A Lithography-Free and Chemical-Free Route to Wafer-Scale Gold Nanoisland Arrays for SERS

Part of the Reviews in Plasmonics book series (RIP, volume 2017)


Noble metal nanostructures, when coupled with Raman spectroscopy, serve as a signal-enhancing medium for detection of molecules at trace level. The combination of noble metal nanostructures and Raman spectroscopy improve the detection ability of Raman spectroscopy by a magnitude of 106 or higher. The phenomenon is known as surface-enhanced Raman spectroscopy (SERS). The underlying mechanism of SERS is the interaction between light and noble metal nanostructures, specifically, the localized surface plasmon resonance around noble metal nanostructures. Translating this profound phenomenon of SERS into practical utilizations requires reproducible and scalable approaches to manufacture SERS-active noble metal nanostructures with well-defined nanoscale patterns. Ideally, lithography-based nanofabrication techniques, for example, electron beam lithography, appear to be the best choice for this purpose due to their power in writing nanoscale patterns with the best preciseness. However, the extremely low throughput and high cost of nanolithography prevent it from being realistic when it comes to wafer-scale fabrication. As an alternative, noble metal nanoisland arrays prepared by a controllable solid-state dewetting process, namely, cyclic deposition and anneal, have shown effectiveness to produce SERS-active nanostructures with reproducibility, scalability, and tunability. In this chapter, the growth methodology and the advantages of gold nanoisland arrays prepared by cyclic deposition and anneal for SERS will be reviewed. Compared to traditionally single process of deposition and anneal, the cyclic growth brings an appealing benefit that the pattern of gold nanoislands, i.e., size, shape, spacing, density, etc., are tunable. Despite intrinsically inferior to lithography-based techniques in tuning the nanoscale pattern, the cyclic grown gold nanoisland arrays hold a huge edge in cost reduction. Moreover, this technique does not involve any chemicals but pristine bulk gold, making it a truly clean fabrication process. Along with the advantages of scalability and reproducibility, gold nanoisland arrays resulting from cyclic deposition and anneal stand out as one of the most promising solutions to making SERS technology practical.


SERS Gold nanoislands Nanofabrication Dewetting Cyclic deposition and anneal Wafer-scale 


  1. 1.
    McCreery R (2000) Chemical analysis. Raman spectroscopy for chemical analysis. New York, USA, WileyCrossRefGoogle Scholar
  2. 2.
    Smith E, Dent G (2005) Modern Raman spectroscopy: a practical approach. Chichester, UK, WileyGoogle Scholar
  3. 3.
    Long D (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Chichester, UK, WileyCrossRefGoogle Scholar
  4. 4.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  5. 5.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  6. 6.
    Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3:31–37CrossRefGoogle Scholar
  7. 7.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Campion A, Ivanecky JE, Child CM, Foster M (1995) On the mechanism of chemical enhancement in surface-enhanced Raman scattering. J Am Chem Soc 117:11807–11808CrossRefGoogle Scholar
  9. 9.
    Kambhampati P, Child CM, Foster MC, Campion A (1998) On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J Chem Phys 108:5013–5026CrossRefGoogle Scholar
  10. 10.
    Kerker M (1984) Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids. Acc Chem Res 17:271–277CrossRefGoogle Scholar
  11. 11.
    Metiu H, Das P (1984) The electromagnetic theory of surface enhanced spectroscopy. Annu Rev Phys Chem 35:507–536CrossRefGoogle Scholar
  12. 12.
    Emory SR, Haskins WE, Nie S (1998) Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120:8009–8010CrossRefGoogle Scholar
  13. 13.
    Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J Phys Chem 91:634–643CrossRefGoogle Scholar
  14. 14.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van Duyne RP (2006) Introductory lecture surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433CrossRefGoogle Scholar
  17. 17.
    Yang WH, Schatz GC, Van Duyne RP (1995) Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys 103:869–875CrossRefGoogle Scholar
  18. 18.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  19. 19.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  20. 20.
    Wang DS, Kerker M (1981) Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys Rev B Condens Matter 24:1777–1790CrossRefGoogle Scholar
  21. 21.
    Blatchford CG, Campbell JR, Creighton JA (1982) Plasma resonance—enhanced raman scattering by absorbates on gold colloids: the effects of aggregation. Surf Sci 120:435–455CrossRefGoogle Scholar
  22. 22.
    Félidj N, Aubard J, Lévi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097CrossRefGoogle Scholar
  23. 23.
    Chang HL, Limei T, Abdennour A, Ramesh K, Srikanth S (2011) Directed assembly of gold nanorods using aligned electrospun polymer nanofibers for highly efficient SERS substrates. Nanotechnology 22:275311CrossRefGoogle Scholar
  24. 24.
    Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138–13142CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Das G, Chirumamilla M, Toma A, Gopalakrishnan A, Zaccaria RP, Alabastri A, Leoncini M, Di Fabrizio E (2013) Plasmon based biosensor for distinguishing different peptides mutation states. Sci Rep 3:1792CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Manohar C, Anisha G, Andrea T, Remo Proietti Z, Roman K (2014) Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25:235303CrossRefGoogle Scholar
  27. 27.
    McMahon JM, Li S, Ausman LK, Schatz GC (2011) Modeling the effect of small gaps in surface-enhanced Raman spectroscopy. J Phys Chem C 116:1627–1637CrossRefGoogle Scholar
  28. 28.
    Khorasaninejad M, Raeis-Zadeh SM, Jafarlou S, Wesolowski MJ, Daley CR, Flannery JB, Forrest J, Safavi-Naeini S, Saini SS (2013) Highly enhanced raman scattering of graphene using plasmonic nano-structure. Sci Rep 3:2936CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang T, Zhang J, Xue P, Chen H, Ye S, Wang S, Yu Y, Yang B (2014) Nanotransfer printing of gold disk, ring and crescent arrays and their IR range optical properties. J Mater Chem C 2:2333–2340CrossRefGoogle Scholar
  30. 30.
    Svedberg F, Li Z, Xu H, Käll M (2006) Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett 6:2639–2641CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Futamata M (2006) Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles. Faraday Discuss 132:45–61CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maher RC, Maier SA, Cohen LF, Koh L, Laromaine A, Dick JAG, Stevens MM (2009) Exploiting SERS hot spots for disease-specific enzyme detection. J Phys Chem C 114:7231–7235CrossRefGoogle Scholar
  34. 34.
    Sun X, Li H (2016) A review: nanofabrication of surface-enhanced Raman spectroscopy (SERS) substrates. Curr Nanosci 12:175–183CrossRefGoogle Scholar
  35. 35.
    Li K, Clime L, Tay L, Cui B, Geissler M, Veres T (2008) Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells. Anal Chem 80:4945–4950CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8:1923–1928CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Weisheng Y, Zhihong W, Yang Y, Longqing C, Ahad S, Kimchong W, Xianbin W (2012) Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J Micromech Microeng 22:125007CrossRefGoogle Scholar
  38. 38.
    Wei W, Min H, Fung Suong O, Zhiyong L, Williams RS (2010) Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 21:255502CrossRefGoogle Scholar
  39. 39.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611CrossRefGoogle Scholar
  40. 40.
    Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2004) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5:119–124CrossRefGoogle Scholar
  41. 41.
    Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2001) Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J Phys Chem B 106:853–860CrossRefGoogle Scholar
  42. 42.
    Chan S, Kwon S, Koo TW, Lee LP, Berlin AA (2003) Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv Mater 15:1595–1598CrossRefGoogle Scholar
  43. 43.
    Sun X, Wang N, Li H (2013) Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS). Appl Surf Sci 284:549–555CrossRefGoogle Scholar
  44. 44.
    Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, Geobaldo F (2008) Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Appl Surf Sci 254:7494–7497CrossRefGoogle Scholar
  45. 45.
    Xin S, Hao L (2013) Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy. Nanotechnology 24:355706CrossRefGoogle Scholar
  46. 46.
    Dixon MC, Daniel TA, Hieda M, Smilgies DM, Chan MHW, Allara DL (2007) Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23:2414–2422CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chaney SB, Shanmukh S, Dluhy RA, Zhao Y-P (2005) Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl Phys Lett 87:031908CrossRefGoogle Scholar
  48. 48.
    Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ, Zhao YP, Dluhy RA (2008) The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J Phys Chem C 112:895–901CrossRefGoogle Scholar
  49. 49.
    Liu Y, Fan J, Zhao Y-P, Shanmukh S, Dluhy RA (2006) Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate. Appl Phys Lett 89:173134CrossRefGoogle Scholar
  50. 50.
    Qian LH, Chen MW (2007) Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl Phys Lett 91:083105CrossRefGoogle Scholar
  51. 51.
    Biener J, Nyce GW, Hodge AM, Biener MM, Hamza AV, Maier SA (2008) Nanoporous plasmonic metamaterials. Adv Mater 20:1211–1217CrossRefGoogle Scholar
  52. 52.
    Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ding Y, Kim YJ, Erlebacher J (2004) Nanoporous gold leaf: “Ancient Technology”/advanced material. Adv Mater 16:1897–1900CrossRefGoogle Scholar
  54. 54.
    Sun X, Li H (2015) The influence of cyclic deposition and anneal on growth of isolated and well-dispersed Au nanoisland arrays. Appl Surf Sci 357(Part B):1836–1842Google Scholar
  55. 55.
    Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434CrossRefGoogle Scholar
  56. 56.
