Advertisement

Surface Enhanced Raman Spectroscopy-Based Bio-molecular Detectors

  • Sovan Kumar PandaEmail author
Chapter
Part of the Reviews in Plasmonics book series (RIP, volume 2017)

Abstract

This chapter aims to describe multifarious schemes of detecting bio-molecules by using surface enhanced Raman spectroscopy (SERS)-substrates. At first, current state of knowledge concerning the mechanism of SERS, SERS-active materials and various parameters that influence SERS have been discussed. Classification of SERS substrates, depending on their physical structures, has been reported in the following section. Finally, fabrication methods and recent applications of SERS including sensing, single molecule SERS, and real-world applications for bio-molecular probing have been highlighted.

Keywords

Surface enhanced Raman scattering (SERS) Electromagnetic hotspot SERS substrate Nobel metal nanoparticles Bio-molecular detector 

Notes

Acknowledgements

The authors acknowledge all the supports of DST-INSPIRE Faculty Project, DST, New Delhi, Govt. of India [IFA 12-ENG17] for this work.

References

  1. 1.
    Krug JT, Wang GD, Emory SR, Nie S (1999) J Am Chem Soc 121:9208–9214CrossRefGoogle Scholar
  2. 2.
    Emory SR, Haskins S, Nie S (1998) J Am Chem Soc 120:8009–8010CrossRefGoogle Scholar
  3. 3.
    Nie S, Emory SR (1997) Science 275:1102–1106CrossRefGoogle Scholar
  4. 4.
    Shankaran DR, Gobi KV, Miura N (2007) Sens Actuator B 121:158–177Google Scholar
  5. 5.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  6. 6.
    Barhoumi A, Zhang D, Tam F, Halas NJ (2008) J Am Chem Soc 130:5523–5529CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Qian K, Yang L, Li Z, Liu JJ (2013) Raman Spectrosc 44:21–28CrossRefGoogle Scholar
  8. 8.
    Zhang L (2013) Appl Surf Sci 270:292–294CrossRefGoogle Scholar
  9. 9.
    Jung J, Choo J, Kim DJ, Lee S (2006) Bull Korean Chem Soc 27:277–280CrossRefGoogle Scholar
  10. 10.
    Marnian-Lopez MB, Poppi R (2013) Anal Chim Acta 760:53–59CrossRefGoogle Scholar
  11. 11.
    Zhang XF, Zou MQ, Qi XH, Liu F, Zhu XH, Zhao BHJ (2010) Raman Spectrosc 41:1655–1660CrossRefGoogle Scholar
  12. 12.
    Yonjon CR, Haynes CL, Zhang X, Walsh JT, Van Duyne RP Jr (2004) Anal Chem 76:78–85Google Scholar
  13. 13.
    Moskovits M, Suh JSJ (1984) Phys Chem 88:5526–5530CrossRefGoogle Scholar
  14. 14.
    Brolo AG, Jiang Z, Irish DE (2003) J Electroanal Chem 547:163–172CrossRefGoogle Scholar
  15. 15.
    Link, El-Sayed MA (2003) Annu Rev Phys Chem 54:331–366Google Scholar
  16. 16.
    Etchegoin PG, Le Ru EC (2011) Surface enhanced Raman spectroscopy: biophysical and life science applications (Schlucker S, ed) Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Kneipp K, Moskovits M, Kneipp H (eds) (2006) Surface-enhanced Raman scattering. In: Schatz GC, Young MA, van Duyne RP Electromagnetic mechanism of SERS, vol 103. Springer, Berlin, pp 19–46Google Scholar
  18. 18.
    Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Mock J, Barbic M, Smith D, Schultz D, Schultz S (2002) J Chem Phys 116:6755–6759CrossRefGoogle Scholar
  20. 20.
    Sun Y, Xia Y (2003) Analyst 128:686–691CrossRefGoogle Scholar
  21. 21.
    Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Procedia Chem 1:1560–1566CrossRefGoogle Scholar
  22. 22.
    Papavassiliou GC (1980) Prog Solid State Chem 12:185CrossRefGoogle Scholar
  23. 23.
    Aravind PK, Nitzan A, Metiu H (1981) Surf Sci 110:189CrossRefGoogle Scholar
  24. 24.
    Gérardy JM, Ausloos M (1983) Phys Rev B 27:6446Google Scholar
  25. 25.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) Mater Today 15:17CrossRefGoogle Scholar
  26. 26.
    Fleischmann M, Hendra PJ, Mc Quillan A (1974) J Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  27. 27.
    Jeanmaire DL, Van Duyne RPJ (1977) Electroanal Chem Interfacial Electrochem 84:1–20CrossRefGoogle Scholar
  28. 28.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215–5217CrossRefGoogle Scholar
  29. 29.
    Barber TE, List MS, Hass JW, Wachter EA (1994) Appl Spectrosc 48:1423–1427CrossRefGoogle Scholar
  30. 30.
    Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 75:790–798Google Scholar
  31. 31.
    Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu A, Braescu C, Leopold N (2013) Nanoscale Res Lett 8:47–51CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R (2011) Opt Express 19:13565–13577CrossRefGoogle Scholar
  33. 33.
    Mikac L, Ivanda M, Gotic M, Mihelj T, Horvat LJ (2014) Nanoparticle Res 16:2748CrossRefGoogle Scholar
  34. 34.
    Vinod M, Gopchandran KG (2014) Prog Nat Sci Mater Int 24:569–578CrossRefGoogle Scholar
  35. 35.
    Premasiri WR, Clarke RH, Womble ME (2001) Lasers Surg Med 28:330–334CrossRefGoogle Scholar
  36. 36.
    Li T, Guo L, Wang Z (2008) Anal Sci 24:907–910CrossRefGoogle Scholar
  37. 37.
    Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Appl Phys Lett 82:257–259CrossRefGoogle Scholar
  38. 38.
    Prodan E, Nordlander P, Halas NJ (2003) Nano Lett 3:1411–1415CrossRefGoogle Scholar
  39. 39.
    Van Duyne RP, Haushalter JP (1983) J Phys Chem 87:2999–3003CrossRefGoogle Scholar
  40. 40.
    McAughtrie S, Lau K, Faulds K, Graham D (2013) Chem Sci 4:3566–3572CrossRefGoogle Scholar
  41. 41.
    Yang Y, Shi J, Kawamura G, Nogami M (2008) Scr Mater 58:862–865CrossRefGoogle Scholar
  42. 42.
    Lim D-K, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M (2011) Nature Nanotechnol 6:452–460Google Scholar
  43. 43.
    Jana D, Gorunmez Z, He J, Bruzas I, Beck T, Sagle L (2016) J Phys Chem C 120:20814–20821CrossRefGoogle Scholar
  44. 44.
    Kneipp K, Yang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  45. 45.
    Yang J, Tan X, Shih W-C, Cheng MM-C (2014) Biomed Microdevices 16:673–679Google Scholar
  46. 46.
    Jiang ZY, Jiang XX, Su S, Wei XP, Lee ST, He Y (2012) Appl Phys Lett 100(203104):1–4Google Scholar
  47. 47.
    Liu B, Lin M, Li H (2010) Sens Instrument Food Qual 4:13–19CrossRefGoogle Scholar
  48. 48.
    Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, Geobaldo F (2008) Appl Surf Sci 254:7494–7497CrossRefGoogle Scholar
  49. 49.
    Castillo F, Perez E, de la Rosa E (2011) Revista Maxicana de Fisica S57:61–65Google Scholar
  50. 50.
    Cerf A, Molnar G, Vieu C (2009) Appl Mater Interface 1:2544–2550CrossRefGoogle Scholar
  51. 51.
    Gunnarsson L, Bjerneld EJ, Xu H, Petronis S, Kasemo B, Kall M (2001) Appl Phys Lett 78:802–804CrossRefGoogle Scholar
  52. 52.
    Peters RF, Gutierrez-Rivera L, Dew SK, Stepanova M (2015) J Vis Exp 97:1–17Google Scholar
  53. 53.
    Green M, Ming Liu F (2003) J Phys Chem B 107:13015–13021CrossRefGoogle Scholar
  54. 54.
    Alvarez-Puebla R, Cui B, Bravo-Vasquez J-P, Veres T, Fenniri H (2007) J Phys Chem C 111:6720–6723CrossRefGoogle Scholar
  55. 55.
    Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114–3116CrossRefGoogle Scholar
  56. 56.
    Wang Y, Wang W, Liu L, Feng L, Zeng Z, Li H, Xu W, Wu Z, Hu W et al (2013) Nano Res 6:159–166CrossRefGoogle Scholar
  57. 57.
    Li M, Zhao F, Zeng J, Qi J, Lu J, Shih W (2014) C. J Biomed Opt 19(111611):1–8Google Scholar
  58. 58.
    Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir. Nano Lett 3:1229–1233Google Scholar
  59. 59.
    Panda SK, Jacob C (2009) Appl Phys A 96:805–811CrossRefGoogle Scholar
  60. 60.
    Fazio B, D’Andrea C, Foti A, Messina E, Irrera A, Donato MG, Villari V, Micali N, Maragò OM, Gucciardi P (2016) G Sci Rep 6(26952):1–13Google Scholar
  61. 61.
    Lee SJ, Morrill AR, Moskovits M, Hot J (2006) Am Chem Soc 128:2200–2201CrossRefGoogle Scholar
  62. 62.
    Netzer NL, Tanaka Z, Chen B, Jiang C (2013) J Phys Chem C 117:16187–16194CrossRefGoogle Scholar
  63. 63.
    En-zhong T (2014) Optoelectron Lett 10:241–243CrossRefGoogle Scholar
  64. 64.
    Huang Z, Zhang X, Reiche M, Liu L, Lee W, Shimizu T, Senz S, Gosele U (2008) Nano Lett 8:3046–3051CrossRefGoogle Scholar
  65. 65.
    Chakraborti S, Basu RN, Panda SK (2018) Plasmonics, 13:1057–1080Google Scholar
  66. 66.
    Ma Y, Zhou J, Zou W, Jia Z, Petti L, Mormile P (2014) J Nanosci Nanotechnol 14:4245–4250CrossRefGoogle Scholar
  67. 67.
    Khlebtsov BN, Khanadeev VA, Tsvetkov MY, Bagratashvili VN, Khlebtsov NG (2013) J Phys Chem C 117:23162–23171CrossRefGoogle Scholar
  68. 68.
    Fu Q, Zhang DG, Yi MF, Wang XX, Chen YK, Wang P, Ming H (2012) J Opt 14:085001CrossRefGoogle Scholar
  69. 69.
    Wang X, Zhou L, Wei G, Jiang T, Zhou J (2016) RSC Adv 6:708–715CrossRefGoogle Scholar
  70. 70.
    Schmidt DA, Kopf I, Bründermann E (2012) Laser Photon Rev 6:296CrossRefGoogle Scholar
  71. 71.
    Wessel J (1985) J Opt Soc Am B 2:1538–1551CrossRefGoogle Scholar
  72. 72.
    Stockle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136CrossRefGoogle Scholar
  73. 73.
    Steidtner J, Pettinger B (2008) Phys Rev Lett 100:236101CrossRefGoogle Scholar
  74. 74.
    Sun MT, Zhang ZL, Zheng HR, Xu HX (2012) Sci Rep 2:647CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Seideman T, Scheidt KA, Jensen L, Schatz GC, Van Duyne RP (2011) J Phys Chem C 116:478Google Scholar
  76. 76.
    Domke KF, Pettinger B (2010) Chem Phys Chem 11:1365–1373CrossRefGoogle Scholar
  77. 77.
    Bailo E, Deckert V (2008) Chem Soc Rev 37:921–930CrossRefGoogle Scholar
  78. 78.
    Zhang Z, Sheng S, Wang R, Sun M (2016) Anal Chem 88:9328–9346CrossRefGoogle Scholar
  79. 79.
    Sha MY, Xu H, Natan MJ, Cromer R (2009) J Am Chem Soc 130:17214–17215CrossRefGoogle Scholar
  80. 80.
    Usta DD, Salimi K, Pinar A, Coban I, Tekinay T, Tuncel A (2016) ACS Appl Mater Interface 8:11934–11944CrossRefGoogle Scholar
  81. 81.
    Wang Y, Yan B, Chen L (2013) Chem Rev 113:1391–1428CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ElectronicsBidhan Chandra CollegeRishra, HooghlyIndia

Personalised recommendations