Attentional Deficits in Alzheimer’s Disease: Investigating the Role of Acetylcholine with Computational Modelling

Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 13)


Alzheimer’s disease is a neurodegenerative condition that affects the brain’s cognitive processes as well as many other functions for daily life. It is the commonest cause for dementia in older people and can take several years or decades from the time its pathology starts to the time the full clinical symptoms are developed. One of the cognitive processes affected in Alzheimer’s disease is attention. Depletion in attentional processes is linked to acetylcholine function, and attention deficit underlies many cognitive dysfunctions in Alzheimer’s disease. In this work, we are employing computational modelling to provide a neural bio-mechanistic account linking acetylcholine depletion and decreased attentional performance. Although previous research has modelled the decrease of acetylcholine, how neurotransmitter depletion is associated with behavioural impairments in Alzheimer’s disease remains unclear. We employed a spiking Search over Time and Space (sSoTS) model to simulate attentional function and describe the reduction of acetylcholine by changes applied to gNMDA and gAMPA conductance. Our model simulation results showed that changes in acetylcholine function were able to produce a notable reduction in attentional performance similar to what is seen in patients with Alzheimer’s disease. This work provided an architectural and methodological framework under which neurobiological mechanisms and failures of the system can directly explain symptomology, such as attention dysfunctions in Alzheimer’s disease. This framework enables future studies and novel clinical trials targeting acetylcholine pathways in treating Alzheimer’s disease and related conditions.


Alzheimer’s Spiking Search over Time and Space model Computational modelling Attention Acetylcholine 


  1. 1.
    Adeli H, Ghosh-Dastidar S, Dadmehr N (2005) Alzheimer’s disease: models of computation and analysis of EEGs. Clin EEG Neurosci 36(3):131–140. Retrieved from CrossRefGoogle Scholar
  2. 2.
    Alexiou A, Mantzavinos VD, Greig NH (2017) A Bayesian model for the prediction and early diagnosis of Alzheimer’ s disease. Front Aging Neurosci 9:1–14. CrossRefGoogle Scholar
  3. 3.
    Barbieri F, Mazzoni A, Logothetis NK, Panzeri S, Brunel N (2014) Stimulus dependence of local field potential spectra: experiment versus theory. J Neurosci 34(44):14589–14605. CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Belleville S, Fouquet C, Hudon C, Zomahoun HTV, Croteau J (2017) Neuropsychological measures that predict progression from mild cognitive impairment to Alzheimer’s type dementia in older adults: a systematic review and meta-analysis. Neuropsychol Rev 27(4):328–353. CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bertrand D, Jr AVT (2018) The wonderland of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 151:214–225. CrossRefGoogle Scholar
  6. 6.
    Botly LCP, De Rosa E (2012) Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb Cortex 22(10):2441–2453. CrossRefGoogle Scholar
  7. 7.
    Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11(1):63–85. CrossRefGoogle Scholar
  8. 8.
    Colom LV, García-Hernández A, Castañeda MT, Perez-Cordova MG, Garrido-Sanabria ER (2006) Septo-hippocampal networks in chronically epileptic rats: potential antiepileptic effects of theta rhythm generation. J Neurophysiol 95(6):3645–3653. CrossRefGoogle Scholar
  9. 9.
    Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron.
  10. 10.
    Cormack F, Gray A, Ballard C, Tovée MJ (2004) A failure of “pop-out” in visual search tasks in dementia with Lewy bodies as compared to Alzheimer’s and Parkinson’s disease. Int J Geriatr Psychiatry 19(8):763–772. CrossRefGoogle Scholar
  11. 11.
    Daiello LA, Pharm D, Ott BR, Festa EK, Friedman M, Miller LA, Heindel WC (2010) Effects of cholinesterase inhibitors on visual attention in drivers with Alzheimer’s disease. J Clin Psychopharmacol 30(3):245–251. CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Deco G, Thiele A (2009) Attention – oscillations and neuropharmacology. Eur J Neurosci 30(3):347–354. CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Deco G, Zihl J (2001) Top-down selective visual attention: a neurodynamical approach. Vis Cogn 8(1):119–140CrossRefGoogle Scholar
  14. 14.
    Ferris SH, Farlow M (2013) Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin Interv Aging 8:1007–1014. CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Festa EK, Heindel WC, Ott BR (2010) Dual-task conditions modulate the efficiency of selective attention mechanisms in Alzheimer’s disease. Neuropsychologia.
  16. 16.
    Foster JK, Behrmann M, Stuss DT (1999) Visual attention deficits in Alzheimer’s disease: simple versus conjoined feature search. Neuropsychology 13(2):223–245CrossRefGoogle Scholar
  17. 17.
    Gallego-Jutglà E, Solé-Casals J, Vialatte F-B, Dauwels J, Cichocki A (2014) A Theta-band EEG based index for early diagnosis of Alzheimer’s disease. J Alzheimers Dis 43(4):1175–1184. CrossRefGoogle Scholar
  18. 18.
    Gomez C, Stam CJ, Hornero R, Fernandez A, Maestu F (2009) Disturbed beta band functional connectivity in patients with mild cognitive impairment: an MEG study. IEEE Trans Biomed Eng 56(6):1683–1690. CrossRefGoogle Scholar
  19. 19.
    Gordon BA, Blazey TM, Su Y, Hari-raj A, Dincer A, Flores S et al (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer ’ s disease: a longitudinal study. Lancet Neurol:241–250.
  20. 20.
    Güntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235:172–193. CrossRefGoogle Scholar
  21. 21.
    Hao J, Li K, Li K, Zhang D, Wang W, Yang Y et al (2005) Visual attention deficits in Alzheimer’s disease: an fMRI study. Neurosci Lett.
  22. 22.
    Hedrick T, Waters J (2018) Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. J Neurophysiol 113:2195–2209. CrossRefGoogle Scholar
  23. 23.
    Hughes LE, Rowe JB (2013) The impact of neurodegeneration on network connectivity: a study of change detection in frontotemporal dementia. J Cogn Neurosci 25(5):802–813. CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Levinoff EJ, Li KZH, Murtha S, Chertkow H (2004) Selective attention impairments in Alzheimer’s disease: evidence for dissociable components. Neuropsychology 18(3):580–588. CrossRefGoogle Scholar
  25. 25.
    Levy JA, Parasuraman R, Greenwood PM, Dukoff R, Sunderland T (2000) Acetylcholine affects the spatial scale of attention: evidence from Alzheimer’s disease. Neuropsychology 14(2):288–298. CrossRefGoogle Scholar
  26. 26.
    Li H-J, Hou X-H, Liu H-H, Yue C-L, He Y, Zuo X-N (2015) Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum Brain Mapp 36(3):1217–1232. CrossRefGoogle Scholar
  27. 27.
    Maestú F, Peña J-M, Garcés P, González S, Bajo R, Bagic A et al (2015) A multicenter study of the early detection of synaptic dysfunction in mild cognitive impairment using magnetoencephalography-derived functional connectivity. NeuroImage: Clin 9:103–109. CrossRefGoogle Scholar
  28. 28.
    Mavritsaki E, Humphreys GW (2013) Different functional roles of dopamine and acetylcholine in visual selection: simulations of visual search in Alzheimer’s and Parkinson’s diseases. 2J Vision 13:523. CrossRefGoogle Scholar
  29. 29.
    Mavritsaki E, Humphreys G (2016) Temporal binding and segmentation in visual search: a computational neuroscience analysis. J Cogn Neurosci 28(10):1553–1567. CrossRefGoogle Scholar
  30. 30.
    Mavritsaki E, Heinke D, Humphreys GW, Deco G (2006) A computational model of visual marking using an inter-connected network of spiking neurons: the spiking search over time & space model (sSoTS). Journal of Physiology, Paris 100:110–124. CrossRefGoogle Scholar
  31. 31.
    Mavritsaki E, Allen HA, Humphreys GW (2010) Decomposing the neural mechanisms of visual search through model-based analysis of fMRI: top-down excitation, active ignoring and the use of saliency by the right TPJ. NeuroImage 52(3):934–946. CrossRefGoogle Scholar
  32. 32.
    Mavritsaki E, Heinke D, Allen H, Deco G, Humphreys GW (2011) Bridging the gap between physiology and behavior: evidence from the sSoTS model of human visual attention. Psychol Rev 118(1):3–41. CrossRefGoogle Scholar
  33. 33.
    Mazaheri A, Segaert K, Olichney J, Yang J-C, Niu Y-Q, Shapiro K, Bowman H (2018) EEG oscillations during word processing predict MCI conversion to Alzheimer’s disease. NeuroImage: Clin 17:188–197. CrossRefGoogle Scholar
  34. 34.
    Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11(1):43–49. CrossRefGoogle Scholar
  35. 35.
    Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psychiatry. Trends Cogn Sci 16(1):72–80. CrossRefGoogle Scholar
  36. 36.
    Montez, T., Poil, S., … B J.-P. of the, & 2009, undefined (n.d.) Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. National Acad Sciences. Retrieved from
  37. 37.
    Moran R, Zehetleitner M, Liesefeld HRR, Müller HJ, Usher M, Mueller HJ, Usher M (2016) Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions. Psychon Bull Rev 23(5):1300–1315. CrossRefGoogle Scholar
  38. 38.
    Parasuraman R, Greenwood PM, Alexander GE (2000) Alzheimer disease constricts the dynamic range of spatial attention in visual search. Neuropsychologia 38(8):1126–1135. CrossRefGoogle Scholar
  39. 39.
    Poil S-S, de Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K (2013) Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front Aging Neurosci 5:58. CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Porter G, Leonards U, Wilcock G, Haworth J, Troscianko T, Tales A (2010a) New insights into feature and conjunction search: II. Evidence from Alzheimer’s disease. Cortex 46(5):637–649. CrossRefGoogle Scholar
  41. 41.
    Porter G, Tales A, Troscianko T, Wilcock G, Haworth J, Leonards U (2010b) New insights into feature and conjunction search: I. Evidence from pupil size, eye movements and ageing. Cortex.
  42. 42.
    Redel P, Bublak P, Sorg C, Kurz A, Förstl H, Müller HJ et al (2012) Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 33(1).
  43. 43.
    Reiterer S, Pereda E, Bhattacharya J (2011) On a possible relationship between linguistic expertise and EEG gamma band phase synchrony. Front Psychol 2:334. CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Riddoch MJ, Chechlacz M, Mevorach C, Mavritsaki E, Allen H, Humphreys GW (2010) The neural mechanisms of visual selection: the view from neuropsychology. Ann N Y Acad Sci.
  45. 45.
    Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC et al (2014) Symptom onset in autosomal dominant Alzheimer disease A systematic review and meta-analysis. Neurology 83(3):253–260. CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sparks DW, Proulx E, Lambe EK, Barrett K, Chattarji S (2018) Ready, set, go: the bridging of attention to action by acetylcholine in prefrontal cortex. J Physiol-Lond 596(9):1539–1540. CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Stam C, Jones B, Nolte G, Breakspear M, Scheltens P (2006) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17(1):92–99. CrossRefGoogle Scholar
  48. 48.
    Sultzer DL, Melrose RJ, Riskin-Jones H, Narvaez TA, Veliz J, Ando TK et al (2017) Cholinergic receptor binding in Alzheimer disease and healthy aging: assessment in vivo with positron emission tomography imaging. Am J Geriatr Psychiatr 25(4):342–353. CrossRefGoogle Scholar
  49. 49.
    Tales A, Porter G (2008) Visual attention-related processing in Alzheimer’s disease. Rev Clin Gerontol.
  50. 50.
    Tales A, Butler SR, Fossey J, Gilchrist ID, Jones RW, Troscianko T (2002a) Visual search in Alzheimer’s disease: a deficiency in processing conjunctions of features. Neuropsychologia 40(12):1849–1857. CrossRefGoogle Scholar
  51. 51.
    Tijms BM, Visser PJ (2018) Capturing the Alzheimer’s disease pathological cascade. Lancet Neurol. Elsevier.
  52. 52.
    Treisman AM, Gelade G (1980) Feature-integration theory of attention. Cogn Psychol 12(1):97–136. CrossRefGoogle Scholar
  53. 53.
    Vallejo V, Cazzoli D, Rampa L, Zito GA, Feuerstein F, Gruber N et al (2016) Effects of Alzheimer’s disease on visual target detection: a “peripheral bias”. Front Aging Neurosci 8:1–8. CrossRefGoogle Scholar
  54. 54.
    Watson DG, Humphreys GW (1997) Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychol Rev 104(1):90–122. CrossRefGoogle Scholar
  55. 55.
    Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL, Kellar KJ (1986) Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res 371(1):146–151. CrossRefGoogle Scholar
  56. 56.
    Wolfe JM (2002) Visual search. Retrieved from PROJECTS/visual_search_review/Review.html
  57. 57.
    Yener GG, Güntekin B, Öniz A, Başar E (2007) Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. Int J Psychophysiol 64(1):46–52. CrossRefGoogle Scholar
  58. 58.
    Yu AJ, Dayan P (2002) Acetylcholine in cortical inference. Neural Netw 15(4–6):719–730. CrossRefGoogle Scholar
  59. 59.
    Zamrini E, Maestu F, Pekkonen E, Funke M, Makela J, Riley M et al (2011) Magnetoencephalography as a putative biomarker for Alzheimer’s disease. Int J Alzheimers Dis 2011:280289. CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyBirmingham City UniversityBirminghamUK
  2. 2.School of PsychologyUniversity of BirminghamBirminghamUK
  3. 3.School of ComputingUniversity of KentCanterburyUK
  4. 4.Department of PsychiatryUniversity of CambridgeCambridgeUK
  5. 5.Sino-Britain Centre for Cognition and Ageing ResearchSouthwest UniversityChongqingChina

Personalised recommendations