    Rha JJ, Park JK (1997) Stability of the grain configurations of thin films—a model for agglomeration. J Appl Phys 82:1608–1616CrossRefGoogle Scholar
  57. 57.
    Srolovitz DJ, Safran SA (1986) Capillary instabilities in thin films. I. Energetics. J Appl Phys 60:247–254CrossRefGoogle Scholar
  58. 58.
    Shaffir E, Riess I, Kaplan WD (2009) The mechanism of initial de-wetting and detachment of thin Au films on YSZ. Acta Mater 57:248–256CrossRefGoogle Scholar
  59. 59.
    Manuela Müller C, Spolenak R (2013) Dewetting of Au and AuPt alloy films: a dewetting zone model. J Appl Phys 113:094301CrossRefGoogle Scholar
  60. 60.
    Son JH, Jung GH, Lee J-L (2008) Enhancement of light reflectance and thermal stability in Ag–Cu alloy contacts on p-type GaN. Appl Phys Lett 93:012102CrossRefGoogle Scholar
  61. 61.
    Kim J-Y, Na S-I, Ha G-Y, Kwon M-K, Park I-K, Lim J-H, Park S-J, Kim M-H, Choi D, Min K (2006) Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes. Appl Phys Lett 88:043507CrossRefGoogle Scholar
  62. 62.
    Spadavecchia J, Prete P, Lovergine N, Tapfer L, Rella R (2005) Au nanoparticles prepared by physical method on Si and sapphire substrates for biosensor applications. J Phys Chem B 109:17347–17349CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jia K, Bijeon J-L, Adam P-M, Ionescu R (2013) Large scale fabrication of gold nano-structured substrates via high temperature annealing and their direct use for the LSPR detection of atrazine. Plasmonics 8:143–151CrossRefGoogle Scholar
  64. 64.
    Cantale V, Simeone FC, Gambari R, Rampi MA (2011) Gold nano-islands on FTO as plasmonic nanostructures for biosensors. Sensor Actuat B-Chem 152:206–213CrossRefGoogle Scholar
  65. 65.
    Karakouz T, Tesler AB, Bendikov TA, Vaskevich A, Rubinstein I (2008) Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass. Adv Mater 20:3893–3899CrossRefGoogle Scholar
  66. 66.
    Lee Y, Koh K, Na H, Kim K, Kang J-J, Kim J (2009) Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res Lett 4:364–370CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yajadda MMA, Levchenko I, Ostrikov K (2011) Gold nanoresistors with near-constant resistivity in the cryogenic-to-room temperature range. J Appl Phys 110:023303CrossRefGoogle Scholar
  68. 68.
    Pazoki M, Abdi Y, Arzi E (2009) Anomalous nucleation of gold nanoparticles on silicon substrate and monitoring the growth of ZnO nanowires on such structures. Eur Phys J Appl Phys 47:10602CrossRefGoogle Scholar
  69. 69.
    Randolph SJ, Fowlkes JD, Melechko AV, Klein KL, HM Meyer I, Simpson ML, Rack PD (2007) Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth. Nanotechnology 18:465304Google Scholar
  70. 70.
    Baumann N, Mutoro E, Janek J (2010) Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics 181:7–15CrossRefGoogle Scholar
  71. 71.
    Fang P-P, Li J-F, Yang Z-L, Li L-M, Ren B, Tian Z-Q (2008) Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness. J Raman Spectrosc 39:1679–1687CrossRefGoogle Scholar
  72. 72.
    Njoki PN, Lim IIS, Mott D, Park H-Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C-J (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669CrossRefGoogle Scholar
  73. 73.
    Jeanmaire DL, Van Duyne RP (1977) Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20Google Scholar
  74. 74.
    Krug JT, Wang GD, Emory SR, Nie S (1999) Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 121:9208–9214CrossRefGoogle Scholar
  75. 75.
    Zihua Z, Tao Z, Zhongfan L (2004) Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 15:357CrossRefGoogle Scholar
  76. 76.
    Rodriguez-Fernandez J, Funston AM, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM, Mulvaney P (2009) The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. PCCP 11:5909–5914CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Oubre C, Nordlander P (2004) Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B 108:17740–17747CrossRefGoogle Scholar
  78. 78.
    Wang H, Goodrich GP, Tam F, Oubre C, Nordlander P, Halas NJ (2005) Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. J Phys Chem B 109:11083–11087CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496CrossRefGoogle Scholar
  80. 80.
    Blackie EJ, Ru ECL, Etchegoin PG (2009) Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc 131:14466–14472CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lim D-K, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nano 6:452–460CrossRefGoogle Scholar
  82. 82.
    Park W-H, Kim ZH (2010) Charge transfer enhancement in the SERS of a single molecule. Nano Lett 10:4040–4048CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Materials, Devices and Integrated Systems, Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations