for amelioration of biodiversity and ecosystem management in productivity and sustainability for the benefit of human livelihoods. Pest management is critical for agricultural and forestry production systems and for human health. Chemical pesticides have become increasingly sophisticated and questioned as standard control measures. Biological control technology is a viable option. Biological control agents are living organisms (or parts thereof) that interfere with the productivity of other organisms. They range from vertebrates, insects, mites, plants, fungi, bacteria, to viruses as well as natural chemicals. Biological control works on weeds, plant pathogens, and invertebrate and vertebrate pests of crops, livestock, and human beings. Biological control agents mostly derive from natural ecosystems. They are part of biotechnology practiced within simplified anthropogenic ecosystems. Biological control technology falls under the umbrella of ‘ecological intensification’. The use of biological control agents in conjunction with managed pollinators is successfully proven for plant protection with fungal, bacterial, and viral biocontrol agents against fungal, bacterial, and insect pests deployed through specialized dispensers on the domiciles of managed pollinators. The concept is being tested for protection of managed pollinators themselves. This chapter reviews the extensive literature on both those subjects and addresses public concern for healthy food without synthetic chemical residues, for conservation of natural ecosystem services, and modern rapid expansion of organic farming.


Crop protection Crop pollination Integrated pest management Pollinators Entomovectoring Apivectoring Apiculture Applied ecology Ecosystem function Insect pathology Crop plant pathology Parasites Fungal pathogens Entomopathogens Fungi Bacteria Virus diseases Parasitoids 



The authors gratefully acknowledge the various funding sources for the research done over the years. In Canada, the Ontario Pesticides Advisory Board, Government of Alberta, Natural Sciences and Engineering Research Council of Canada [especially through Canadian pollination Initiative (NSERC-CANPOLIN)], National Research Council of Canada, Ontario Ministry of Agriculture, Food, and Rural Affairs, Agriculture and Agri-Food Canada, and Ontario Greenhouse Vegetable Growers; in Belgium, the EU-Core-Organic II (Bicopoll, Targeted precision biocontrol and pollination enhancement in organic cropping systems) and the Special Research Fund of the Ghent University; and internationally from the International Union of Biological Sciences, the International Commission for Plant-pollinator Relations, and the Arthur Dobbs Institute.


  1. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot 103:1579–1588PubMedPubMedCentralGoogle Scholar
  2. Akhurst RJ, Dunphy G (1993) Tripartite interactions between symbiotically associated entomopathogenic bacteria, nematodes, and their insect hosts. In: Beckage N, Thompson S, Federici B (eds) Parasites and pathogens of insects, vol 2. Academic, New York, pp 1–23Google Scholar
  3. Albano S, Chagnon M, de Oliveira D, Houle E, Thibodeau PO, Mexia A (2009) Effectiveness of Apis mellifera and Bombus impatiens as dispensers of the Rootshield biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hell Plant Prot J 2:57–66Google Scholar
  4. Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253–266Google Scholar
  5. Alma CR, Goettel MS, Roitberg BD, Gillespie DR (2007) Combined effects of the entomopathogenic fungus, Paecilomyces fumosoroseus Apopka-97, and the generalist predator, Dicyphus hesperus, on whitefly populations. BioControl 52:669–681Google Scholar
  6. Al-mazra’awi MS, Shipp L, Broadbent B, Kevan PG (2006) Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol Control 37:8997Google Scholar
  7. Al-Mazra’awi MS, Kevan PG, Shipp L (2007) Development of Beauveria bassiana dry formulation for vectoring by honey bees Apis mellifera (Hymenoptera: Apidae) to the flowers of crops for pest control. Biocontrol Sci Tech 17:733–741Google Scholar
  8. Batra LR, Batra SWT (1985) Floral mimicry induced by mummy-berry fungus exploits hosts pollinators as vectors. Science 228:1011–1013PubMedGoogle Scholar
  9. Beasley DR, Joyce DC, Wearing AH, Coates LM (2005) Bees as biocontrol agent delivery vectors: a preliminary study for Geraldton waxflower flowers. In: Drew R (ed) Proceedings of the international symposium on harnessing the potential of horticulture in the Asian-Pacific region, Acta Horticulturae, vol 694, pp 421–424Google Scholar
  10. Bergoin M (1966) Passage des corps d’inclusion de virus d’une polyédrie nucléaire dans le tube digestif d’un orthoptère détritivore, Acheta domesticus L. Entomophaga 2:253–259Google Scholar
  11. Biever KD, Hostetter DL (1978) Use of entomopathogens in pest management systems for vegetables. In Allen GA, Ignoffo CM, Jaques RP (eds) Microbial control of insect pests: future strategies in pest management systems. Proc. NSF-USDA University of Florida Workshop. 290 ppGoogle Scholar
  12. Biever KD, Andrews PL, Andrews PA (1982) Use of a predator, Podisus maculiventris, to distribute virus and initiate epizootics. J Econ Entomol 75:150–152Google Scholar
  13. Bird FT (1955) Virus diseases of sawflies. Can Entomol 87:124–127Google Scholar
  14. Bird AE, Hesketh H, Cross JV, Copland M (2004) The common black ant, Lasius niger (Hymenoptera: Formicidae), as a vector of the entomopathogen Lecanicillium longisporum to rosy apple aphid, Dysaphis plantaginea (Homoptera: Aphididae). Biocontrol Sci Tech 14:757–767Google Scholar
  15. Brinkman MA, Fuller BW, Leubke KG, Hildreth MB (1997) Note: susceptibility of adult alfalfa leafculting bees (Hymenoptera: Megachilidae) to Beauveria bassiana infection. J Agric Entomol 14:393–397Google Scholar
  16. Bruck DJ, Lewis LC (2002) Carpophilus freemani (Coleoptera: Nitidulidae) as a vector of Beauveria bassiana. J Invertebr Pathol 80:188–190PubMedGoogle Scholar
  17. Butt TM, Ibrahim L, Ball BV, Clark SJ (1994) Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci Tech 4:207214Google Scholar
  18. Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Tech 8:533–538Google Scholar
  19. Caballero P, Vargas-Osuna E, Santiago-Alvarez C (1991) Parasitization of granulosis virus infected and noninfected Agrotis segetum larvae and the virus transmission by three hymenopteran parasitoids. Entomol Exp Appl 58:55–60Google Scholar
  20. Capinera JL, Barbosa P (1975) Transmission of nuclear-polyhedrosis virus to gypsy moth larvae by Calosoma sycophanta. Ann Entomol Soc Am 68:593–594Google Scholar
  21. Carreck NL, Butt TM, Clark SJ, Ibrahim L, Isger EA, Pell JK, Williams IH (2007) Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape. Biocontrol Sci Tech 17:179–191Google Scholar
  22. Castillejos V, Gracia L, Cisneros J, Goulson D, Cave RD, Caballero P, Williams T (2001) The potential of Chrysoperla rufilabris and Doru taeniatum as agents for dispersal of Spodoptera frugiperda nucleopolyhedrovirus in maize. Entomol Exp Appl 98:353–359Google Scholar
  23. Chandler D (2008) Fungus foot baths could save bees. Warwick News & Events:
  24. Chandler D, Sunderland KD, Ball BV, Davidson G (2001) Prospective biological control agents of Varroa destructor n. sp., an important pest of the European honeybee, Apis mellifera. Biocontrol Sci Tech 11:429–448Google Scholar
  25. Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res 70:33–80PubMedGoogle Scholar
  26. Chen YP, Pettis JS, Collins A, Feldlaufer MF (2006) Prevalence and transmission of honeybee viruses. Appl Environ Microbiol 72:606–611PubMedPubMedCentralGoogle Scholar
  27. Cornish DA, Voyle MD, Haine HM, Goodwin RM, Vanneste JL (1998) Distribution of beneficial bacteria on nashi and apple flowers using honey bees. Proceedings of the New Zealand Plant Protection Conference 51: 107–111Google Scholar
  28. Cota LV, Maffia LA, Mizubuti ESC, Macedo PEF (2008) Biological control by Clonostachys rosea as a key component in the integrated management of strawberry gray mold. Biol Control 50:222–230Google Scholar
  29. Davidson G, Phelps K, Sunderland KD, Pell JK, Ball BV, Shaw K, Chandler D (2003) Temperature growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata), using a nonlinear model of poikilotherm development. J Appl Microbiol 94:816–825PubMedGoogle Scholar
  30. DeBach P, Rosen D (1991) Biological control by natural enemies. Cambridge University Press, Cambridge, pp 88–115Google Scholar
  31. Dedej S, Delaplane KS, Scherm H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427. Scholar
  32. Donovan BJ, Paul F (2005) Pseudoscorpions: the forgotten beneficials inside beehives and their potential for management for control of varroa and other arthropod pests. Bee World 86:83–87Google Scholar
  33. Down RE, Bell HA, Matthews HJ, Kirkbride-Smith AE, Edwards JP (2004) Dissemination of the biocontrol agent Vairimorpha necatrix by the spined soldier bug, Podisus maculiventris. Entomol Exp Appl 110:103–114Google Scholar
  34. Down RE, Cuthbertson AGS, Mathers JJ, Walters KFA (2009) Dissemination of the entomopathogenic fungi, Lecanicillium longisporum and L. muscarium, by the predatory bug, Orius laevigatus, to provide concurrent control of Myzus persicae, Frankliniella occidentalis and Bemisia tabaci. Biol Control 50:172–178Google Scholar
  35. Duan JJ, Marvier M, Huesing J, Dively G, Huang Z (2008) A met-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One 3:e1415PubMedPubMedCentralGoogle Scholar
  36. Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc Lond Ser B 258:299–302Google Scholar
  37. EC HCPDG, European Commission on Health & Consumer Protection Directorate-General (2003) Directorate E – Food Safety: plant health, animal health and welfare, international questions, E1 – Plant health, Coniothyrium minitans, SANCO/1400/2001-final, 3 July 2003, Review report for the active substance Coniothyrium minitans, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 4 July 2003 in view of the inclusion of Coniothyrium minitans in Annex I of Directive 91/414/EECGoogle Scholar
  38. EC HCPDG, European Commission on Health & Consumer Protection Directorate-General (2004) Directorate E – Food Safety: plant health, animal health and welfare, international questions, E1 – Plant health. Ampelomyces quisqualis 4205/VI/98 – rev. final 7 October 2004. Review report for the active substance Ampelomyces quisqualis. Finalized in the Standing Committee on the Food Chain and Animal Health at its meeting on 8 October 2004 in view of the inclusion of Ampelomyces quisqualis in Annex I to Directive 91/414/EECGoogle Scholar
  39. Eisikowitch D, Lachance MA, Kevan PG, Willis S, Collins-Thompson DL (1990) The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Can J Bot 68:1163–1165Google Scholar
  40. Elad Y, Williamson B, Tudzynski P, Delen N (eds) (2007) Botrytis: biology. Pathol control:163–179Google Scholar
  41. Entwistle PF, Adams PHW, Evans HF (1977a) Epizootiology of a nuclear-polyhedrosis virus in European spruce sawfly (Gilpinia hercyniae) – status of birds as dispersal agents of virus during larval season. J Invertebr Pathol 29:354–360Google Scholar
  42. Entwistle PF, Adams PHW, Evans HF (1977b) Epizootiology of a nuclear-polyhedrosis virus in European spruce sawfly, Gilpinia hercyniae – birds as dispersal agents of virus during winter. J Invertebr Pathol 30:15–19Google Scholar
  43. Entwistle PF, Forkner AC, Green BM, Cory JS (1993) Avian dispersal of nuclear polyhedrosis viruses after induced epi-zootics in the pine beauty moth, Panolis flammea (Lepidoptera: Noctuidae). Biol Control 3:61–69Google Scholar
  44. EPA (1998a) R.E.D. Facts. Bacillus thuringiensis EPA-738-F-98-001Google Scholar
  45. EPA (1998b) Biopesticides registration action document, Coniothyrium minitans strain CON/M/91–08 (PC Code 028836). US Environmental Protection Agency, Office of Pesticide Programs, USAGoogle Scholar
  46. EPA (1998c) Registration eligibility decision (RED) Bacillus thuringiensis. EPA-738-R-98-004Google Scholar
  47. EPA (1998d) Bacillus thuringiensis subspecies israelensis strain EG2215 (006476) Fact Sheet. Accessed 10 Feb 2017
  48. EPA (2011a) Registration review: Bacillus Thuringiensis (BT). Accessed 10 Feb 2017
  49. EPA (2011b) Bacillus subtilis strain QST 713 (006479) biopesticide registration action document. Environmental Protection Agency, USAGoogle Scholar
  50. Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351Google Scholar
  51. Espinosa Ortiz E, Otero-Colina G, Valdez Carrasco J, Alatorre Rosas R, Lara-Reyna J (2011) Susceptibilidad de larvas, pupas y abejas adultas a aislamientos de Beauveria bassiana (Bals.) Vuill., Metarhizium anisopliae (Sorokin) y Paecilomyces fumosoroseus (Wize). Interciencia 36:148–152Google Scholar
  52. FAO (2013) LIBERATION LInking farmland Biodiversity to Ecosystem seRvices for effective eco-functional intensificATION Collaborative Project Grant Agreement No.: 311781 – LIBERATION – CP – FP Deliverable 7.2 Name of deliverable: Annotated Bibliography on Ecological Intensification Deliverable date: 27.11.2013 Lead Participant: FAO Accessed 15 Feb, 2016
  53. Farkas A, Mihalik E, Dorgai L, Buban T (2011) Floral traits affecting fire blight infection and management. Trees 26:1–20Google Scholar
  54. ffrench-Constant RH, Bowen DJ (2000) Novel insecticidal toxins from nematode-symbiotic bacteria. Cell Mol Life Sci 57:828–833PubMedGoogle Scholar
  55. Fischer D, Moriarty T (eds) (2014) Pesticide risk assessment for pollinators, Society of Environmental Toxicology and Chemistry (SETAC). Wiley Blackwell, USAGoogle Scholar
  56. Franceschini S (undated) Regulatory information Ampelomyces quisqualis – AQ 10. Report from IntrachemGoogle Scholar
  57. Franz J, Krieg A, Langenbuch R (1955) Untersuchungen über den Einfluß der Passage durch den Darm von Raubinsekten und Vögeln auf die Infektiosität insektenpathogener Viren. Zeitschrift für Pflanzenkrankheiten (Pflanzenpathologie) und Pflanzenschutz 62: 721–716Google Scholar
  58. Free JB (1993) Insect pollination of crops, 2nd edn. Academic, LondonGoogle Scholar
  59. Fuxa JR (1991) Release and transport of entomopathogenic microorganisms. In: Levin M, Strauss H (eds) Risk assessment in genetic engineering. McGraw-Hill, New York, pp 83–113Google Scholar
  60. Fuxa JR, Richter AR (1994) Distance and rate of spread of Anticarsia gemmatalis (Lepidoptera: Noctuidae) nuclear polyhedrosis virus released into soybean. Environ Entomol 23:1308–1316Google Scholar
  61. Fuxa JR, Richter AR, Strother MS (1993) Detection of Anticarsia gemmatalis nuclear polyhedrosis virus in predatory arthropods and parasitoids after viral release in Louisiana soybean. J Entomol Sci 28:51–60Google Scholar
  62. Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R, Kuhlmann M, Kleijn D, Klein AM, Kremen C, Morandin L, Schepe J, Winfree R (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12:439–447Google Scholar
  63. Gaugler R, Kaya HK (eds) (2018) Entomopathogenic nematodes in biological control. CRC Press, Inc., Boca RatonGoogle Scholar
  64. Goertz D, Hoch G (2013) Influence of the forest caterpillar hunter Calosoma sycophanta on the transmission of microsporidia in larvae of the gypsy moth Lymantria dispar. Agric For Entomol 15:178–186PubMedPubMedCentralGoogle Scholar
  65. Goerzen DW, Erlandson MA, Moore KC (1990) Effect of two insect viruses and 2 entomopathogenic fungi on larval and pupal development in the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera, Megachilidae). Can Entomol 122:1039–1040Google Scholar
  66. Graystock P, Goulson D, Hughes WOH (2015) Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B 282:20151371. Scholar
  67. Grobov OF, Kosmachev VN (2005) Potential biological agents for tick Varroa destructor control. Sel’skokhozyaistvennaya Biologiya 4:86–91Google Scholar
  68. Gross HR, Hamm JJ, Carpenter JE (1994) Design and application of a hive mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Environ Entomol 23:492–501Google Scholar
  69. Gupta RK, Mudasir G, Jasrotia P, Srivastava P, Kaul V (2014) A comparison of infectivity between polyhedra of the Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the stink bug, Eocanthecona furcellata. J Insect Sci 14:96PubMedPubMedCentralGoogle Scholar
  70. Hamiduzzaman MM, Sinia A, Guzman-Novoa E, Goodwin PH (2012) Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.). J Invertebr Pathol 111:237–243PubMedGoogle Scholar
  71. Han P, Niu C-Y, Lei C-L, Cui J-J, Desneux N (2010) Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19:1452–1459PubMedPubMedCentralGoogle Scholar
  72. Han P, Niu C-Y, Biondi A, Desneux N (2012) Does transgenic Cry1Ac + CpTI cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicology 21:2214–2221PubMedGoogle Scholar
  73. Harris KF, Maramorosch K (eds) (1980) Vectors of plant pathogens. Academic, San DiegoGoogle Scholar
  74. Hochberg ME (1991) Extra-host interactions between a braconid endoparasitoid, Apanteles glomeratus, and a baculovirus for larvae of Pieris brassicae. J Anim Ecol 60:65–77Google Scholar
  75. Hokkanen HMT, Menzler-Hokkanen I (2007) Use of honeybees in the biological control of plant diseases. Entomol Res 37:A62–A63Google Scholar
  76. Hokkanen HMT, Menzler-Hokkanen I (2009) Successful use of honey bees for grey mould biocontrol on strawberries and raspberries in Finland. Apidologie 40:659Google Scholar
  77. Hokkanen HMT, Zeng QQ, Menzler-Hokkanen I (2003) Assessing the impacts of Metarhizium and Beauveria on bumblebees. Environmental impacts of microbial insecticides: need and methods for risk assessment. Progress in Biologial Control, 1: 63–71Google Scholar
  78. Hokkanen H, Zeng QQ, Menzler-Hokkanen I (2004) Assessing the impact of Metarhizium and Beauveria on bumble bees. In: Hokkanen H, Hajek EA (eds) Progress in biological control: environmental impacts of microbial insecticides, needs and methods for risk assessment, vol 1. Kluwer Academic Publishers, Dordrecht, pp 63–72Google Scholar
  79. Hokkanen HMT, Menzler-Hokkanen I, Mustalahti A-M (2011) Honey bees (Apis mellifera) for precision biocontrol of grey mould (Botrytis cinerea) with Gliocladium catenulatum on strawberries and raspberries in Finland. Arthropod-Plant Interactions (submitted)Google Scholar
  80. Hokkanen HMT, Menzler-Hokkanen I, Lahdenpera M-L (2015) Managing bees for delivering biological control agents and improved pollination in berry and fruit cultivation. Sustain Agric Res 4:3. Scholar
  81. Hoogendoorn K (2014) Flying doctor bees to prevent cherry disease. University of Adelaide News & Events.
  82. Hostetter DL (1971) A virulent nuclear polyhedrosis virus of the cabbage looper, Trichoplusia ni, recovered from the abdomens of sarcophagid flies. J Invertebr Pathol 17:130–131Google Scholar
  83. Hostetter DL, Biever KD (1970) Recovery of virulent nuclear-polyhedrosis virus of the cabbage looper, Trichoplusia ni, from the feces of birds. J Invertebr Pathol 15:173–176Google Scholar
  84. Hoxter K, Krueger H, Palmer S (1998) A dietary pathogenicity toxicity study with the honey bee (Apis mellifera): (QST 713): lab project number: 489-102C. Unpublished study prepared by wildlife international ltd. 22 p. cited in EPA (2011b) as document 44651917 {OPPTS 885.4380} (on B. subtilis)Google Scholar
  85. IPBES (Intergovernmental Platform on Biodiversity and Ecosystem Services) (2014) Deliverable 3(a): Thematic assessment of pollinators, pollination and food production. (Accessed 19 May 2015)
  86. Irabagon TA, Brooks WM (1974) Interaction of Campoletis sonorensis and a nuclear polyhedrosis virus in larvae of Heliothis virescens. J Econ Entomol 67:229–231PubMedGoogle Scholar
  87. Jacobson RJ, Chandler D, Fenlon J, Russell KM (2001) Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Sci Tech 11:391–400Google Scholar
  88. James RR (2009) Microbial control for invasive arthropod pests of honey bees. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods, Book series: progress in biological control, vol 6, pp 271–288Google Scholar
  89. James RR, Hayes G, Leland JE (2006) Field trials on the microbial control of varroa with the fungus Metarhizium anisopliae. Am Bee J 146:968–972Google Scholar
  90. Johnson KB, Stockwell VO, McLaughlin RJ (1993a) Effect of antagonistic bacteria on establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control. Phytopathology 83:995–1002Google Scholar
  91. Johnson KB, Stockwell VO, Burgett DM, Sugar D, Loper JE (1993b) Dispersal of Erwinia amylovora and Pseudomonas fluorescence by honeybees from hives to apple and pear blossoms. Phytopathology 83:478–484Google Scholar
  92. Joyoti JL, Brewer GJ (1999) Honey bees (Hymenoptera: Apidae) as vectors of Bacillus thuringiensis for control of banded sunflower moth (Lepidoptera: Tortricidae). Environ Entomol 28:1127–1176Google Scholar
  93. Kanga LHB, James RR, Boucias DG (2002) Hirsutella thompsonii and Metarhizium anispoliae as potential microbial control agents of Varroa destructor, a honey bee parasite. J Invertebr Pathol 81:175–184PubMedGoogle Scholar
  94. Kanga LHB, Jones WA, James RR (2003) Field trials using the fungal pathogen, Metarhizium anisopliae (Deuteromycetes: Hyphomycetes) to control the ectoparasitic mite, Varroa destructor (Acari: Varroidae) in honey bee, Apis mellifera (Hymenoptera: Apidae) colonies. J Econ Entomol 96:1091–1099. Scholar
  95. Kanga LHB, Jones WA, Gracia C (2006) Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor (Acari: Varroidae) in honey bee colonies in Texas and Florida. Exp Appl Acarol 40:249–258PubMedGoogle Scholar
  96. Kanga LHB, Adamczyk J, Patt J, Gracia C, Cascino J (2010) Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies. Exp Appl Acarol 52:327–342PubMedGoogle Scholar
  97. Kapongo J-P, Shipp L, Kevan PG, Broadbent B (2008a) Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. BioControl 53:797–812Google Scholar
  98. Kapongo J-P, Shipp L, Kevan PG, Sutton JC (2008b) Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumblebees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol Control 46:508–514Google Scholar
  99. Karise R, Muljar R, Smagghe G, Kaart T, Kuusik A, Dreyersdorff G, Williams IH, Mänd M (2015) Sublethal effects of kaolin and the biopesticides Prestop-mix and BotaniGard on metabolic rate, water loss and longevity in bumble bees (Bombus terrestris). J Pest Sci 89:171–178. Scholar
  100. Karise R, Dreyersdorff G, Jahani M, Veromann E, Runno-Paurson E, Kaart T, Smagghe G, Mänd M (2016) Reliability of the entomovector technology using Prestop-mix and Bombus terrestris L. as a fungal disease biocontrol method in open field. Sci Rep 6:31650. Scholar
  101. Kaupp WJ, Barber KN, Fick WE, Ebling PM, Ladd TR, Holmes SB (2011) Host-range testing of a mixture of two nucleopolyhedroviruses of Choristoneura fumiferana (Lepidoptera: Tortricidae). Can Entomol 143:165–177Google Scholar
  102. Kaya HK (1979) Microsporidan spores: retention of infectivity after passage through the gut of the assassin bug, Zelus exsanguis (Stal). Proc Hawaiian Entomol Soc 13:91–94Google Scholar
  103. Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. In: Paoletti M (ed) Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use, Agriculture, Ecosystems & Environment, vol 74, pp 373–393Google Scholar
  104. Kevan PG (2001) Pollination: plinth, pedestal, and pillar for terrestrial productivity. The why, how, and where of pollination protection, conservation, and promotion. In: Stubbs CS, Drummond FA (eds) Bees and crop pollination – crisis, crossroads, conservation, Thomas say publications in entomology, vol 346. Entomological Society of America, Lanham, pp 7–68Google Scholar
  105. Kevan PG (2015) Thesis, deconstruction and new synthesis: the changing face of applied pollination. J Pollinat Ecol 17:150–153Google Scholar
  106. Kevan PG, Imperatriz-Fonseca VL (eds) (2002/2006). Pollinating bees: The conservation link between agriculture and nature. Proceedings of the Workshop on the Conservation and Sustainable Use of Pollinators in Agriculture, with Emphasis on Bees. Secretariat for Biodiversity and Forests, Ministry of Environment, Brasília, DF. Brazil. (1st edition 313 pp., and 2nd Edition 336 pp)Google Scholar
  107. Kevan PG, Phillips TP (2001) The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol 5(1). paper 8. URL:
  108. Kevan PG, Collins-Thompson DL, Eisikowitch D, Lachance MA (1989) Milkweeds, pollinators and yeasts: a system for potential biocontrol of milkweed seed production. Highlights Agric Res Ont 12(3):21–24Google Scholar
  109. Kevan PG, Laverty TW, Denmark HA (1991) Association of Varroa jacobsoni with organisms other than honey bees and implications for its dispersal. Bee World 71:119–121Google Scholar
  110. Kevan PG, Al-Mazra’awi MS, Sutton C, Tam L, Boland G, Broadbent B, Thomson SV, Brewer GJ (2003) Using pollinators to deliver biological control agents against crop pests. Pesticide Formulations and Delivery Systems: Meeting the Challenges of the Current Crop Protection Industry. American Society for Testing and Materials International (West Conshohoken, PA) STP 1430: 148–153Google Scholar
  111. Kevan PG, Hannan MA, Ostiguy N, Guzman-Novoa E (2006) A summary of the varroa-virus disease complex in honey bees. Am Bee J 146(8):694–697Google Scholar
  112. Kevan PG, Sutton J, Shipp L (2007) Pollinators as vectors of biocontrol agents – the B52 story. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective: case studies from around the world. CABI Publishing, East Wallingford, pp 319–327Google Scholar
  113. Kevan PG, Kapongo J-P, Al-mazra’awi M, Shipp L (2008) Honeybees, bumblebees and biocontrol: new alliances between old friends. In: James RR, Pitts-Singer T (eds) Bee pollination in agricultural systems. Oxford University Press, New YorkGoogle Scholar
  114. Kevan PG, Shipp L, Thomas VG (2014) What’s the buzz? Using pollinators for crop protection. Int Innov 125:9–11Google Scholar
  115. Kovach J, Petzoldt R, Harman GE (2000) Use of honeybees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biol Control 18:235–242Google Scholar
  116. Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: taxonomic diversity of anthophiles and pollinators. Can Entomol 133:439–465Google Scholar
  117. Lee Y, Fuxa JR (2000a) Ingestion and defecation of recombinant and wild-type nucleopolyhedroviruses by scavenging and predatory arthropods. Environ Entomol 29:950–957Google Scholar
  118. Lee Y, Fuxa JR (2000b) Transport of wild-type and recombinant nucleopolyhedroviruses by scavenging and predatory arthropods. Microb Ecol 39:301–313PubMedGoogle Scholar
  119. Levin DB, Laing JE, Jaques RP (1979) Transmission of granulosis virus by Apanteles glomeratus to its host Pieris rapae. J Invertebr Pathol 34:317–318Google Scholar
  120. Li GQ, Huang HC, Acarya SN, Erickson RS (2005) Effectiveness of Coniothyrium minitans and Trichoderma atroviride in suppression of Sclerotinia blossom blight of alfalfa. Plant Pathol 54:204–211Google Scholar
  121. Lockwood JA (2008) Six-legged soldiers: using insects as weapons of war. Oxford University Press, New YorkGoogle Scholar
