Tunable Plasmonic Properties of Nanoshells

  • Maryam SaliminasabEmail author
  • Rostam Moradian
  • Farzad Shirzaditabar
Part of the Reviews in Plasmonics book series (RIP, volume 2017)


In this chapter, tunable plasmonic properties of multilayer spherical nanoshells based on quasi static approach and plasmon hybridization theory are investigated. The bimetallic nanoshells with three intensive plasmon resonances could be used as excellent replacement for monometallic nanoshell, with double plasmon resonances, in sensing applications based on surface enhanced Raman scattering (SERS), because the Raman scattering could be greatly enhanced at plasmon resonances. The plasmon resonance peaks in bimetallic nanoshells are optimized by tuning the geometrical parameters. In addition, the optimal geometry is discussed to obtain the Raman enhancement factor in bimetallic multilayer nanoshell. SERS enhancement factor is calculated with consideration of dampings due to both the electron scattering and the radiation at the boundary and modified Drude model in dielectric function of bimetallic nanoshell. Beyond the geometrical parameters, the refractive index of surrounding medium can also affect the plasmon resonance of the bimetallic nanoshells. Any variation in blood concentration and oxygen level can be detected by these bimetallic nanoshells with high sensitivity.


Nanoshell Electric field Surface plasmon Raman scattering Sensitivity 


  1. 1.
    Brongersma ML (2003) Nanoshells: gifts in a gold wrapper. Nat Mater 2:296–297CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to wave guiding. Nat Photon 1:3641–3648CrossRefGoogle Scholar
  3. 3.
    Goh D, Gong T, Dinish US, Maiti KK, Fu CY, Young KT, Olivo M, Triblock P (2012) Pluronic triblock copolymer encapsulated gold nanorods as biocompatible localized plasmon resonance-enhanced scattering probes for dark-field imaging of cancer cells. Plasmonics 7:595–601CrossRefGoogle Scholar
  4. 4.
    Khlebtsov B, Khanadeev V, Khlebtsov N (2010) Tunable depolarized light scattering from gold and gold/silver nanorods. Phys Chem 12:3210–3218Google Scholar
  5. 5.
    Dong J, Qu S, Zhang Z, Liu M, Liu G, Yan X, Zheng H (2012) Surface enhanced fluorescence on three dimensional silver nanostructure substrate. J Appl Phys 111:093101–093104CrossRefGoogle Scholar
  6. 6.
    Kumar S, Goel P, Singh DP, Singh JP (2014) Highly sensitive superhydrophobic Ag nanorods array substrates for surface enhanced fluorescence studies. Appl Phys Lett 104:023107–023110CrossRefGoogle Scholar
  7. 7.
    Wen X, Zhang Q, Chai J, Wong LM, Wang S, Xiong Q (2014) Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering. Opt Express 22:2989–2995CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ma WY, Wu ZW, Zhang LH, Zhang J, Jian GS, Pan S (2013) Theoretical study of the local surface plasmon resonance properties of silver nanosphere clusters. Plasmonics 8:1351–1360CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang YJ, Gao WT, Yang S, Liu SS, Zhao XY, Gao M, Wang YX, Yang H (2013) Nanogaps in 2D Ag-nanocap arrays for surface enhanced Raman scattering. J Raman Spectrosc 44:1666–1670CrossRefGoogle Scholar
  10. 10.
    Yi MF, Zhang DG, Wen XL, Fu Q, Wang P, Lu YH, Ming H (2011) Fluorescence enhancement caused by plasmonic coupling between silver nanocubes and silver film. Plasmonics 6:213–217CrossRefGoogle Scholar
  11. 11.
    Acevedo R, Lomardini R, Halas NJ, Johnson BR (2009) Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J Phys Chem A 113:13173–13183CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Politano A, Chiarello G (2015) The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films. Prog Surf Sci 90:144–193CrossRefGoogle Scholar
  13. 13.
    Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRefGoogle Scholar
  14. 14.
    Willets KA (2012) Probing local electromagnetic field enhancements on the surface of plasmonic nanoparticles. Prog Surf Sci 87:209–220CrossRefGoogle Scholar
  15. 15.
    Enriquez AC, Rivero Espejel IA, Andrés García E, Diaz-García ME (2008) Enhanced resonance light scattering properties of gold nanoparticles due to cooperative binding. Anal Bioanal Chem 391:807–815CrossRefGoogle Scholar
  16. 16.
    He J, Fan C, Wang J, Ding P, Cia G, Cheng Y, Zhu S, Liang E (2013) A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance. J Opt 15:025007–025014CrossRefGoogle Scholar
  17. 17.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chau YF, Chen MW, Tsai DP (2009) Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod. Appl Opt 48:617–622CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sung MJ, Ma YF, Chau YF, Huang DW (2010) Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 nm. Appl Opt 49:6295–6301CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lin J, He W, Vilayurganapathy S, Peppernick SJ, Wang B, Palepu S, Remec M, Hess WP, Hmelo AB, Pantelides ST, Dickerson JH (2013) Growth of solid and hollow gold particles through the thermal annealing of nanoscale patterned thin films. ACS Appl Mater Interf 5:11590–11596CrossRefGoogle Scholar
  21. 21.
    Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Charles DE, Aherne D, Gara M, Ledwith DM, Gun’ko YK, Kelly JM, Blau WJ, Brennan-Fournet ME (2010) Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. ACS Nano 4:55–64Google Scholar
  23. 23.
    Chirumamilla M, Gopalakrishnan A, Toma A, Zaccaria RP, Krahne R (2014) Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25:235303–235311CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7:1256–1263CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    He W, Vilayurganapathy S, Joly AG, Droubay TC, Chambers SA, Maldonado JR, Hess WP (2013) Comparison of CsBr and KBr coated Cu photocathodes: effects of laser irradiation and work function changes. Appl Phys Lett 102:071604–071608CrossRefGoogle Scholar
  27. 27.
    Polyakov A, Senft C, Thompson KF, Feng J, Cabrini S, Schuck PJ, Padmore HA, Peppernick SJ, Hess WP (2013) Plasmon-enhanced photocathode for high brightness and high repetition rate X-Ray sources. Phys Rev Lett 110:076802–076806Google Scholar
  28. 28.
    Oldenburg S, Jackson J, Westcott S, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899CrossRefGoogle Scholar
  29. 29.
    Shirzaditabar F, Saliminasab M (2013) Optimization of SDS nanoshell for sensing applications. Phys Plasmas 20:082112–082116CrossRefGoogle Scholar
  30. 30.
    Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of Agcore Aushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56:150–154CrossRefGoogle Scholar
  32. 32.
    Lin AW, Lewinski NA, West JL, Halas NJ, Drezek RA (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10:064035–064044CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheng FY, Chen CT, Yeh CS (2009) Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods. Nanotechnology 20:425104–425112CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Park J, Estrada A, Sharp K, Sang K, Schwartz JA, Smith DK, Coleman C, Payne JD, Korgel BA, Dunn AK, Tunnell JW (2008) Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt Express 16:1590–1599CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shirzaditabar F, Saliminasab M, Arghavani Nia B (2014) Triple plasmon resonance of bimetal nanoshell. Phys Plasmas 21:072102–072105CrossRefGoogle Scholar
  36. 36.
    Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y (2012) A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosensing Bioelectrics 38:94–99CrossRefGoogle Scholar
  37. 37.
    Afkhami Garaei M, Saliminasab M, Nadgaran H, Moradian R (2016) A hybrid plasmonic bimetallic nanoshell-microsphere sensor for cancer market protein detection. Plasmonics. Scholar
  38. 38.
    Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383CrossRefGoogle Scholar
  39. 39.
    Qian J, Wang WD, Li YD, Xu JJ, Sun Q (2012) Optical extinction properties of perforated gold-silica-gold multilayer nanoshells. J Phys Chem C 116:10349–10355CrossRefGoogle Scholar
  40. 40.
    Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579–19591CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrate. Nano Lett 5:1569–1574CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  44. 44.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys 73:3023–3037CrossRefGoogle Scholar
  46. 46.
    Moskovits M (1985) Surface enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  47. 47.
    Jackson JB, Halas NJ (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105:2743–2746CrossRefGoogle Scholar
  48. 48.
    Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39:433–450CrossRefGoogle Scholar
  49. 49.
    Kim JH, Bryan WW, Randall Lee T (2006) Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Langmuir 24:11147–11152CrossRefGoogle Scholar
  50. 50.
    Kang H, Yang JK, Noh MS, Jo A, Jeong S, Lee M, Lee S, Chang H, Lee H, Jeon SJ, Kim HI, Cho MH, Lee HY, Kim JH, Jeong DH, Lee YS (2014) One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B 28:4415–4421CrossRefGoogle Scholar
  51. 51.
    Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, Garcıá de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805Google Scholar
  52. 52.
    Zhi Y, Manchee CPK, Silverstone JW, Zhang Z, Meldrum A (2013) Refractometric sensing with silicon quantum dots coupled to a microsphere. Plasmonics 8:71–78CrossRefGoogle Scholar
  53. 53.
    Quan H, Guo Zh (2005) Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. J Quant Spectrosc Radiant Transfer 93:231–243CrossRefGoogle Scholar
  54. 54.
    Heebner J, Grover R, Ibrahim T (2008) Optical microresonator: theory, fabrication and applications. Springer Series in optical sciences. Springer, BerlinGoogle Scholar
  55. 55.
    Vahala KJ (2003) Review article optical microcavities. Nature 424:839–846CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21:453–455CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vollmer F, Arnold S, Keng D (2008) Single virus detection from the reactive shift of a whispering-gallery. Mode Proc Natl Acad Sci USA 105:20701–20704Google Scholar
  58. 58.
    Spillane SM, Kippenberg TJ, Vahala KJ (2002) Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415:621–623CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Maier SA (2007) Plasmonic: fundamental and applications. Springer, New YorkCrossRefGoogle Scholar
  60. 60.
    Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832CrossRefGoogle Scholar
  61. 61.
    Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  62. 62.
    Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F: Metal Phys 4:999–1014CrossRefGoogle Scholar
  63. 63.
    Gildenburg VB, Kostin VA, Pavlichenko IA (2011) Resonances of surface and volume plasmons in atomic clusters. Phys Plasmas 18:092101–092106CrossRefGoogle Scholar
  64. 64.
    Hovel H, Fritz S, Hilger A, Kreibig U (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178–18188CrossRefGoogle Scholar
  65. 65.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  66. 66.
    Geometrical parameters effects on local electric field enhancement of SDS multilayer nanoshell. Phys Plasmas 20:052109 (2013)Google Scholar
  67. 67.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  68. 68.
    Shirzaditabar F, Saliminasab M (2013) Optimization of silver-dielectric-silver nanoshell for sensing applications. Phys Plasmas 20:082112–082116Google Scholar
  69. 69.
    Shirzaditabar F, Saliminasab M (2014) Tunable optical properties of silver dielectric silver nanoshell. Int J Mod Phys B 28:1450134–1450145CrossRefGoogle Scholar
  70. 70.
    Du Y, Chen C, Zhou M, Dong S, Wang E (2011) Microfluidic electrochemical aptameric assay integrated on-chip: a potentially convenient sensing platform for the amplified and multiplex analysis of small molecules. Anal Chem 83:1523–1529CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chakravadhanula VSK, Elbahri M, Schürmann U, Takele H, Greve H, Zaporojtchenko V, Faupel F (2008) Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry. Nanotechnology 19:225302–225306CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wu DJ, Xu XD, Liu XJ (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Solid State Commun 148:163–167CrossRefGoogle Scholar
  73. 73.
    Friebel M, Meinke M (2006) Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 dependent of concentration. Appl Opt 45:2838–2842CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kang H, Yang JK, Noh MS, Jo A, Jeong A, Lee M, Lee S, Chang H, Lee H, Jeon SJ, Kim HI, Cho MH, Lee HY, Kim JH, Jeong DH (2014) One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B 2:4415–4421Google Scholar
  75. 75.
    Saliminasab M, Afkhami Garaei M, Moradian R, Nadgaran H (2016) Novel and sensitive core-shell nanoparticles based on surface plasmon resonance. Plasmonics. Scholar
  76. 76.
    Saliminasab M, Afkhami Garaei M, Moradian R, Nadgaran H (2016) The effect of bumpy structure on optical properties of bimetallic nanoshells. Plasmonics. Scholar
  77. 77.
    Rudziuk D, Moehwald H (2015) Prospects for plasmonic hot spots in single molecules SERS towards the chemical imaging of live cells. Phys Chem Chem Phys 17:21072–21093CrossRefGoogle Scholar
  78. 78.
    Moradian R, Saliminasab M (2017) Surface enhanced Raman scattering in tunable bimetallic core-shell. Plasmonics. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maryam Saliminasab
    • 1
    • 2
    Email author
  • Rostam Moradian
    • 1
    • 2
  • Farzad Shirzaditabar
    • 1
  1. 1.Department of PhysicsRazi UniversityKermanshahIran
  2. 2.Nano-Science and Nano-Technology Research Center, Razi UniversityKermanshahIran

Personalised recommendations