Metal Nanoparticles Dispersed in Epoxy Resin: Synthesis, Optical Properties and Applications

  • Víctor RenteríaEmail author
  • Alfredo Franco
Part of the Reviews in Plasmonics book series (RIP, volume 2017)


Tuning, splitting and broadening of the surface plasmon resonance as well as infrared polarization and forward scattering are interesting optical properties coming from metal nanoparticles dispersed in epoxy resin systems. The plasmonic properties are strongly influenced by the metal, viscosity of the resin, solvent, curing and stabilizing agent, filling factor, size, shape and aggregated states of the metal nanoparticles. Specifically, tuning can be achieved by controlling the size and shape of the spherical nanoparticles. Splitting and broadening of the surface plasmon is caused by elongated nanoparticles and their aggregated states, respectively. Metal nanowires aligned in the same direction exhibit infrared polarization, whereas forward scattering is achieved by nucleated particles above 30 nm. The metal nanoparticles can be prepared by thermal vacuum deposition, ion implantation, solvothermal, photochemical, and chemical reduction synthesis. Furthermore, the metal nanoparticles dispersed in epoxy resin/curing agent can be used to prepare a variety of materials such as molded bulk pieces, paints and coatings deposited on dielectric, metallic or semiconductor substrates. Nowadays, the study of the optical properties of metal nanostructures dispersed in epoxy resin systems has generated strong interest due to many potential applications including plasmonic photothermal conversion, light trapping, optical modulation, imaging, surface enhanced Raman spectroscopy and sensing.


Optical applications Plasmonic properties Epoxy resin Metal nanoparticles 


  1. 1.
    Boyle MA, Martin CJ, Neuner JD (2003) ASM handbook/extraction epoxy resins. Prof. H. Hansmann Hochschule Wismar FB MVU, 2003, Werkstofftechnologien/KunststofftechnikGoogle Scholar
  2. 2.
    Ellis B (ed) (1993) Chemistry and technology of epoxy resins. Blackie Academic and Professional, London, pp 42–43Google Scholar
  3. 3.
  4. 4.
    Lancaster JK (1972) Polymer-based bearing materials: the role of fillers and fibre reinforcement. Tribol Int 5:249–255CrossRefGoogle Scholar
  5. 5.
    Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264CrossRefGoogle Scholar
  6. 6.
    Sun Y, Zhang Z, Moon KS, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci Part B: Polym Phys 42:3849–3858Google Scholar
  7. 7.
    Kahraman R, Sunar M, Yilbas B (2008) Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J Mater Process Technol 205:183–189CrossRefGoogle Scholar
  8. 8.
    Goh CF, Yu H, Yong SS, Mhaisalkar SG, Boey FYC, Teo PS (2005) Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles. Mater Sci Eng, B 117:153–158CrossRefGoogle Scholar
  9. 9.
    Zhu J, Wei S, Ryu J, Sun L, Luo Z, Guo Z (2010) Magnetic epoxy resin nanocomposites reinforced with core−shell structured Fe@Feo nanoparticles: fabrication and property analysis. ACS Appl Mater Interfaces 2:2100–2107CrossRefGoogle Scholar
  10. 10.
    Zhang X, Cheng X, Yin H, Yuan J, Xu C (2008) Preparation of needle shaped nano-copper by microwave-assisted water system and study on its application of enhanced epoxy resin coating electrical conductivity. Appl Surf Sci 254:5757–5759CrossRefGoogle Scholar
  11. 11.
    Mohd Hirmizi NH, Abu Bakar M, Tan WL, Abu Bakar NHH, Ismail J, See CH (2012) Electrical and thermal behavior of copper-epoxy nanocomposites prepared via aqueous to organic phase transfer technique. J Nanomater 2012:1–11CrossRefGoogle Scholar
  12. 12.
    Mohd Akib NA, Mohd Hirmizi NH, Tan WL, Abu Bakar NHH, Abu Bakar M, Ismail J, Teoh CH, See CH (2015) Synthesis of dispersed and self-assembled metal particles in epoxy via aqueous to organic phase transfer technique. Int J Theor Appl Nanotechnol 3:9–19Google Scholar
  13. 13.
    Lu J, Moon KS, Xu J, Wong CP (2006) Synthesis and dielectric properties of novel high-K polymer composites containing In-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem 16:1543–1548CrossRefGoogle Scholar
  14. 14.
    Molina YA, Tapia VR, Calva EB (2016) Silver nanoparticles in epoxy resin deposited on silicon substrates for light trapping. Plasmonics 11:971–979CrossRefGoogle Scholar
  15. 15.
    Rentería-Tapia V, Velásquez-Ordoñez C, Martínez MO, Barrera-Calva E, González-García F (2014) Silver nanoparticles dispersed on silica glass for applications as photothermal selective material. Energy Procedia 57:2241–2248CrossRefGoogle Scholar
  16. 16.
    Feng J, Ma X, Mao H, Liu B, Zhao X (2011) Ag/Epoxy nanocomposite film with aligned Ag nanowires and their polarization property. J Mater Res 26:2691–2700CrossRefGoogle Scholar
  17. 17.
    Stepanov AL, Valeev VF, Osin YN, Nuzhdin VI, Faizrakhmanov IA (2009) Formation of silver nanoparticles during deposition onto viscous-fluid epoxy resin. Tech Phys 54:997–1001CrossRefGoogle Scholar
  18. 18.
    Stepanov AL, Khaibullin RI, Valeev VF, Osin YN, Nuzhdin VI, Faizrakhmanov IA (2009) Ion synthesis of silver nanoparticles in viscous-fluid epoxy resin. Tech Phys 54:1162–1167CrossRefGoogle Scholar
  19. 19.
    Tapia VR, Tizapa MS, Mora ER, Martínez MLO, Franco A, Calva EB (2016) Solvent-induced morphological changes of polyhedral silver nanoparticles in epoxy resin. Plasmonics 11:1417–1426CrossRefGoogle Scholar
  20. 20.
    Sangermano M, Yagci Y, Rizza G (2007) In Situ synthesis of silver-epoxy nanocomposites by photoinduced electron transfer and cationic polymerization processes. Macromolecules 40:8827–8829CrossRefGoogle Scholar
  21. 21.
    Yagci Y, Sahin O, Ozturk T, Marchi S, Grassini S, Sangermano M (2011) Synthesis of silver/epoxy nanocomposites by visible light sensitization using highly conjugated thiophene derivatives. React Funct Polym 71:857–862CrossRefGoogle Scholar
  22. 22.
    Yagci Y, Sangermano M, Rizza G (2008) Synthesis and characterization of gold−epoxy nanocomposites by visible light photoinduced electron transfer and cationic polymerization processes. Macromolecules 41:7268–7270CrossRefGoogle Scholar
  23. 23.
    Chandra S, Doran J, McCormack SJ, Kennedy M, Chatten AJ (2012) Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction. Sol Energy Mater Sol Cells 98:385–390CrossRefGoogle Scholar
  24. 24.
    Pardinas-Blanco I, Hoppe CE, López-Quintela MA, Rivas J (2007) Control on the dispersion of gold nanoparticles in an epoxy network. J Non-Cryst Solids 353:826–828CrossRefGoogle Scholar
  25. 25.
    Yagci Y, Jockusch S, Turro NJ (2010) Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43:6245–6260CrossRefGoogle Scholar
  26. 26.
    Balan L, Malval JP, Lougnot J (2010) In situ photochemically assisted synthesis of silver nanoparticles in polymer matrixes. In: Perez DP (ed) Silver nanoparticles, InTech Open, Rijekai Croatia, pp 79–92Google Scholar
  27. 27.
    Tasdelen MA, Yagci Y (2011) Photochemical methods for the preparation of complex linear and cross-linked macromolecular structures. Aust J Chem 64:982–991CrossRefGoogle Scholar
  28. 28.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function af their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  29. 29.
    Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341CrossRefGoogle Scholar
  30. 30.
    Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefGoogle Scholar
  31. 31.
    Sastry M (2003) Phase transfer protocols in nanoparticle synthesis. Curr Sci 85:1735–1745Google Scholar
  32. 32.
    Solis-Tinoco V, Sepulveda B, Lechuga LM (2015) Novel nanoplasmonic biosensor integrated in a microfluidic channel. Proc SPIE 9519:95190TCrossRefGoogle Scholar
  33. 33.
    Jose J, Jordan LR, Johnson TW, Lee SH, Wittenberg NJ, Oh S-H (2013) Topographically flat substrates with embedded nanoplasmonic devices for biosensing. Adv Funct Mater 23:2812–2820CrossRefGoogle Scholar
  34. 34.
    Bharadwaj R, Tripathi R, Prabhakar A, Mukherji S (2013) S-shaped SU-8 optical waveguide immobilized with gold nanoparticles for trace detection of explosives. Proc SPIE 8924:892424CrossRefGoogle Scholar
  35. 35.
    Marquez DT, Scaiano JC (2015) Plasmon induced self-assembly of gold nanorods in polymer films. Chem Commun 51:1911–1913CrossRefGoogle Scholar
  36. 36.
    Vizsnyiczai G, Lestyán T, Joniova J, Aekbote BL, Strejčková A, Ormos P, Miskovsky P, Kelemen L, Bánó G (2015) Optically trapped surface-enhanced raman probes prepared by silver photoreduction to 3D microstructures. Langmuir 31:10087–10093CrossRefGoogle Scholar
  37. 37.
    Park S-G, Hwang H, Yang S-M (2013) Fabrication of highly uniform three-dimensional SERS substrates by control of wettability. J Mater Chem C 1:426–431CrossRefGoogle Scholar
  38. 38.
    Altuna FI, Antonacci J, Arenas GF, Pettarin V, Hoppe CE, Williams RJJ (2016) Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks. Mater Res Express 3:045003CrossRefGoogle Scholar
  39. 39.
    Leonardi AB, Puig J, Antonacci J, Arenas GF, Zucchi IA, Hoppe CE, Reven L, Zhu L, Toader V, Williams RJJ (2015) Remote activation by green-light irradiation of shape memory epoxies containing gold nanoparticles. Eur Polym J 71:451–460CrossRefGoogle Scholar
  40. 40.
    Latterman RE, Birrell S, Sullivan PA, Walker RA (2016) Improved pulsed laser operation with engineered nanomaterials. ACS Appl Mater Interfaces 8:19724–19731CrossRefGoogle Scholar
  41. 41.
    Khosla A, Gray BL (2010) Photopatternable electrical conductive Ag-SU-8 nanocomposite for MEMS/MST. ECS Trans 33:313–318CrossRefGoogle Scholar
  42. 42.
    Jiguet S, Bertsch A, Hofmann H, Renaud P (2004) Su8-silver photosensitive nanocomposite. Adv Eng Mater 6:719–724CrossRefGoogle Scholar
  43. 43.
    Jiguet S, Bertsch A, Hofmann H, Renaud P (2005) Conductive SU8-silver composite photopolymer. Adv Func Mater 15:1511–1516CrossRefGoogle Scholar
  44. 44.
    Fischer SV, Uthuppu B, Jakobsen MH (2015) In situ SU-8 silver nanocomposites. Beilstein J. Nanotechnol 6:1661–1665CrossRefGoogle Scholar
  45. 45.
    Ji Y-H, Liu Y, Huang G-W, Shen X-J, Xiao H-M, Fu S-Y (2015) Ternary Ag/Epoxy adhesive with excellent overall performance. ACS Appl Mater Interfaces 7:8041–8052CrossRefGoogle Scholar
  46. 46.
    Devarajan M, Sidek O, Kok Siong L, Ibrahim K, Abdul Azid I (2013) SU-8 piezoresistive microcantilever with high gauge factor. Micro Nano Lett. 8:123–126CrossRefGoogle Scholar
  47. 47.
    Araujo WWR, Teixeira FS, Da Silva GN, Salvadori DMF, Salvadori MC (2014) Cell adhesion and growth on surfaces modified by plasma and ion implantation. J Appl Phys 115:154701CrossRefGoogle Scholar
  48. 48.
    Akhavan O, Abdolahad M, Asadi R (2009) Storage of Ag nanoparticles in pore arrays of SU-8 matrix for antibacterial applications. J Phys D Appl Phys 42:135416CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles-Universidad de GuadalajaraAmecaMexico
  2. 2.R&D DepartmentCellbiocanParbayonSpain

Personalised recommendations