  122. Lodeseni M, Costa C, Nipoti P, Prodi A (2003) Use of three mitosporic fungi for the control of the honey bee parasitic mite Varroa destructor Anderson & Trueman. Proceedings of XXXVIIth International Apicultural Congress, Ljubiana, Slovenia. pp 422–423Google Scholar
  123. Loncaric I, Heigl H, Licek E, Moosbeckhofer R, Busse H-J, Rosengarten R (2009) Typing of Pantoea agglomerans isolated from colonies of honey bees (Apis mellifera) and culturability of selected strains from honey. Apidologie 40:40–54Google Scholar
  124. Loseyi JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214–214Google Scholar
  125. Maccagnani B, Mocioni M, Gullino ML, Ladurner E (1999) Application of Trichoderma harzianum by using Apis mellifera as a vector for the control of grey mold of strawberry: first results. IOBC Bull 22:161–164Google Scholar
  126. Maccagnani B, Mocioni M, Ladurner E, Gullino ML, Maini S (2005) Investigation of hive-mounted devices for the dissemination of microbiological preparations by Bombus terrestris. Bull Insectol 53:3–8Google Scholar
  127. Maccagnani B, Bazzi C, Biondi E, Tesoriero D, Maini S (2006) Potential of Osmia cornuta as a carrier of antagonist bacteria in biological control of fire blight: a comparison with Apis mellifera. Acta Horticulturae (ISHS) 704:379–386Google Scholar
  128. Maccagnani B, Giacomello F, Fanti M, Gobbin D, Maini S, Angeli G (2009) Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple flowers. BioControl 54:123–133. Scholar
  129. Mand M, Karise R, Muljar R, Smagghe G (2015) Effect of the microbial biopesticides Prestop-mix and BotaniGard on respiratory physiology and longevity of bumblebees. Julius-Kuhn-Archives 450:191Google Scholar
  130. McArt SH, Koch H, Irwin RW, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636PubMedGoogle Scholar
  131. Meikle WG, Mercadier G, Holst N, Nansen C, Girod V (2007) Duration and spread of an entomopathogenic fungus, Beauveria bassiana (Deuteromycota: Hyphomycetes), used to treat varroa mites (Acari: Varroidae) in honey bee (Hymenoptera: Apidae) hives. J Econ Entomol 100:1–10PubMedGoogle Scholar
  132. Meikle WG, Mercadier G, Holst N, Girod V (2008a) Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health. Exp Appl Acarol 46:105–117PubMedGoogle Scholar
  133. Meikle WG, Mercadier G, Holst N, Nansen C, Girod V (2008b) Impact of a treatment of Beauveria bassiana (Deuteromycota: Hyphomycetes) on honeybee (Apis mellifera) colony health and on Varroa destructor mites (Acari: Varroidae). Apidologie 39:247–259. Scholar
  134. Meikle WG, Mercadier G, Annas F, Holst N (2009) Effects of multiple applications of a Beauveria based biopesticide on Varroa destructor (Acari: Varroidae) densities in honey bee (Hymenoptera: Apidae) colonies. J Apic Res 48:220–222Google Scholar
  135. Menzler-Hokkanen I (2016) Safety of Prestop mix to pollinators: a critical review of its properties and use in entomovectoring. Response to the article by Karise et al. (2015). J Pest Sci 89:179–182Google Scholar
  136. Meyling NV, Pell JK, Eilenberg J (2006) Dispersal of Beauveria bassiana by the activity of nettle insects. J Invertebr Pathol 9:121–126Google Scholar
  137. Miller TC, Gubler WD, Laemmlen FF, Geng S, Rizzo DM (2004) Potential for using Lecanicillium lecanii for suppression of strawberry powdery mildew. Biocontrol Sci Tech 14:215–220Google Scholar
  138. Mommaerts V, Smagghe G (2011) Entomovectoring in plant protection. Arthropod Plant Interact 5:81–95Google Scholar
  139. Mommaerts V, Jans K, Smagghe G (2009a) Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behavior in bumblebees (Bombus terrestris). Pest Manag Sci 66:520–525Google Scholar
  140. Mommaerts V, Sterk G, Hoffmann L, Smagghe G (2009b) A laboratory evaluation to determine the compatibility of microbial control agents with the pollinator Bombus terrestris. Pest Manag Sci 65:949–955PubMedGoogle Scholar
  141. Mommaerts V, Put K, Smagghe G (2011) Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry. Pest Manag Sci 67:1069–1075PubMedGoogle Scholar
  142. Mommaerts V, Put K, Vandeven J, Smagghe G (2012) Miniature dispenser-based bioassay to evaluate the compatibility of powder formulations used in an entomovectoring approach. Pest Manag Sci 68:922–927PubMedGoogle Scholar
  143. Muerrle TM, Neumann P, Dames JF, Hepburn NR, Hill MP (2006) Susceptibility of adult Aethina tumida (Coleoptera: Nitidulidae) to entomopathogenic fungi. J Econ Entomol 99:1–6.[0001:SOAATC]2.0.CO;2CrossRefPubMedGoogle Scholar
  144. Mullen G, Durden L (2009) Medical and veterinary entomology (2nd Edition). Academic Press, Elsevier Inc., Amsterdam, 627 ppGoogle Scholar
  145. Mussen EC (2015) Chapter 28: Injury to honey bees by poisoning. In: Graham J (ed) The hive and the honey bee. Dadant & Co., HamiltonGoogle Scholar
  146. Ngugi HK, Dedej S, Delaplane KS, Savelle AT, Sherm H (2005) Effect of flower-applied serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol Control 33:32–38Google Scholar
  147. OECD (2007) Consensus document on safety information of transgenic plants expressing Bacillus thuringiensis derived insect control protein. No. 42 OECD environment, health and safety publications series on harmonisation of regulatory oversight in biotechnology. Accessed 10 Feb 2017
  148. Otterstatter MC, Thomson JD (2008) Does pathogen spillover from commercially reared bumble bees threaten wild pollinators? PLoS One 3:e2771. Scholar
  149. Pell JK, Vandenberg JD (2002) Interactions among the aphid Diuraphis noxia, the entomopathogenic fungus Paecilomyces fumosoroseus and the Coccinellid Hippodamia convergens. Biocontrol Sci Tech 12:217–224Google Scholar
  150. Pell JK, Pluke R, Clark SJ, Kenward MG, Alderson PG (1997) Interactions between two aphid natural enemies, the entomopathogenic fungus Erynia neoaphidis Remaudiere and Hennebert (Zygomycetes: Entomophthorales) and the predatory beetle Coccinella septempunctata L. (Coleoptera: Coccinellidae). J Invertebr Pathol 69:261–268Google Scholar
  151. Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honeybees for applying the biocontrol agent Gliocladium rosea to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–129Google Scholar
  152. PMRA (1998) Registration Decision RD2009–04 PMRA No.: PMRA 1188031 References: 1998, Gliocladium catenulatum cell mass (technical product): a dietary pathogenicity and toxicity study with the honey bee (Apis mellifera) 293–110 DACO: M9.5.1Google Scholar
  153. PMRA (2003) Regulatory decision document RDD 2003–10. Sterptomyces griseoviridis strain K61Google Scholar
  154. PMRA (2008) PRD 2008–03 proposed registration decision Gliocladium Catenulatum strain J1446Google Scholar
  155. PMRA (2009) Registration decision RD2009–13, Beauveria bassiana strain GHAGoogle Scholar
  156. PMRA (2010a) Evaluation report ERC2010–01, Metarhizium anisopliae strain F52Google Scholar
  157. PMRA (2010b) Evaluation report ERC2010–07 Pseudomonas fluorescens strain A506Google Scholar
  158. PMRA (2010c) Registration decision RD2010–02, RootShield biological fungicide, Trichoderma harzianum Rifai strain KRL-AG2Google Scholar
  159. PMRA (2011) Proposed Registration Decision PRD2011–13, Metarhizium anisopliae strain F52Google Scholar
  160. Poinar GO (1979) Nematodes for biological control of insects. CRC Press, Boca Raton, 277 ppGoogle Scholar
  161. PWGSC (2008) Permitted substances lists CAN/CGSB-32.311-2006. Public Works and Government Services Canada.
  162. Raimo B (1975) Infecting gypsy moth, Porthetria dispar (L) (Lepidoptera-Lymantriidae) with nuclear polyhedrosis-virus vectored by Apanteles melanoscelus (Ratzeburg) (Hymenoptera-Braconidae). J NY Entomol Soc 83:246–246Google Scholar
  163. Reeh KW, Hillier NK, Cutler GC (2014) Potential of bumble bees as bio-vectors of Clonostachys rosea for Botrytis blight management in lowbush blueberry. J Pest Sci 87:543–550Google Scholar
  164. Richards AJ (2001) Does low biodiversity resulting from modern agricultural practice affect crop pollination and yield? Ann Bot 88:165–172Google Scholar
  165. Rodriguez M, Gerding M, France A (2009a) Selection of entomopathogenic fungi to control Varroa destructor (Acari: Varroidae). Chil J Agric Res 69:534–540Google Scholar
  166. Rodriguez M, Gerding M, France A, Ceballos R (2009b) Evaluation of Metarhizium anisopliae var anisopliae Qu-M845 isolate to control Varroa destructor (Acari: Varroidae) in laboratory and field trials. Chil J Agric Res 69:541–547Google Scholar
  167. Roh JY, Choi JY, Li MS, Byung RJ, Yeon HJ (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559PubMedGoogle Scholar
  168. Roubik DW (ed) (1995) Pollination of cultivated plants in the tropics. FAO agricultural services bulletin no. 118, food and agriculture Organization of the United Nations. RomeGoogle Scholar
  169. Roy HE, Pell JK, Alderson PG (2001) Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocontrol Sci Tech 11:99–110Google Scholar
  170. Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. RS policy document 11/09. London: 86.
  171. Sabate Daniela C, Leonor C, Carina AM (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:193–199. Scholar
  172. Shafir S, Dag A, Bilu A, Abu-Toamy M, Elad Y (2006) Honeybee dispersion of the biocontrol agent Trichoderma harzianum T 39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur J Plant Pathol 116:119–128Google Scholar
  173. Shaw KE, Davidson G, Clark SJ, Ball BV, Pell JK, Chandler D, Sunderland KD (2002) Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of the honeybee, Apis mellifera. Biol Control 24:266–276. Scholar
  174. Smagghe G, De Meyer L, Meeus I, Mommaerts V (2013) Safety and acquisition potential of Metarhizium anisopliae in entomovectoring with bumble bees, Bombus terrestris. J Econ Entomol 106:277–282PubMedGoogle Scholar
  175. Smirnoff WA (1959) Predators of Neodiprion swainei Midd. (Hymenoptera: Tenthredinidae) larval vectors of virus diseases. Can Entomol 91:246–248Google Scholar
  176. Smith B, Sampson B, Walter W (2012) Efficacy of bumble bee disseminated biological control agents for control of Botrytis blossom blight of rabbiteye blueberry. Int J Fruit Sci 12:156–168Google Scholar
  177. Stanley-Horn DE, Dively GP, Hellmich RL, Mattila HR, Sears MK, Rose R, Jesse LCH, Loseyi JE, Obrycki JJ, Lewis L (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc Natl Acad Sci USA 98:11931–11936PubMedGoogle Scholar
  178. Steinhaus EA (1954) The effects of disease on insect populations. Hilgardia 23:197–261Google Scholar
  179. Sutherland WJ, Broad S, Caine J, Clout M, Dicks LV, Doran H, Entwistle AC, Fleishman E, Gibbons DW, Keim B, LeAnstey B, Lickorish FA, Markillie P, Monk KA, Mortimer D, Ockendon N, Pearce-Higgins JW, Peck LS, Pretty J, Rockström J, Spalding MD, Tonneijck FM, Wintle BC, Wright KE (2016) A horizon scan of global conservation issues for 2016. Trends Ecol Evol 31:44–53PubMedGoogle Scholar
  180. Sutton J, Kevan PG (2012) Bee vectoring of biocontrol agents for better strawberries. North American Strawberry Growers Association NewsletterGoogle Scholar
  181. Sutton J, Kevan PG (2013) New combined technology for promoting sunflower health and productivity. Canadian Sunflower Grower 18–19Google Scholar
  182. Sutton JC, Li DW, Peng G, Yu H, Zhang P, Valdebenito-Sanhueza RM (1996) Gliocladium rosea: a versatile adversary of Botrytis cinerea in crops. Plant Dis 81:316–326Google Scholar
  183. Svedelius G (2000) Humlor som bärare av biologisk kontrollav svampsjukdomen svartprickröta i gurkfrukter. Växtskyddsnotiser 64(3–4):48–50Google Scholar
  184. Thomson SV, Shotwell KM, Vandenberg JD (1990) The distribution of antagonistic bacteria by honey bees for biological control of fire blight. Abstract A476 of the presentations of the 1990 annual meeting of the American phytopathological society and the Canadian phytopathological society. Phytopathology 80: 1017Google Scholar
  185. Thomson SV, Hansen DR, Flint KM, Vandenberg JD (1992) Dissemination of bacteria antoganistsic to Erwinia amylovora by honey bees. Plant Dis 76:1052–1056Google Scholar
  186. Tsagou V, Lianou A, Lazarakis D, Emmanouel N, Aggelis G (2004) Newly isolated bacterial strains belonging to Bacillaceae (Bacillus sp.) and Micrococcaceae accelerate death of the honey bee mite, Varroa destructor (V. jacobsoni), in laboratory assays. Biotechnol Lett 26:529–532. Scholar
  187. Ureña JV, Chuncho CGM (2002/2003) Utilizacion de abejas para la dispersion de Beauveria bassiana en el control biológico de la broca del café. Revista Informativa Área Agropecuria y de Recursos Naturales Renovables, Universidad Nacional de Loja, Ecuador. 15 ppGoogle Scholar
  188. US NAS (US National Academy of Sciences) (2007) The status of pollinators in North America. National Academies Press, Washington D.C, p 307Google Scholar
  189. Vago C, Fosset J, Bergoin M (1966) Dissémination des virus de polyédries par les Éphippigères prédateurs d’insectes. Entomophaga 11:177–182Google Scholar
  190. Van der Zwet T, Keil HL (1979) Fire blight: a bacterial disease of rosaceous plants. Handbook, 510, United States Department of AgricultureGoogle Scholar
  191. Vandenberg JD (1990) Safety of 4 entomopathogens for caged adult honey-bees (Hymenoptera, Apidae). J Econ Entomol 83:755–759Google Scholar
  192. Vandenberg JD, Shimanuki H (1986) Two commercial preparations of the beta exotoxin of Bacillus thuringiensis influence the mortality of caged adult honeybees, Apis mellifera (Hymenoptera: Apidea). Environ Entomol 15:166–169Google Scholar
  193. Vanneste JL (1996) Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocontrol News Inf 17:67N–78NGoogle Scholar
  194. Vanneste JL, Cornish DA, Voyle MD, Haine HM, Goodwin RM (1999) Honey bees to distribute beneficial bacteria to apple and Asian pear flowers. In: Momol MT; Saygili H (editors) 8th international workshop on fire blight, Kusadasi, Turkey, October 12–15, 1998. Proceedings of the eighth international workshop on fire blight book series: Acta Horticulturae 489: 615–617Google Scholar
  195. Vanneste JL, Cornish DA, Yu J, Voyle MD (2002) A new biological control agent for control of fire blight which can be sprayed or distributed using honey bees. In Hale C, Mitchell R (editors). Conference: 9th international workshop on fire blight location: Napier, New Zealand, October 8–12, 2001 proceedings of the IXth international workshop on fire blight. Acta Horticulturae 590: 231–235Google Scholar
  196. Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451Google Scholar
  197. Verdera OY (2015) Prestop Mix safety data sheet. Available at: (Accessed 8 Jan 2016)
  198. Weiser J (1957) Možnosti biologisckeho boje přátevnićkem americkym (Hyphantria cunea Drury). III. Czech Parasitol 4:359–367Google Scholar
  199. Wells PM, Baverstock J, Majerus MEN, Jiggins FM, Roy HE, Pell JK (2011) The effect of the coccinellid Harmonia axyridis (Coleoptera: Coccinellidae) on transmission of the fungal pathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae). Eur J Entomol 108:87–90Google Scholar
  200. Woronin M (1888) Über die Sclerotienkrankheit de Vaccinieen-Beeren. Memoires de l’Academie Imperiale des Sciences de Saint Petersbourg, Series VII, 36(6): 1–49Google Scholar
  201. Young SY, Yearian WC (1987) Nabis roseipennis adults (Hemiptera: Nabidae) as disseminators of nuclear polyhedrosis virus to Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae. Environ Entomol 16:1330–1333Google Scholar
  202. Yu H, Sutton JC (1997) Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol Control 10:113–122Google Scholar
  203. Zhu H, Kim JJ (2012) Target-oriented dissemination of Beauveria bassiana conidia by the predators, Harmonia axyridis (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) for biocontrol of Myzus persicae. Biocontrol Sci Tech 22:393–406Google Scholar
  204. Zimmermann G (1993) The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic Sci 37:375–379Google Scholar
  205. Zimmermann G (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Tech 17:553–596. Scholar
  206. Zimmermann G (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Tech 17:879–920Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.Agriculture and Agri-Food Canada, Harrow Research and Development CentreHarrowCanada
  3. 3.Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations