Neural Synchronization in Parkinson’s Disease on Different Time Scales

Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 13)


Parkinson’s disease is marked by an elevated neural synchrony in the cortico-basal ganglia circuits in the beta frequency band. This elevated synchrony has been associated with Parkinsonian hypokinetic symptoms. The application of recently developed synchronization analysis techniques allows us to investigate the temporal dynamics of synchrony on different time scales. The results of this analysis are summarized here, revealing highly variable dynamics of synchronized neural activity on multiple time scales and its association with disease.


Parkinson’s disease Neural oscillations Neural synchronization Desynchronization Intermittency Beta-band oscillations 



This paper was supported by the ICTSI/Indiana University Health–IU School of Medicine Strategic Research Initiative, the National Science Foundation Grant DMS 1813819, and National Science Foundation Grant HRD 1700199.


  1. 1.
    Ahn S, Park C, Rubchinsky LL (2011) Detecting the temporal structure of intermittent phase locking. Phys Rev E 84(1–2):016201Google Scholar
  2. 2.
    Ahn S, Rubchinsky LL (2013) Short desynchronization episodes prevail in synchronous dynamics of human brain rhythms. Chaos 23(1):013138PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ahn S, Rubchinsky LL (2017) Potential mechanisms and functions of intermittent neural synchronization. Front Comput Neurosci 11:44PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ahn S, Rubchinsky LL, Lapish CC (2014a) Dynamical reorganization of synchronous activity patterns in prefrontal cortex – hippocampus networks during behavioral sensitization. Cereb Cortex 24(10):2553–2561PubMedGoogle Scholar
  5. 5.
    Ahn S, Solfest J, Rubchinsky LL (2014b) Fine temporal structure of cardiorespiratory synchronization. Am J Physiol Heart Circ Physiol 306(5):H755–H763PubMedGoogle Scholar
  6. 6.
    Ahn S, Zauber SE, Worth RM, Rubchinsky LL (2016) Synchronized beta-band oscillations in a model of the globus pallidus – subthalamic nucleus network under external input. Front Comput Neurosci 10:134PubMedPubMedCentralGoogle Scholar
  7. 7.
    Ahn S, Zauber SE, Worth RM, Witt T, Rubchinsky LL (2015) Interaction of synchronized dynamics in cortical and basal ganglia networks in Parkinson’s disease. Eur J Neurosci 42(5):2164–2171PubMedGoogle Scholar
  8. 8.
    Buzsáki G, Schomburg EW (2015) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18:484–489PubMedPubMedCentralGoogle Scholar
  9. 9.
    Dovzhenok A, Park C, Worth RM, Rubchinsky LL (2013) Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson’s disease. PLoS One 8(3):e58264PubMedPubMedCentralGoogle Scholar
  10. 10.
    Eusebio A, Brown P (2009) Synchronisation in the beta frequency-band – the bad boy of parkinsonism or an innocent bystander? Exp Neurol 217(1):1–3PubMedPubMedCentralGoogle Scholar
  11. 11.
    Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118PubMedGoogle Scholar
  12. 12.
    Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hammond C, Bergmann H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364PubMedGoogle Scholar
  14. 14.
    Hurtado JM, Rubchinsky LL, Sigvardt KA (2004) Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 91(4):1883–1898PubMedGoogle Scholar
  15. 15.
    Hurtado JM, Rubchinsky LL, Sigvardt KA, Wheelock VL, Pappas CTE (2005) Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson’s disease. J Neurophysiol 93(3):1569–1584PubMedGoogle Scholar
  16. 16.
    Hurtado JM, Rubchinsky LL, Sigvardt KA (2006) The dynamics of tremor networks in Parkinson’s disease. In: Bezard E (ed) Recent breakthroughs in basal ganglia research. Nova Science publishers, New York, pp 249–266Google Scholar
  17. 17.
    Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208PubMedPubMedCentralGoogle Scholar
  18. 18.
    Le Van Quyen M, Bragin A (2007) Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci 30(7):365–373Google Scholar
  19. 19.
    Mandali A, Rengaswamy M, Chakravarthy VS, Moustafa AA (2015) A spiking basal ganglia model of synchrony, exploration and decision making. Front Neurosci 9:191PubMedPubMedCentralGoogle Scholar
  20. 20.
    Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, Burn D, Halliday GM, Bezard E, Przedborski S, Lehericy S, Brooks DJ, Rothwell JC, Hallett M, DeLong MR, Marras C, Tanner CM, Ross GW, Langston JW, Klein C, Bonifati V, Jankovic J, Lozano AM, Deuschl G, Bergman H, Tolosa E, Rodriguez-Violante M, Fahn S, Postuma RB, Berg D, Marek K, Standaert DG, Surmeier DJ, Olanow CW, Kordower JH, Calabresi P, Schapira AHV, Stoessl AJ (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord 32:1264–1310PubMedPubMedCentralGoogle Scholar
  21. 21.
    Oswal A, Brown P, Litvak V (2013) Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol 26(6):662–670PubMedGoogle Scholar
  22. 22.
    Park C, Worth RM, Rubchinsky LL (2010) Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. J Neurophysiol 103(5):2707–2716PubMedPubMedCentralGoogle Scholar
  23. 23.
    Park C, Worth RM, Rubchinsky LL (2011) Neural dynamics in parkinsonian brain: the boundary between synchronized and nonsynchronized dynamics. Phys Rev E 83:042901Google Scholar
  24. 24.
    Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Ratnadurai-Giridharan S, Zauber SE, Worth RM, Witt T, Ahn S, Rubchinsky LL (2016) Temporal patterning of neural synchrony in the basal ganglia in Parkinson’s disease. Clin Neurophysiol 127(2):1743–1745PubMedGoogle Scholar
  26. 26.
    Ray NJ, Jenkinson N, Wang S, Holland P, Brittain JS, Joint C, Stein JF, Aziz T (2008) Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 213(1):108–113PubMedGoogle Scholar
  27. 27.
    Rubchinsky LL, Ahn S, Park C (2014) Dynamics of desynchronized episodes in intermittent synchronization. Front Phys 2:38Google Scholar
  28. 28.
    Rubchinsky LL, Park C, Worth RM (2012) Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn 68(3):329–346PubMedGoogle Scholar
  29. 29.
    Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296PubMedGoogle Scholar
  30. 30.
    Stein E, Bar-Gad I (2013) Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol 245:52–59PubMedGoogle Scholar
  31. 31.
    Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113PubMedGoogle Scholar
  32. 32.
    Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239PubMedGoogle Scholar
  33. 33.
    Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z (2010) Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain 133:2007–2021PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsEast Carolina UniversityGreenvilleUSA
  2. 2.Department of MathematicsNorth Carolina A&T State UniversityGreensboroUSA
  3. 3.Department of Mathematical SciencesIndiana University-Purdue University IndianapolisIndianapolisUSA
  4. 4.Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisUSA

Personalised recommendations