Advertisement

Wind Actions and Effects on Structures

  • Giovanni SolariEmail author
Chapter
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)

Abstract

This chapter deals with the studies on wind actions and effects on structures carried out between the late nineteenth and the mid-twentieth centuries. It starts speaking of the developments associated with the evolution and failure of suspension bridges, as well as with the new issue about the behaviour of towers and skyscrapers in the wind. It then passes to examine the renewed culture spanning the whole range of structures that came to maturity in this period; it gained ground through state of the arts and textbooks representing milestones of a discipline that is herein organised along four conceptually sequential topics: design wind speed, building aerodynamics, dynamic response to turbulent wind and aeroelastic phenomena. The presentation of the design wind speed addresses the mean and peak profiles, the time–space structure of turbulence and their probability of occurrence. Building aerodynamics is illustrated with special regard to the growing use and potential of wind tunnel facilities. The dynamic response to the turbulent wind is examined with reference to the transition from deterministic to random dynamics. Aeroelastic phenomena are discussed mainly with regard to vortex shedding, galloping and flutter.

References

  1. 1.
    Hopkins HJ (1970) A span of bridges. David & Charles, Newton AbbotGoogle Scholar
  2. 2.
    Buonopane SG, Billington DP (1993) Theory and history of suspension bridge design from 1823 to 1940. J Struct Eng ASCE 119:954–977CrossRefGoogle Scholar
  3. 3.
    Pugsley A (1968) The theory of suspension bridges. Edward Arnold, LondonzbMATHGoogle Scholar
  4. 4.
    Gimsing NJ (1983) Cable supported bridges. Concept and design. Wiley, New YorkGoogle Scholar
  5. 5.
    Ritter W (1883) Statische Berechnung der Versteifungsfachwerke der Hängebrücken, Schweiz. Bauz, lGoogle Scholar
  6. 6.
    Levy M (1886) Memoires sur le calcul des ponts suspendus rigides. Annales des ponts et chaussées, Mémoires et documents 12Google Scholar
  7. 7.
    Ritter W (1892) Ueber den werth der belastungs proben eisernen brücken. Schweiz Bauz 20:14–18Google Scholar
  8. 8.
    Finch JK (1941, March) Wind failures of suspension bridges or evolution and decay of the stiffening truss. Eng News Rec, pp 74–79Google Scholar
  9. 9.
    Ritter W (1877) Versteifungsfachwerke bei Bogen und Hängebrücken. Z Bauwesen 27:4Google Scholar
  10. 10.
    Du Bois AJ (1882) A new theory of the suspension system with stiffening truss. J Frankl Inst 113:117–133Google Scholar
  11. 11.
    Melan J (1888) Theorie der eisernen Bogenbrücken und der Hängebrücken. Handbuch der lngenieurwissenschaften, Wilhelm Engelmann, Leipzig, Germany, 2Google Scholar
  12. 12.
    Charlton TM (1982) A history of theory of structures in the nineteenth century. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Raymond CW, Bixby WH, Burr E (1894). Report of the board of engineer officers as to maximum span practicable for suspension bridges. U.S. Government, Washington, DCGoogle Scholar
  14. 14.
    Melan J (1913) Theory of arches and suspension bridges (trans: Steinman DB). McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Steinman D (1913) Suspension bridges and cantilevers. Science Series 127, Van Nostrand, New YorkGoogle Scholar
  16. 16.
    Steinman DB (1929) A practical treatise on suspension bridges. Their design, construction and erection. Wiley, New YorkGoogle Scholar
  17. 17.
    Moisseiff L, Lienhard F (1933) Suspension bridges under the action of lateral forces (trans). ASCE 98:1080–1095, 1096–1141Google Scholar
  18. 18.
    Cassady S (1986) Spanning the gate. The Golden Gate Bridge. Squarebooks, Mill ValleyGoogle Scholar
  19. 19.
    Beggs GE, Davis RE, Davis HE (1933) Tests on structural models of proposed San Francisco-Oakland Suspension Bridge. University of California PressGoogle Scholar
  20. 20.
    Ricciardelli F, Marra AM (2010) Il crollo del ponte di Tacoma, settant’anni dopo. Costruzioni Metalliche 3:56–72Google Scholar
  21. 21.
    Bridgeman PW (1937) Dimensional analysis. Yale University Press, New HavenGoogle Scholar
  22. 22.
    Farquharson FB (1949) Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge. Part I: investigations prior to October, 1941. University of Washington Engineering Experiment Station Bulletin 116Google Scholar
  23. 23.
    Smith FC, Vincent GS (1950) Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge. Part II: Mathematical analyses. University of Washington Engineering Experiment Station Bulletin 116Google Scholar
  24. 24.
    Andrew CE (1947) Unusual design problems—second Tacoma Narrows bridge. Proc ASCE 73:1483–1497Google Scholar
  25. 25.
    Davenport AG (1975) Perspectives on the full-scale measurement of wind effects. J Ind Aerod 1:23–54CrossRefGoogle Scholar
  26. 26.
    Wyatt TA (1992) Bridge aerodynamics 50 years after Tacoma Narrows—part I: the Tacoma Narrows failure and after. J Wind Eng Ind Aerod 40:317–326CrossRefGoogle Scholar
  27. 27.
    Davenport AG (1977) Wind engineering—ancient and modern—the relationship of wind engineering research to design. In: Proceedings of 6th Canadian congress of applied mechanics, Vancouver, pp 487–502Google Scholar
  28. 28.
    Walshe DE, Wyatt TA (1992) Bridge aerodynamics 50 years after Tacoma Narrows—Part II: a new discipline world-wide. J Wind Eng Ind Aerod 40:317–326CrossRefGoogle Scholar
  29. 29.
    Bisplinghoff RL, Ashley H (1962) Principles of aeroelasticity. Wiley, New YorkzbMATHGoogle Scholar
  30. 30.
    Scruton C (1955, May) Aerodynamic buffeting of bridges. Engineer, pp 654–657Google Scholar
  31. 31.
    Farquharson FB (1952) Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge. Part III: The investigation of models of the original Tacoma Narrows Bridge under the action of wind. University of Washington Engineering Experiment Station Bulletin 116Google Scholar
  32. 32.
    Farquharson FB (1954) Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge. Part IV: the investigation of models of the new Tacoma Narrows Bridge under wind actions. University of Washington Engineering Experiment Station Bulletin 116Google Scholar
  33. 33.
    Vincent GS (1954) Aerodynamic stability of suspension bridges with special reference to the Tacoma Narrows Bridge. Part V: amplitude predictions, damping tests, and general investigations. University of Washington Engineering Experiment Station Bulletin 116Google Scholar
  34. 34.
    Prandtl L, Tietjens OG (1934) Applied hydro and aeromechanics. McGraw-Hill, New YorkzbMATHGoogle Scholar
  35. 35.
    Stüssi F, Ackeret J (1941) Zum einstur der Tacoma Hängebrücke. Schweiz. Bauz, March 29Google Scholar
  36. 36.
    Ammann OH, Karman T, von Woodruff GB (1941) The failure of the Tacoma Narrows Bridge. Report to the Administrator of the Federal Works Agency, Washington, DCGoogle Scholar
  37. 37.
    Brancaleoni F, Diana G, Faccioli E, Fiammenghi G, Firth IPT, Gimsing NJ, Jamiolkowski M, Sluszka P, Solari G, Valenise G, Vullo E (2009) Messina Strait bridge—a challenge and a dream. CRC Press, BalkemaCrossRefGoogle Scholar
  38. 38.
    Smith DW (1976) Bridge failures. P Inst Civil Eng 1 60:367–382Google Scholar
  39. 39.
    Davenport AG (1982) Comparison of model and full scale tests on bridges. In: Proceedings of international workshop on wind tunnel modelling, MarylandGoogle Scholar
  40. 40.
    Vincent GS (1958) Golden Gate Bridge vibration studies. J Struct Div ASCE:84 (Proceedings Paper 1817)Google Scholar
  41. 41.
    Vincent GS (1963) A summary of laboratory and field studies in the United States on wind effects on suspension bridges. In: Proceedings of conference on wind effects on buildings and structures. National Physical Laboratory, Teddington; Her Majetsy’s Stationery Office, London, pp 488–515Google Scholar
  42. 42.
    Scruton C (1956) Interim report on the aerodynamic investigation for the proposed Tamar Suspension Bridge. National Physical Laboratory, Teddington, NPL Aero Report 302Google Scholar
  43. 43.
    Scruton C (1947) An experimental investigation of the aerodynamic stability of suspension bridges. National Physical Laboratory, Teddington, NPL Aero Report 165Google Scholar
  44. 44.
    Scruton C (1951) The aerodynamic stability of suspension bridges: comparison of results obtained with a full model and its sectional model copy. National Physical Laboratory, Teddington, NPL Aero Report 213Google Scholar
  45. 45.
    Scruton C (1960) The use of wind tunnels in industrial aerodynamic research. Advisory Group for Aeronautical Research and Development, North Atlantic Treaty Organisation, Report 309, ParisGoogle Scholar
  46. 46.
    Wootton R (1992) C.S. Scruton memorial lecture. J Wind Eng Ind Aerod 41–44:3–14CrossRefGoogle Scholar
  47. 47.
    Frazer RA, Scruton C (1952) A summarised account of the Severn Bridge aerodynamic investigation. National Physical Laboratory, Teddington, NPL Aero Report 222Google Scholar
  48. 48.
    Gould RWF, Raymer WG (1958) Measurement of wind loads on a model of a tower of the Forth Road Bridge. National Physical Laboratory, Teddington, NPL Aero Report 350Google Scholar
  49. 49.
    Walshe DE, Rayner DV (1962) A further aerodynamic investigation for the proposed River Severn Suspension Bridge. National Physical Laboratory, Teddington, NPL Aero Report 1010Google Scholar
  50. 50.
    Walshe DE (1964) An investigation of the aerodynamic stability of a decking unit of the Severn Suspension Bridge. National Physical Laboratory, Teddington, NPL Aero Report 1106Google Scholar
  51. 51.
    Heinle E, Leonhard F (1989) Towers: a historical survery. Butterworth ArchitectureGoogle Scholar
  52. 52.
    Lepik A (2004) Skyscrapers. Prestel, MunichGoogle Scholar
  53. 53.
    Eiffel G (1900) Travaux Scientifiques executes a la tour de trois cents metres de 1889 a 1900. Maretheux, ParisGoogle Scholar
  54. 54.
    Purdy DE (1891, December) The steel skeleton type of high buildings. Eng News, pp 560–561Google Scholar
  55. 55.
    Purdy DE (1904, July) The relation of the engineer to the architect. Proceedings of AIA, pp 122–123Google Scholar
  56. 56.
    Fleming R (1930) Wind stresses in buildings. Wiley, New YorkGoogle Scholar
  57. 57.
    Melick CA (1910) Stresses in tall buildings. Bulletin 8, College of Engineering, Ohio State University, Columbus, OhioGoogle Scholar
  58. 58.
    Alfani PG (1909) Alcuni studi sulle vibrazioni meccaniche dei fabbricati. Comunicazione al Congresso degli ingegneri ed architetti italiani, FlorenceGoogle Scholar
  59. 59.
    Molitor DA (1929) Tall buildings to resist wind. Proc ASCE 55:189Google Scholar
  60. 60.
    Coyle DC (1929) Mushroom skyscrapers. The American Architect, 135, June, 829Google Scholar
  61. 61.
    Coyle DC (1931, February) Measuring the behavior of tall buildings. Eng News Rec, pp 310–313Google Scholar
  62. 62.
    Spurr HV (1930) Wind bracing. McGraw-Hill, New YorkGoogle Scholar
  63. 63.
    Freitag JK (1901) Architectural engineering. Wiley, New YorkGoogle Scholar
  64. 64.
    Kidder FE, Nolan T (1921) Architects’ and builders’ handbook. Wiley, New YorkGoogle Scholar
  65. 65.
    Johnson EF (1915) The theory of framework with rectangular panels and its application to buildings which have to resist wind. University of Illinois Engineering Experiment Station, Bulletin 80Google Scholar
  66. 66.
    Smith A (1915) Wind stresses in the steel frames of office buildings. J W Soc Eng, XX, 341Google Scholar
  67. 67.
    Wilson WM, Maney GA (1915) Wind stresses in the steel frames of office buildings. University of Illinois Engineering Experiment Station, Bulletin 80Google Scholar
  68. 68.
    Morris CT, Ross AW (1928) The design of tall building frames to resist wind. Proc ASCE 54:1395–1433Google Scholar
  69. 69.
    Wilson AC (1908) Wind-bracing with knee-braces or gusset plates. Eng Rec, LVIII, September, 272Google Scholar
  70. 70.
    Fleming (1915) Six monographs on wind stresses. Cornell University LibraryGoogle Scholar
  71. 71.
    Coyle DC, Wing SP, Finlay AH, Gedo JD, Vanoni VA, White MP, Spurr HV (1932) Wind-bracing in steel buildings. Second progress report of sub-committee no. 31, committee on steel of the structural division. Proc ASCE 58:1100–1119Google Scholar
  72. 72.
    (1940) Wind bracing in steel buildings. Final report of subcommittee No. 31, ASCE, Paper 2095, pp 1713–1739Google Scholar
  73. 73.
    Chiodi C (1933) La Torre Littoria di Milano. Il Politecnico, LXXXI, 8, Milan, pp 455–474Google Scholar
  74. 74.
    Pinciroli L (1934) Il progetto della Torre Littoria di Milano: Calcoli e considerazioni sull’impiego del materiale tubolare metallico. Il Politecnico, LXXXII, 1, Milan, pp 3–28Google Scholar
  75. 75.
    Ballio G, Solari G (1992) La Torre del Parco di Milano: una costruzione metallica del 1933 alla luce delle conoscenze passate e presenti. Costruzioni Metalliche 3:141–164; 4:211–233Google Scholar
  76. 76.
    Dryden HL, Hill GC (1933) Wind pressure on a model of the empire state building. J Res Nat Bur Stand 6:493–523CrossRefGoogle Scholar
  77. 77.
    Rathbun JC (1940) Wind forces on a tall building. Trans ASCE 105:1–41Google Scholar
  78. 78.
    Dryden HL, Hill GC (1926) Wind pressure on structures. Sci Pap Bur Stand 20:697–732CrossRefGoogle Scholar
  79. 79.
    Bailey A, Vincent NDG (1943) Wind-pressures on buildings including effects of adjacent buildings. J Inst Civil Eng 20:243–275CrossRefGoogle Scholar
  80. 80.
    Brezianu B (1999) Brancusi in Romania. Editura Bic All, BucarestGoogle Scholar
  81. 81.
    Solari G (2013) Brancusi endless column: a masterpiece of art and engineering. Int J High-Rise Build 2:193–212Google Scholar
  82. 82.
    Calderini C, Pagnini LC (2015) The debate on the strengthening of two slender masonry structures in early XX century: a contribution to the history of wind engineering. J Wind Eng Ind Aerod 147:302–319CrossRefGoogle Scholar
  83. 83.
    Daverio A (1940) La cupola di S. Gaudenzio. Centro di Studi Antonelliani, Cattaneo, NovaraGoogle Scholar
  84. 84.
    Albenga G, Danusso A (1954) Progetto di restauro della Mole Antonelliana. Technical ReportGoogle Scholar
  85. 85.
    Fidler TC (1887) A practical treatise on bridge construction. Charles Griffin, LondonGoogle Scholar
  86. 86.
    Bixby WH (1895) Wind pressures in engineering construction. Eng News 33:174–184Google Scholar
  87. 87.
    Loyrette H (1985) Gustave Eiffel. Rizzoli, New YorkGoogle Scholar
  88. 88.
    Flachsbart O (1932) Winddruck auf geschlossene und offene Gebäude. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchanstalt zu Göttingen. IV Lieferung, Verlag von R. Oldenbourg, Munich, pp 128–134Google Scholar
  89. 89.
    Flachsbart O (1930) Winddruck ouf Bauwerke. Naturwissenschaften 18:475–479zbMATHCrossRefGoogle Scholar
  90. 90.
    Flachsbart O (1931) Winddruck auf Schornsteine. Naturwissenschaften 19:759–760CrossRefGoogle Scholar
  91. 91.
    Flachsbart O (1931) Der gegenwärtige Stand der Winddruckforschung. Jahrbuch 1930 der Deutschen Gesellschaft für Bauingenieurwesen, Berlin, pp 108–111Google Scholar
  92. 92.
    Flachsbart O (1932) Der Widerstand von Kugeln in der Umgebung der kritischen Reynolds schen Zahl. In: Prandtl L, Betz A (eds.) Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. IV Lieferung, Verlag von R. Oldenbourg, Munich, pp 106–108Google Scholar
  93. 93.
    Flachsbart O (1932) Winddruck auf Gasbehälter. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamichen Versuchanstalt zu Göttingen, IV Lieferung. Verlag von R. Oldenbourg, Munich, pp 134–138Google Scholar
  94. 94.
    Flachsbart O (1932) Grundsätzliches zur Frage des Winddrucks auf Bauwerke. Bauwelt 27:660–664Google Scholar
  95. 95.
    Flachsbart O (1932) Winddruck auf Vollwandige Bauwerke und Gitterfachwerke. In: Wissenschaftliche Abhandlungen d. Internat. Vereinigung f. Brückenbau u. Hochbau. Zürich 1, pp 153–172Google Scholar
  96. 96.
    Flachsbart O (1934) Die Belastung von Bauwerken durch Windkräfte. Beitrag zun 2 Bande des Lehrbuches der angewandten Hydrodynamik von Kaufmann, BerlinGoogle Scholar
  97. 97.
    Flachsbart O (1934) Modellversuche über die Belastung von Gitterfachwerken durch Wind Kräfte. 1. Teil: Einzelne ebene Gitterträger. Der Stahlbau 9:65–69; 10:73–79Google Scholar
  98. 98.
    Flachsbart O, Winter H (1935) Modellversuche uber die Belastung von Gitterfach-werken durch Windkräfte. 2. Teil: Räumliche Gitterfachwerke. Der Stahlbau 8:57–63; 9:65–69; 10:73–77Google Scholar
  99. 99.
    Den Hartog JP (1934) Mechanical vibrations. McGraw-Hill, New YorkzbMATHGoogle Scholar
  100. 100.
    Frahm H (1909) Device for damped vibrations of bodies. U.S. Patent 989958Google Scholar
  101. 101.
    Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley, New YorkGoogle Scholar
  102. 102.
    Theodorsen Th (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA Report 496Google Scholar
  103. 103.
    Pagon WW (1934, March) What aerodynamics can teach the civil engineer. Eng News Rec, 348–353Google Scholar
  104. 104.
    Pagon WW (1934, July) Aerodynamics and the civil engineer—II. Vibration problem in tall stacks solved by aerodynamics. Eng News Rec, 41–43Google Scholar
  105. 105.
    Pagon WW (1934, October) Aerodynamics and the civil engineer—III. Drag coefficients for structures studied in wind-tunnel model tests. Eng News Rec, 456–458Google Scholar
  106. 106.
    Pagon WW (1934, December) Aerodynamics and the civil engineer—IV. Wind-tunnel studies reveal pressure distribution on buildings. Eng News Rec, 814–819Google Scholar
  107. 107.
    Pagon WW (1935, April) Aerodynamics and the civil engineer—V. Vortices, eddies and turbulence as experienced in air movements. Eng News Rec, 582–586Google Scholar
  108. 108.
    Pagon WW (1935, May) Aerodynamics and the civil engineer—VI. Engineering meteorology. Eng News Rec, 665–668Google Scholar
  109. 109.
    Pagon WW (1935, May) Aerodynamics and the civil engineer—VII. Wind velocity in relation to height above ground. Eng News Rec, 742–745Google Scholar
  110. 110.
    Pagon WW (1935, October) Aerodynamics and the civil engineer—VIII. Using aerodynamic research results in civil engineering practice. Eng News Rec, 601–607Google Scholar
  111. 111.
    Fage A, Warsap JH (1929) The effects of turbulence and surface roughness on the drag of a circular cylinder. Aeronautical Research Council R & M 1283Google Scholar
  112. 112.
    Giovannozzi R (1936) L’azione del vento sulle costruzioni. L’aerotecnica, XVI, Rome, pp 413–458Google Scholar
  113. 113.
    Blanjean L (1949) L’Action du Vent sur les Constructions. Ossature Metallique, 2Google Scholar
  114. 114.
    Karman T von (1948) L’aerodynamique dans l’art de l’ingénieur. Mémoires de la Société des Ingenieurs Civils de France, pp 155–178Google Scholar
  115. 115.
    Fung YC (1955) An introduction to the theory of aeroelaticity. Wiley, New YorkGoogle Scholar
  116. 116.
    Biggs JM (1958) Wind forces on structures: Introduction and history. J Struct Div ASCE (Proc. Paper 1707)Google Scholar
  117. 117.
    Sherlock RH (1958) Wind forces on structures: nature of the wind. J Struct Div ASCE (Proc. Paper 1708)Google Scholar
  118. 118.
    Woodruff GB, Kozak JJ (1958) Wind forces on structures: fundamental considerations. J Struct Div ASCE (Proc. Paper 1709)Google Scholar
  119. 119.
    Singell TW (1958) Wind forces on structures: forces on enclosed structures. J Struct Div ASCE (Proc. Paper 1710)Google Scholar
  120. 120.
    Pagon WW (1958) Wind forces on structures: plate girders and trusses. J Struct Div ASCE 84 (Proc. Paper 1711)Google Scholar
  121. 121.
    Farquharson FB (1958) Wind forces on structures: structures subject to oscillation. J Struct Div ASCE 84 (Proc. Paper 1712)Google Scholar
  122. 122.
    American Society of Civil Engineers (1961) Wind forces on structures. Trans ASCE 126(II):1124–1198Google Scholar
  123. 123.
    Normer for Bygningskonstruktioner 1 (1948) BelastingsforskrifterGoogle Scholar
  124. 124.
    Schweizerischer Ingenieur und Architekten Verein (1956) Technische Normen 160Google Scholar
  125. 125.
    Archibald ED (1885) An account of some preliminary experiments with Birams anemometers, attached to kite strings. Nature 31:66–68CrossRefGoogle Scholar
  126. 126.
    Hellmann G (1917) Über die Bewegung der Luft in den untersten Scichten der Atmosphäre, Zweite Mitteilung. Meteorol Z 34:273–285Google Scholar
  127. 127.
    Langley SP (1893) Le travail interieur du vent. Revue de l’Aéronautique, 3Google Scholar
  128. 128.
    Ekman VW (1902) Om jordrotationens inverkan pa vindströmmar i hafvet. Nyt Magazin for Naturvidenskab, 40, 1, KristianiaGoogle Scholar
  129. 129.
    Ekman VW (1905) On the influence of the earth’s rotation on ocean currents. Arkiv för Matematik, Astronomi ocn Fysik, Stockholm, SwedenGoogle Scholar
  130. 130.
    Taylor GI (1915) Eddy motion in the atmosphere. Philos T R Soc 215:1–26CrossRefGoogle Scholar
  131. 131.
    Rawson HE (1913) Atmospheric waves, eddies and vortices. Aeronaut J 17:245–256Google Scholar
  132. 132.
    Richardson LF (1920) The supply of energy to and from atmospheric eddies. P R Soc Lond A 97:354–373CrossRefGoogle Scholar
  133. 133.
    Goldie AHR (1925) Gustiness of wind in particular cases. Q J Roy Meteor Soc 51:216–357Google Scholar
  134. 134.
    Hesselberg Th, Bjorkdal E (1929) Uber das verteilungsgesetz der windunruhe. Beitr Phys Atmos 15:121–133zbMATHGoogle Scholar
  135. 135.
    Van Orman WT (1931) A preliminary meteorological survey for airship bases on the middle Atlantic seabord. Mon Weather Rev 59:57–65CrossRefGoogle Scholar
  136. 136.
    Thornthwaite CW, Halstead M (1942) Note on the variation of wind with height in the layer near the ground. T Am Geophys Un 23:249–255CrossRefGoogle Scholar
  137. 137.
    Thornthwaite CW, Kaser P (1943) Wind gradient observations. T Am Geophys Un 24:166–182CrossRefGoogle Scholar
  138. 138.
    Obukhov AM (1946) Turbulence in an atmosphere with a non uniform temperature. Bound Lay Meteorol 2(1):7–29 (Tr. Akad. Nauk SSSR Inst. Teoret. Geofis.)Google Scholar
  139. 139.
    Jacobs W (1939) Unformung eines turbulenten geschwindigkeitsprofiles. Z Angew Math Mech 19:87–100 (translated in NACA Tech. Mem. 951)Google Scholar
  140. 140.
    Liepmann HW (1952) On the application of statistical concepts to the buffeting problem. J Aeronaut Sci 19:793–800zbMATHCrossRefGoogle Scholar
  141. 141.
    Panofsky HA, McCormick RA (1954) Properties of spectra of atmospheric turbulence at 100 meters. Q J Roy Meteor Soc 80:546–564CrossRefGoogle Scholar
  142. 142.
    Griffith HL, Panofsky HA, van der Hoven I (1956) Power-spectrum analysis over large ranges of frequency. J Meteorol 13:279–282CrossRefGoogle Scholar
  143. 143.
    Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164CrossRefGoogle Scholar
  144. 144.
    Cramer HE (1959) Measurements of turbulence structure near the ground within the frequency range from 0.5 to 0.01 cycles sec. In: Advances in geophysics, 6, atmospheric diffusion and air pollution. Academic Press, New York, pp 75–96Google Scholar
  145. 145.
    Cramer HE (1960) Use of power spectra and scales of turbulence in estimating wind loads. Meteor Mon 4:12–18Google Scholar
  146. 146.
    Davenport AG (1961) The application of statistical concepts to the wind loading of structures. PI Civil Eng 19:449–472Google Scholar
  147. 147.
    Sherlock RH, Stout MB (1932) Picturing the structure of the wind. Civil Eng 2:358–363Google Scholar
  148. 148.
    Sherlock RH, Stout MB (1937) Wind structure in winter storms. J Aeronaut Sci 5:53–61CrossRefGoogle Scholar
  149. 149.
    Sherlock RH (1947) Gust factors for the design of buildings. In: International association for bridge and structural engineering, 8, Zurich, SwitzerlandGoogle Scholar
  150. 150.
    Sherlock RH (1952) Variation of wind velocity and gusts with height (trans ASCE, Paper 2553)Google Scholar
  151. 151.
    Court A (1953) Wind extremes as a design factor. J Frankl Inst 256:39–56CrossRefGoogle Scholar
  152. 152.
    Mattice WA (1938) A comparison between wind velocities as recorded by the Dines and Robinson anemometers. Mon Weather Rev 66:238–240CrossRefGoogle Scholar
  153. 153.
    Flora SP (1949) The nature of tornados. Weatherwise 2:27–39CrossRefGoogle Scholar
  154. 154.
    Fawbush EG (1951) An empirical method of forecasting tornado development. B Am Meteorol Soc 32:1–9CrossRefGoogle Scholar
  155. 155.
    Brooks EM (1951) Tornados and related phenomena. Compendium of Meteorology, American Meteorological Society, Boston, pp 673–680Google Scholar
  156. 156.
    Thom HCS (1954) Frequency of maximum wind speeds. Proc ASCE 80:1–11Google Scholar
  157. 157.
    Thom HCS (1960) Distributions of extreme winds in the United States. Proc ASCE 86:11–24Google Scholar
  158. 158.
    Anapol’skaia LE, Gandin LS (1958) Metodika opredeleniia raschetnykh skorostei vetra dlia proektirovaniia vetrovykh nagruzok na stroitel’nye sooruzheniia. Meteorologiia i Gidrologiia 10:9–17Google Scholar
  159. 159.
    Shellard HC (1958) Extreme wind speeds over Great Britain and Northern Ireland. Meteorol Mag 87:257Google Scholar
  160. 160.
    Shellard HC (1962) Extreme wind speeds over the United Kingdom for periods ending 1959. Meteorol Mag 91:39–47Google Scholar
  161. 161.
    Barstein MF (1959) Vozdejstvie vetra na vysokie sooruzhenija. Stroitelnaya Mekhanika i Rastchjot Sooruzhenii, 1Google Scholar
  162. 162.
    Barstein MF (1968) Theoretical bases for the method adopted in the USSR for the dynamic design of tall slender structures for wind effect. In: Proceedings of international research seminar on wind effects on buildings and structures, Ottawa, Canada, Paper 28Google Scholar
  163. 163.
    Budyko MI (1947) On the water and heat balances of the earth surface. Meteorol Gidrol 3:3–15Google Scholar
  164. 164.
    Budyko MI (1956) Heat balance of the earth’s surface. Gidrometeoizdat, LeningradGoogle Scholar
  165. 165.
    Davenport AG (1960) Rationale for determining design wind velocities. J Struct Div ASCE 86:39–68Google Scholar
  166. 166.
    Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied Science Publishers, LondonGoogle Scholar
  167. 167.
    Anderson JD (1998) A history of aerodynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  168. 168.
    von Karman T (1954) Aerodynamics. Cornell University Press, IthacazbMATHGoogle Scholar
  169. 169.
    Kernot WC (1892) Wind pressure. J Aust Ass Adv Sci 5 H:573–581Google Scholar
  170. 170.
    Jensen M (1967) Some lessons learned in building aerodynamics research. In: Proceedings of international research seminar on wind effects on buildings and structures, 1, Ottawa, Canada, pp 1–18Google Scholar
  171. 171.
    Irminger JOV (1893–1894) Experiments on wind pressures. P I Civil Eng 118:468–472Google Scholar
  172. 172.
    Stanton TE (1903–1904) On the resistance of plane surfaces in a uniform current of air. P I Civil Eng 156:78–126Google Scholar
  173. 173.
    Eiffel G (1909) The resistance of the air and aviation: experiments conducted at the Champ-de-Mars Laboratory. Dunot & Pinat, PariszbMATHGoogle Scholar
  174. 174.
    Coupard C (1927) Influence du vent sur les batiments. Bull Chambre Synd Ind Aero, ParisGoogle Scholar
  175. 175.
    Bounkin K, Tcheremoukhin A (1928) Wind pressure on roofs and walls of buildings. Transactions of the Central Aero-Hydrodynamical Institute, Moscow, 35Google Scholar
  176. 176.
    Schoemaker RLA, Wouters I (1932) Windbelasting op bouwerken. Het Bouwbedrijf, The Hague, 275Google Scholar
  177. 177.
    Sylvester H (1932) Wind loads on airship hangars. In: Proceedings of 6th national aeronautical meeting of ASMEGoogle Scholar
  178. 178.
    Sylvester H (1936) Wind pressure distribution on sharp-edged bodies. Bygningsstatiske Med 8:41Google Scholar
  179. 179.
    Vanderperre LJ (1934) L’action du vent sur les bâtiments. Ann Trav publiques du Belge 35:69–109, 199–242, 521–553Google Scholar
  180. 180.
    Bailey A (1933) Wind pressures on buildings. Institution of Civil Engineers, selected engineering paper 189Google Scholar
  181. 181.
    Nielsen T (1903, October) Effect of wind on roofs. Engineering, LXXVI, 508Google Scholar
  182. 182.
    Brightmore AW (1908) Structural engineering. Cassell, LondonGoogle Scholar
  183. 183.
    Smith A (1911) Wind loads on mill building bents. J West Soc Eng 16, 143Google Scholar
  184. 184.
    Smith A (1912) Wind pressure on buildings. J West Soc Eng 17, 987Google Scholar
  185. 185.
    Smith A (1914) Wind loads on buildings. J West Soc Eng 19, 369Google Scholar
  186. 186.
    Andrews ES (1913) The theory and design of structures. Chapman & Hall, LondonzbMATHGoogle Scholar
  187. 187.
    Ketchum M (1921) Steel mill buildings. McGraw Hill, New YorkGoogle Scholar
  188. 188.
    Swain GF (1927) Stresses, graphical statics and masonry. McGraw Hill, New YorkzbMATHGoogle Scholar
  189. 189.
    Spofford CM (1928) The theory of structures. McGraw Hill, New YorkzbMATHGoogle Scholar
  190. 190.
    Costanzi G (1912) L’azione del vento sui fianchi di un tipo di hangar. Rendiconti delle Esperienze e Studi eseguiti nello Stabilimento d’Esperienze e Costruzioni Aeronautiche del Genio, 5Google Scholar
  191. 191.
    Eiffel G (1914) Nouvelles recherches sur la résistance de l’air et aviation faites au laboratoire d’Auteil. Dunod. et Pinat, ParisGoogle Scholar
  192. 192.
    Arnstein K, Klemperer W (1936) Wind pressures on the Akron Airship Dock. J Aeronaut Sci 3:88–90CrossRefGoogle Scholar
  193. 193.
    Rayleigh Lord (1913) Sur la resistance des spheres dans l?air en movement. C R-dus hebdomadaires des séances de l’Académie des Sci Paris 156:109zbMATHGoogle Scholar
  194. 194.
    Wieselsberger C (1914) Der Luftwiderstand von Kugeln. Z Flugtechnik Motorluftschiffahrt 5:140–145Google Scholar
  195. 195.
    Seitfert R (1927) Winddruckmessungen an einem Gasbehälter. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, IV Lieferung. Verlag von R. Oldenbourg, Munich, pp 144–146Google Scholar
  196. 196.
    Dryden HL, Hill GC (1930) Wind pressure on circular cylinders and chimneys. U.S. Bur Stand J Res 5 (Research Paper 221), 653–693Google Scholar
  197. 197.
    Irminger JOV, Nøkkentved C (1930) Wind-pressure on buildings: experimental researches (1st series). Ingeniørvidenskabelige Skrifter, A, 23, CopenhagenGoogle Scholar
  198. 198.
    Irminger JOV, Nøkkentved C (1936). Wind-pressure on buildings: experimental researches (2nd series). Ingeniørvidenskabelige Skrifter, A, 42, CopenhagenGoogle Scholar
  199. 199.
    Harris CL (1934) Influence of neighbouring structures on the wind pressures on tall buildings. U.S. Bur Stand. J Res 12:103–118CrossRefGoogle Scholar
  200. 200.
    Jensen M, Franck N (1963) Model-scale tests in turbulent wind. Part I: phenomena dependent on the wind speed. The Danish Maritime Press, CopenhagenGoogle Scholar
  201. 201.
    Jensen M, Franck N (1965) Model-scale tests in turbulent wind. Part II: phenomena dependent on the velocity pressure. The Danish Maritime Press, CopenhagenGoogle Scholar
  202. 202.
    Jensen M (1958) The model-law for phenomena in natural wind. Ingenioren-Int 2:121–158Google Scholar
  203. 203.
    Dick JB (1949) Experimental studies in natural ventilation of houses. J I Heat Vent Eng 17:420–466Google Scholar
  204. 204.
    Dick JB (1950) The fundamentals of natural ventilation for houses. J I Heat Vent Eng 18:123–134Google Scholar
  205. 205.
    Nagel F (1927) Messungen von Profilträgern. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, III Lieferung. Verlag von R. Oldenbourg, Munich, pp 151–156Google Scholar
  206. 206.
    Tsiolkovsky KE (1951) Collected works of K.E. Tsiolkovsky. The Academy of Sciences of the USSR, Moscow (English trans: TTF-236, National Aeronautics and Space Adminstration)Google Scholar
  207. 207.
    Betz A (1927) Messungen von bruckenträgern. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchanstalt zu Göttingen, III Lieferung. Verlag von R. Oldenbourg, Munich, pp 146–151Google Scholar
  208. 208.
    Baes L (1934) Étude de l’action du vent sur les constructions. Note relative à qualques essais effectués sur des cornières isolées et sur un modèle de pylône en treillis. Bull de la Soc Belg des Ingénieurs et des Indus 4:359–376Google Scholar
  209. 209.
    Betz A, Peterson E (1932) Application of the theory of free jets. National Advisory Committee for Aeronautics, NACA Report TN-667Google Scholar
  210. 210.
    Katzmayr R, Seitz H (1934) Winddruck auf fachwerktürme von quadratischen querschnitt. Bauingenieur 15:218–221Google Scholar
  211. 211.
    Raymer WG, Nixon HL, Maybrey JFM (1954) Tests on callenders television mast in the Duplex Wind Tunnel. NPL Aero report 268Google Scholar
  212. 212.
    Raymer WG, Nixon HL, Maybrey JFM (1954) Tests on sections of tower crane structures in the duplex wind tunnel. NPL Aero report 273Google Scholar
  213. 213.
    Cohen E, Perrin H (1957) Design of multi-level guyed towers; wind loading. Proc ASCE Paper 1355:83Google Scholar
  214. 214.
    Esquillan M (1947) Les nouvelles regles francaises relatives a l’action de la neige et du vent sur les constructions. Ann ITBTP, Ser I 38, ParisGoogle Scholar
  215. 215.
    Shaler Smith C (1881) Wind pressure upon bridges. Engineering News, 395Google Scholar
  216. 216.
    Waddell JAL (1884) The designing of ordinary iron highway bridges. Wiley, New YorkGoogle Scholar
  217. 217.
    Waddell JAL (1898) De pontibus. Wiley, New YorkGoogle Scholar
  218. 218.
    Waddell JAL (1916) Bridge engineering. Wiley, New YorkGoogle Scholar
  219. 219.
    Cooper T (1905) What wind pressure should be assumed in the design of long bridge spans ? Eng News 5:15–16Google Scholar
  220. 220.
    Biggs HM (1954) Wind loads on truss bridges. Trans ASCE 119:879–892Google Scholar
  221. 221.
    Biggs HM, Namyet S, Adachi J (1956) Wind loads on girder bridges. Trans ASCE 121:101Google Scholar
  222. 222.
    Rausch E (1933) Einwirkung von Windstössen auf hohe Bauwerke. Z Ver Deutsch Ing 77:433–436Google Scholar
  223. 223.
    Crandall SH (ed) (1958) Random vibration. Technology Press and Wiley, New YorkGoogle Scholar
  224. 224.
    Khinchin AJ (1938) Teorija korreljatsii statsionarnykh protsessov. Uspekhi ma-tematiicheskikh nauk, vyp. 5Google Scholar
  225. 225.
    Kolmogorov AN (1947) Statistitcheskaya teorija kolebanii s nepreryvnym spektrom. Jubileynyi sbornik AN SSSR t.1Google Scholar
  226. 226.
    Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series. MIT Press, CambridgezbMATHGoogle Scholar
  227. 227.
    Wiener N (1958) Tekhnitcheskie uslovija rastchjota vysokikh sooruzhenii na vetrovuju nagruzku. SN-40-58Google Scholar
  228. 228.
    Wiener N (1962) Stroitelnye normy i pravila. SNiP glava II-A.11-62Google Scholar
  229. 229.
    Wiener N (1965) Règles NV 65 et Annexes. Règles définissant les effects de la neige et du vent sur les constructions et annexes. Société de Diffusion des Tehniques du Batiment et des Travaux Publics, Paris, FranceGoogle Scholar
  230. 230.
    Ghiocel D, Lungu D (1975) Wind, snow and temperature effects on structures based on probability. Abacus, Tunbridge, U.K.Google Scholar
  231. 231.
    Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332MathSciNetzbMATHCrossRefGoogle Scholar
  232. 232.
    Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:46–156MathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    Davenport AG (1964) Note on the distribution of the largest value of a random function with application to gust loading. P I Civil Eng 28:187–196Google Scholar
  234. 234.
    Davenport AG (1962) The response of slender, line-like structures to a gusty wind. P I Civil Eng 23:389–408Google Scholar
  235. 235.
    Davenport AG (1962) Buffeting of a suspension bridge by storm winds. J Struct Div ASCE 88:233–268Google Scholar
  236. 236.
    Zdravkovich MM (1996) Different modes of vortex shedding: an overview. J Fluid Struct 10:427–437CrossRefGoogle Scholar
  237. 237.
    von Kármán T (1911, 1912) Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten, mathematisch-physikalische Klasse, 509–517 (1911), 547–556 (1912)Google Scholar
  238. 238.
    Bourry E (1886) Oscillation of chimneys. Minutes of Proceedings, I Civil Eng, LXXXIII, pp 454–455Google Scholar
  239. 239.
    Omori F (1918) Wind pressure on tall chimneys. Engineering 106:334–336Google Scholar
  240. 240.
    Electric Power Research Institute (1979) Transmission line reference book: wind-induced conductor motion. Palo Alto, CaliforniaGoogle Scholar
  241. 241.
    Stockbridge GH (1925, December) Overcoming vibration in transmission cables. Electrical World, 86Google Scholar
  242. 242.
    Varney T (1926) Notes on the vibration of transmission line conductors. J AIEE 45:953–957Google Scholar
  243. 243.
    Ruedyf R (1935) Vibrations of power lines in a steady wind. II. Suppression of vibrations by tuned dampers. Can J Res 13 A:99–110Google Scholar
  244. 244.
    Sturm RG (1936) Vibration of cables and dampers, Part I. Electrical Engineering, MayGoogle Scholar
  245. 245.
    Relf EF, Simmons LFG (1924) The frequency of the eddies generated by the motion of circular cylinders through a fluid. Aeronautical Research Council R & M 917Google Scholar
  246. 246.
    Maier-Windhorst A (1939) Flatterschwingungen von zylindern im gleichmassigem flüssigkeitsstrom. Mitt. Des Hydraulischen Institute der Technischen Hochschule München, Heft 9, MunichGoogle Scholar
  247. 247.
    Camichel C, Escande L (1938) Similitude Hydraulique et Techniques des Modeles Reduits. Publications Scientifiques et techniques du Ministère de l’Air, Institut de Mécanique des Fluides de l’Université de Toulose, 81Google Scholar
  248. 248.
    Nø kkentved C (1941) Vibrations produced by wind. Dansk Selskab for Bygningsstatik, CopenhagenGoogle Scholar
  249. 249.
    Baird RC (1955) Wind-induced vibrations of a pipe-line suspension bridge and its cure. Trans ASME 77:797–804Google Scholar
  250. 250.
    Dockstader EA, Swinger WF, Ireland E (1956) Resonant vibrations of steel stacks. Trans ASCE 121:1088–1109Google Scholar
  251. 251.
    Dickey WL, Woodruff GB (1956) The vibrations of steel stacks. Trans ASCE 121:1054–1070Google Scholar
  252. 252.
    Ozker MS, Smith JC (1956) Factors influencing the dynamic behavior of tall stacks under the aeration of wind. Trans ASME 78:1381–1391Google Scholar
  253. 253.
    Price P (1956) Suppression of the fluid-induced vibration of circular cylinders. J Eng Mech Div ASCE 82:1–22Google Scholar
  254. 254.
    Scruton C (1963) On the wind-excited oscillations of stacks, towers and masts. In: Proceedings of conference on wind effects on buildings and structures, National Physical Laboratory, Teddington; Her Majetsy’s Stationery Office, London, pp 798–836Google Scholar
  255. 255.
    Scruton C, Flint AR (1964) Wind-excited oscillations of structures. P I Civil Eng 27:673–702Google Scholar
  256. 256.
    Scruton C, Walshe DEJ (1957) A means for avoiding wind excited oscillations of structures with circular or nearly circular cross sections. NPL Aero report 335Google Scholar
  257. 257.
    Woodgate L, Mabrey JFM (1959) Further experiments on the use of helical strakes for avoiding wind excited oscillations of structures with circular or near circular cross section. NPL Aero report 381Google Scholar
  258. 258.
    Weaver W (1959) Experimental investigation of wind-induced vibration in antenna members. Group report no. 75-4 Lincoln Laboratory, Massachusetts Institute of Technology. CambridgeGoogle Scholar
  259. 259.
    Davison AE (1930) Dancing conductors. J AIEE 49:1444–1449Google Scholar
  260. 260.
    Den Hartog JP (1932) Transmission line vibration due to sleet. J AIEE 51:1074–1076Google Scholar
  261. 261.
    Lanchester FW (1908) Aerodonetics. Archibald Constable, LondonGoogle Scholar
  262. 262.
    Glauert H (1919) The rotation of an aerofoil about a fixed axis. Aeronautical Research Council R & M 595Google Scholar
  263. 263.
    Stewart DC (1937) Experimental study of dancing cables. AIEE North Eastern District Meeting, BuffaloGoogle Scholar
  264. 264.
    Tornquist EL, Becker C (1947) Galloping conductors and a method for studying them. J AIEE 66:1154–1161Google Scholar
  265. 265.
    Cheers F (1950) A note on galloping conductors. Report MT-14, National Research Council of Canada, OttawaGoogle Scholar
  266. 266.
    Edwards AT, Madeyski A (1956) Progress report on the investigation of galloping transmission line conductors. J AIEE 75:666–686Google Scholar
  267. 267.
    Hogg AD, Edwards AT (1963) The status of the conductor galloping problem in Canada. In: Proceedings of conference on wind effects on buildings and structures, National Physical Laboratory, Teddington; Her Majetsy’s Stationery Office, London, U.K., pp 562–580Google Scholar
  268. 268.
    Davis DA, Richards DJW, Scriven RA (1963) Investigation of conductor oscillation on the 275 kv crossing over the Rivers Severn and Wye. P I Electr Eng 110:205–219CrossRefGoogle Scholar
  269. 269.
    Richards DJW (1963) Aerodynamic properties of the Sevem crossing conductor. In: Proceedings of conference on wind effects on buildings and structures, National Physical Laboratory, Teddington; Her Majetsy’s Stationery Office, London, U.K., pp 688–765Google Scholar
  270. 270.
    Richardson AS, Martuccelli JR, Price WS (1963) Aeroelastic galloping in one degree of freedom. In: Proceedings of conference on wind effects on buildings and structures. National Physical Laboratory, Teddington; Her Majetsy’s Stationery Office, London, U.K., pp 612–686Google Scholar
  271. 271.
    Parkinson GV, Brooks NPH (1961) On the aeroelastic instability of bluff cylinders. J Appl Mech ASME 28:252–258zbMATHCrossRefGoogle Scholar
  272. 272.
    Parkinson GV, Smith JD (1962) An aeroelastic oscillator with two stable limit cycles. J Appl Mech ASME 29:444–445CrossRefGoogle Scholar
  273. 273.
    Parkinson GV (1963) Aeroelastic galloping in one degree of freedom. In: Proceedings of conference on wind effects on buildings and structures. National Physical Laboratory, Teddington; Her Majetsy’s Stationery Office, London, U.K., pp 582–609Google Scholar
  274. 274.
    Minorsky N (1947) Introduction to non-linear mechanics. J.W. Edwards, Ann Arbor, MichGoogle Scholar
  275. 275.
    Clauser FH (1956) The behavior of nonlinear systems. J Aeronaut Sci 23:414–420MathSciNetGoogle Scholar
  276. 276.
    Hirai A (1955) Aerodynamic stability of suspension bridges under wind action. P Jpn Acad 31:625–636zbMATHCrossRefGoogle Scholar
  277. 277.
    Hirai A (1956) Aerodynamic stability of suspension bridges under wind action. In: Proceedings of 5th IABSE congress, Lisbon, Preliminary Report, pp 213–221Google Scholar
  278. 278.
    Reissner H (1943) Oscillations of suspension bridges. J Appl Mech ASME 10:23–32MathSciNetzbMATHGoogle Scholar
  279. 279.
    Steinman DB (1943) Rigidity and aerodynamic stability of suspension bridges. Proc ASCE 69:1361–1397Google Scholar
  280. 280.
    Pinney E (1948) Aerodynamic oscillations in suspension bridges. J Appl Mech ASME 15:151–159MathSciNetzbMATHGoogle Scholar
  281. 281.
    Bleich F (1949) Dynamic instability of truss-stiffened suspension bridges under wind action. Trans ASCE 114:1177–1232Google Scholar
  282. 282.
    Steinman DB (1949) Aerodynamic theory of bridge oscillations. Proc ASCE 75:1147–1184Google Scholar
  283. 283.
    Steinman DB (1947) Simple model tests predict aerodynamic characteristics of bridges. Civil Eng, ASCE, 17, January 1, 20–24; February 2, 77–79Google Scholar
  284. 284.
    Gourjienko GA (1937) Method of curved models and its application to the study of curvi-linear flight of airships. Part I, II. Technical Memorandum 829, 830, National Advisory Committee for Aeronautics, Washington, D.CGoogle Scholar
  285. 285.
    Scanlan RH, Tomko JJ (1971) Airfoil and bridge deck flutter derivatives. J Eng Mech ASCE 97:1717–1737Google Scholar
  286. 286.
    Bleich, F, McCullough CB, Rosecrans R, Vincent GS (1950) The mathematical theory of vibration in suspension bridges. Department of Commerce, Bureau of Public Roads, WashingtonGoogle Scholar
  287. 287.
    American Society of Civil Engineers (1955) Aerodynamic stability of suspension bridges. Report of the advisory board on the investigations of suspension bridges. Trans ASCE 120, 721–781Google Scholar
  288. 288.
    Selberg A (1961) Oscillation and aerodynamic stability of suspension bridges. Acta Polytecnica Scandinavica, Civil Engineering and Building Construction series, 13, Trondheim, NorwayGoogle Scholar
  289. 289.
    Selberg A (1963) Aerodynamic effects on suspension bridges. In: Proceedings of conference on wind effects on building and structures. National Physical Laboratory, Teddington; Her Majesty’s Stationary Office, London, U.K., pp 462–486Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations