Advertisement

Wind, Environment and Territory

  • Giovanni SolariEmail author
Chapter
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)

Abstract

This chapter provides a fairly consistent picture of the unlimited range of actions and effects induced by the wind on the environment and territory. Accordingly, it describes the transition from ancient windmills to modern wind turbines. It deals with the role of the wind in the transport and diffusion of minute materials, highlighting three issues: the diffusion of pollutants introduced in the air during combustion processes, soil erosion, a phenomenon able of changing the geomorphological features of nature and of making soil dry up with devastating consequences, and the snow drift that causes severe problems for road and rail traffic as well as for built areas. The chapter also deals with natural and artificial barriers and their manifold uses, first of all, the protection of crops. Finally, it continues the description of the efforts mankind carried out since ancient times to build settlements and dwellings taking inspiration from bioclimatic principles; in this framework, city planning and architecture came into contact with environmental and climatic issues reassessed on scientific grounds.

References

  1. 1.
    Woelfle G (1997) The wind at work. An activity guide to windmills. Chicago Review Press, ChicagoGoogle Scholar
  2. 2.
    Perry TO (1899) Experiments with windmills. Department of the Interior, Water Supply and Immigration Papers, US Geological Survey, N. 20, Washington, DCGoogle Scholar
  3. 3.
    Golding E (1976) The generation of electricity by wind power. Halsted, New YorkGoogle Scholar
  4. 4.
    Cella P (1979) L’energia eolica. Longanesi, MilanGoogle Scholar
  5. 5.
    La Cour P (1905) Die Windkraft und ihre Anwendung zum Antrieb von Elektrizitäts-Werken. Übersetzt von Johannes Kaufmann. Verlag von M. Heinsius Nachf., LeipzigGoogle Scholar
  6. 6.
    Betz A (1926) Windenergie und ihre Ausnutzung durch Windmühlen. Ökobuch, StaufenGoogle Scholar
  7. 7.
    Putnam PC (1948) Power from the wind. Van Nostrand Reinhold, New YorkGoogle Scholar
  8. 8.
    Thomas PH (1945) Electric power from the wind (Monograph) U.S. Federal Power CommissionGoogle Scholar
  9. 9.
    Thomas PH (1946) The wind power aerogenerator—twin wheel type (Monograph). U.S. Federal Power CommissionGoogle Scholar
  10. 10.
    Thomas PH (1949) Aerodynamics of the wind turbine (Monograph). U.S. Federal Power CommissionGoogle Scholar
  11. 11.
    Thomas PH (1954) Fitting wind power to the utility network—diversity, storage, firm capacity secondary energy (Monograph). U.S. Federal Power CommissionGoogle Scholar
  12. 12.
    Golding EW (1957, June) Electrical energy from the wind. Eng J, 809–819Google Scholar
  13. 13.
    Eldridge FR (1980) Wind machines. Van Nostrand Reinhold, New YorkGoogle Scholar
  14. 14.
    Gipe P (1995) Wind energy comes of age. Wiley, New YorkGoogle Scholar
  15. 15.
    Ackermann T, Soder L (2000) Wind energy technology and current status: a review. Renew Sust Energ Rev 4:315–374CrossRefGoogle Scholar
  16. 16.
    Savonius SJ (1931) The S-Rotor and its applications. Mech Eng 53:333–338Google Scholar
  17. 17.
    Jacobson MZ (2002) Atmospheric pollution. History, science and regulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Scorer RS (1958) Natural aerodynamics. Pergamon Press, LondonzbMATHGoogle Scholar
  19. 19.
    Scorer RS (1959) The behaviour of chimney plumes. Int J Air Poll 1:198–220Google Scholar
  20. 20.
    Scorer RS (1959) The rise of bent-over hot plumes. In Frenkiel FN, Sheppard PA (eds) Atmospheric diffusion and air pollution (advances in geophysics), vol 6. Academic Press, New York, p 399Google Scholar
  21. 21.
    Pasquill F, Smith FB (1983) Atmospheric diffusion. Wiley, New YorkGoogle Scholar
  22. 22.
    Howard L (1833) Climate of London deduced from meteorological observations. Harvey & Darton, LondonGoogle Scholar
  23. 23.
    Renou E (1855) Instructions météorologiques. Annuaire Soc Meteorol de France 3:73–160Google Scholar
  24. 24.
    Schmidt W (1917) Zum einfluss grosser städte auf das klima. Naturwissenschaften 5:494–495CrossRefGoogle Scholar
  25. 25.
    Schmidt W (1927) Die verteilung der minimumtemperaturen in der frostnacht des 12.5. 1927 im Gemeidegebiet von Wien. Fortschr Landwirtsch 2:681–686Google Scholar
  26. 26.
    Schmidt W (1930) Kleinklimatische aufnahmen durch temperaturfahrten. Meteorol Z 47:92–106Google Scholar
  27. 27.
    Kratzer A (1937) Das Stadtklima, 1st edn. Vieweg, BraunschweigGoogle Scholar
  28. 28.
    Kratzer A (1956) Das Stadtklima, 2nd edn. Vieweg, BraunschweigzbMATHGoogle Scholar
  29. 29.
    Manley G (1958) On the frequency of snowfall in metropolitan England. Q J Roy Meteor Soc 84:70–72CrossRefGoogle Scholar
  30. 30.
    Landsberg HE (1981) The urban climate. Academic Press, New YorkGoogle Scholar
  31. 31.
    Chandler TJ (1965) The climate of London. Hutchinson, LondonGoogle Scholar
  32. 32.
    Dettwiller J (1970) Èvolution séculaire du climat de Paris (influence de urbanisme). Mem Meteorol Natl Paris, 52Google Scholar
  33. 33.
    Schaefer C, Domroes M (2009) Recent climate change in Japan—spatial and temporal characteristics of trends of temperature. Clim Past 5:13–19CrossRefGoogle Scholar
  34. 34.
    Mitchell JM Jr (1961) The thermal climate or cities. In: Proceedings of symposium on air over cities, U.S. Public Health Serv. Publ. SEC., Tech. Rept. A62-5, pp 131–143Google Scholar
  35. 35.
    Dronia H (1967) Der städteeinfluss auf den weltweiten temperaturtrend. Meteorol Abh 74 (Berlin)Google Scholar
  36. 36.
    Sutton OG (1961) The challenge of the atmosphere. Harper, New YorkGoogle Scholar
  37. 37.
    Melaragno MG (1982) Wind in architectural and environmental design. Van Nostrand Reinhold, New YorkGoogle Scholar
  38. 38.
    Lutgens FK, Tarbuck EJ (2001) The atmosphere: an introduction to meteorology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  39. 39.
    Schrenk HH, Wexler H (1949) Air pollution in Donora, Pennsylvania. Public Health Bulletin 306, Washington, DCGoogle Scholar
  40. 40.
    Douglas CKM, Stewart KH (1953) London fog of December 5-8, 1952. Meteorol Mag 82:67–71Google Scholar
  41. 41.
    Niemeyer LE (1960, March) Forecasting air pollution potential. Mon Weather Rev, 88–96Google Scholar
  42. 42.
    Taylor GI (1915) Eddy motion in the atmosphere. Phil Trans R Soc 215:1–26CrossRefGoogle Scholar
  43. 43.
    Taylor GI (1921) Diffusion by continuous movements. P London Math Soc 20:196–212MathSciNetzbMATHGoogle Scholar
  44. 44.
    Roberts OFT (1923) The theoretical scattering of smoke in a turbulent atmosphere. P Roy Soc, A 104:640–654CrossRefGoogle Scholar
  45. 45.
    Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. P Roy Soc, A 110:709–737CrossRefGoogle Scholar
  46. 46.
    Richardson LF, Stommel H (1948) A note on eddy diffusion in the sea. J Meteorol 5:238–240CrossRefGoogle Scholar
  47. 47.
    Sutton OG (1932) A theory of eddy diffusion in the atmosphere. P Roy Soc, A 135:143–165zbMATHCrossRefGoogle Scholar
  48. 48.
    Sutton OG (1934) Wind structure and evaporation in a turbulent atmosphere. P Roy Soc, A 146:701–722zbMATHCrossRefGoogle Scholar
  49. 49.
    Csanady GT (1955) Dispersal of dust particles from elevated sources. Aust J Phys 8:545–550CrossRefGoogle Scholar
  50. 50.
    Kampé de Fériet MJ (1939) Les fonctions aleatoires stationnaires et la théorie statistique de la turbulence homogène. Ann Soc Sci Brux 59:145–194zbMATHGoogle Scholar
  51. 51.
    Sutton OG (1947) The problem of diffusion in the lower atmosphere. Q J Roy Meteor Soc 73:257–281CrossRefGoogle Scholar
  52. 52.
    Sutton OG (1947) The theoretical distribution of airborne pollution from factory chimneys. Q J Roy Meteor Soc 73:426–436CrossRefGoogle Scholar
  53. 53.
    Bosanquet CH, Pearson JL (1936) The spread of smoke and gases from chimneys. T Faraday Soc 32:1249–1263CrossRefGoogle Scholar
  54. 54.
    Sutton OG (1949) The application to micrometeorology of the theory of turbulent flow over rough surfaces. Q J Roy Meteor Soc 75:335–350CrossRefGoogle Scholar
  55. 55.
    Church PE (1949) Dilution of waste stack gases in the atmosphere. Ind Eng Chem 41:2753–2756CrossRefGoogle Scholar
  56. 56.
    Etkes PW, Brooks CF (1918) Smoke as an indicator of gustiness and convection. Mon Weather Rev 46:459–460CrossRefGoogle Scholar
  57. 57.
    Sherlock RH, Stalker EA (1941) A study of flow phenomena in the wake of smokestacks, Engineering Research Bulletin 29, University of Michigan, Ann Arbor, MichiganGoogle Scholar
  58. 58.
    von Hohenleiten HL, Wolf EF (1942) Wind-tunnel tests to establish stack height for Riverside Generating Station. Trans ASME 64:671–683Google Scholar
  59. 59.
    McElroy GE, Brown CE, Berger LB, Schrenk HH (1944) Dilution of stack effluents. US Bureau of Mines, Technical Paper 657Google Scholar
  60. 60.
    Kalinske AA, Jensen RA, Schadt CF (1945) Wind tunnel studies of gas diffusion in a typical Japanese urban district. OSRD NDRC Div. 10, Informal Rep. 10.3A-48, Washington, DCGoogle Scholar
  61. 61.
    Kalinske AA, Jensen RA, Schadt CF (1945) Correlation of wind tunnel studies with field measurements of gas diffusion. OSRD NDRC Div. 10, Informal Rep. 10.3A-48A, Washington, DCGoogle Scholar
  62. 62.
    Rouse H (1951) Air-tunnel studies of diffusion in urban areas. Meteor Mon I, 39–41Google Scholar
  63. 63.
    (1946) Wind tunnel tests on smoke emission from a model of the Glasgow Corporation Braehead Power Station, NPL Aero Report 145Google Scholar
  64. 64.
    Bryant LW (1949) The effects of velocity and temperature of discharge on the shape of smoke plumes from a funnel or chimney in a wind tunnel. NPL Report ACSIL/49/2482, 1–28Google Scholar
  65. 65.
    Bryant LW, Cowdrey CF (1955) The effects of velocity and temperature of discharge on the shape of smoke plumes from a tunnel or chimney: experiments in a wind tunnel. P I Mech Eng London 169:371–400CrossRefGoogle Scholar
  66. 66.
    Cermak JE (1981) Wind tunnel design for physical modeling of atmospheric boundary layers. J Eng Mech Div ASCE 107:623–642Google Scholar
  67. 67.
    Strom GH, Halitsky J (1954) Important considerations in the use of the wind tunnel for pollution studies of power plants. Air Repair 4:24–30CrossRefGoogle Scholar
  68. 68.
    Prandtl L, Reichardt H (1934) Einfluss von Wärmeschinchtung auf de Eigenschaften einer turbulenten Strömung. Deutsche Forschung 21:110–121 (Berlin, Germany)Google Scholar
  69. 69.
    Cermak JE, Albertson ML (1958) Use of wind tunnels in the study of atmospheric phenomena. Air Pollution Control Association. Paper 58–32, Annual Meeting APCAGoogle Scholar
  70. 70.
    Jensen M, Franck N (1963) Model-scale tests in turbulent wind. Part I: phenomena dependent on the wind speed. The Danish Maritime Press, CopenhagenGoogle Scholar
  71. 71.
    Petersen H (1960) A type of wind tunnel for simulating phenomena in the natural wind. Advisory Group for Aeronautical Research and Development, North Atlantic Treaty Organisation, Report 308, ParisGoogle Scholar
  72. 72.
    Gifford FA (1957) Relative atmospheric diffusion of smoke puffs. J Meteorol 14:410–414CrossRefGoogle Scholar
  73. 73.
    Angell JK (1959) A climatological analysis of two years of routine transosonde flights from Japan. Mon Weather Rev 87:427–439CrossRefGoogle Scholar
  74. 74.
    Eggleton AEJ, Thompson N (1961) Loss or fluorescent particles in atmospheric diffusion experiments by comparison with radioxenon tracer. Nature 192:935–936CrossRefGoogle Scholar
  75. 75.
    Green HL, Lane WR (1957) Particulate clouds: dusts, smokes and mists. Spon, LondonGoogle Scholar
  76. 76.
    Barad ML (1958) Project Prairie Grass, a field program in diffusion. Geophysical Research Paper 59. I & II, G.R.D., A.F.C.R.C., Bedford, MAGoogle Scholar
  77. 77.
    Haugen DA (1959) Project Prairie Grass, a field program in diffusion. Geophysical Research Paper 59, III, G.R.D., A.F.C.R.C., Bedford, MAGoogle Scholar
  78. 78.
    Hay JS, Pasquill F (1957) Diffusion from a fixed source at a height of a few hundred feet in the atmosphere. J Fluid Mech 2:299–310CrossRefGoogle Scholar
  79. 79.
    Hilst GR, Simpson CL (1958) Observations or vertical diffusion rates in stable atmospheres. J Meteorol 15:125CrossRefGoogle Scholar
  80. 80.
    Islitzer NF (1961) Short-range atmospheric dispersion measurements from an elevated source. J Meteorol 18:443–450CrossRefGoogle Scholar
  81. 81.
    Bosanquet CH, Carey WF, Halton EM (1950) Dust deposition from chimney stack. P I Mech Eng 162:355–367Google Scholar
  82. 82.
    Ball FK (1958) Some observations of bent plumes. Q J Roy Meteor Soc 84:61–65CrossRefGoogle Scholar
  83. 83.
    Csanady GT (1961) Some observations on smoke plumes. Int J Air Water Poll 4:47–51Google Scholar
  84. 84.
    Schmidt W (1925) Der Massenaustausch in freier Luft und verwandte Erscheinungen. Probleme der Kosmischen Physik, Hamburg, Verlag von Henri GrandGoogle Scholar
  85. 85.
    Hage KD (1961) The influence of size distribution on the ground deposit of large particles emitted from an elevated source. Int J Air Wat Poll 4:24Google Scholar
  86. 86.
    Hage KD (1961) On the dispersion of large particles from a 15 m source in the atmosphere. J Meteorol 18:534–539CrossRefGoogle Scholar
  87. 87.
    Gregory PH (1945) The dispersion of airborne spores. Trans Brit Mycol Soc 28:26–72CrossRefGoogle Scholar
  88. 88.
    Sutton OG (1953) Micrometeorology. McGraw-Hill, New YorkGoogle Scholar
  89. 89.
    Elliott WP (1961) The vertical diffusion of gas from a continuous source. Int J Air Water Poll 4:33–46Google Scholar
  90. 90.
    Chamberlain AC (1959) Deposition of iodine-131 in Northern England in October 1957. Q J Roy Meteor Soc 85:350–361CrossRefGoogle Scholar
  91. 91.
    Crabtree J (1959) The travel and diffusion of the radioactive material emitted during the Windscale accident. Q J Roy Meteor Soc 85:362–370CrossRefGoogle Scholar
  92. 92.
    Pasquill F (1961) The estimation of the dispersion of windborne material. Aust Meteorol Mag 90:33–49Google Scholar
  93. 93.
    Gifford FA Jr (1961) Use of routine meteorological observations for estimating atmospheric dispersion. Nucl Saf 2:47–51Google Scholar
  94. 94.
    Gifford FA Jr (1959) Smoke plumes as quantitative air pollution indices. Int J Air Poll 2:42–50Google Scholar
  95. 95.
    Gifford FA Jr (1960) Atmospheric dispersion. Nucl Saf 1:56–62Google Scholar
  96. 96.
    Monin AS (1959) Smoke propagation in the surface layer of the atmosphere. In Frenkiel FN, Sheppard PA (eds) Atmospheric diffusion and air pollution (advance in geophysics), vol 6, p 331Google Scholar
  97. 97.
    Batchelor GK (1964) Diffusion from sources in a turbulent boundary layer. Archiv Mechaniki Stoswanej 3:661Google Scholar
  98. 98.
    Gifford FA Jr (1962) Diffusion in the diabatic surface layer. J Geophys Res 67:3207–3212zbMATHCrossRefGoogle Scholar
  99. 99.
    Smith RA (1872) Air and rain, the beginnings of a chemical climatology. Longmans, Green, LondonGoogle Scholar
  100. 100.
    Richardson LF, Proctor D (1925) Diffusion over distances ranging from 3 km to 86 km. Memoirs Roy Meteor Soc, 1Google Scholar
  101. 101.
    Braham RR, Seely BK, Crozier WD (1952) A technique for tagging and tracing air parcels. Trans Amer Geophys Union 33:825–833CrossRefGoogle Scholar
  102. 102.
    Crozier WD, Seely BK (1955) Concentration distributions in aerosol plumes three to twenty-two miles from a point source. T Am Geophys Union 36:42–52CrossRefGoogle Scholar
  103. 103.
    Pasquill F (1956) Meteorological research at Porton. Nature 177:1148–1150CrossRefGoogle Scholar
  104. 104.
    Henson WR, Waggoner PE (1965) Transport of small organisms in moving air. In: Agricultural meteorology, vol 6, No 28. American Meteorological Society, pp 133–137Google Scholar
  105. 105.
    Stakman EC (1942) The field of extramural aerobiology. Aerobiology, Amer Assoc Adv Sci, Washington, DC, pp 1–7Google Scholar
  106. 106.
    Stepanov KM (1935) Dissemination of infectious diseases of plants by air currents. Bull Plant Prot Leningrad, Series 2, Phytopathology 8Google Scholar
  107. 107.
    Gregory PH (1961) Microbiology of the atmosphere. Interscience, New YorkCrossRefGoogle Scholar
  108. 108.
    Jackson D (ed) (1996) The journals of Zebulon Montgomery Pike: with letters and related documents. Norman, OklahomaGoogle Scholar
  109. 109.
    Chepil WS (1957) Dust bowl: causes and effects. J Soil Water Conserv 12:108–111Google Scholar
  110. 110.
    King FH (1894) Destructive effects of winds on sandy soils and light sandy loam with methods of protection. Wisconsin Agricultural Experiment Station Bulletin, 42, Madison, Wisconsin, pp 19–29Google Scholar
  111. 111.
    Free EE, Westgate JM (1910) The control of blowing soils. United States Department of Agriculture Farmers’ Bulletin 421Google Scholar
  112. 112.
    Clements FE (1938) Climatic cycles and human populations in the Great Plains. Sci Mon, 193–210Google Scholar
  113. 113.
    Karman T von (1948) L’aérodynamique dans l’art de l’ingénieur. Mémoires de la Société des Ingenieurs Civils de France, pp 155–178Google Scholar
  114. 114.
    Bennett HH, Chapline WR (1928) Soil erosion: a national menace. United States Department of Agriculture, Circular 33Google Scholar
  115. 115.
    Bennett HH (1934) Soil erosion—a national menace. Sci Mon 39:385–404MathSciNetGoogle Scholar
  116. 116.
    Bennett HH (1935) Facing the erosion problem. Science 81:321–326CrossRefGoogle Scholar
  117. 117.
    Bennett HH (1936) Waste by wind and water. Sci Mon 42:172–176Google Scholar
  118. 118.
    Bennett HH (1938) Emergency and permanent control of wind erosion in the Great Plains. Sci Mon 47:381–399Google Scholar
  119. 119.
    Bennett HH (1939) Soil conservation. McGraw-Hill, New YorkGoogle Scholar
  120. 120.
    Bagnold RA (1941) The physics of blown sand and desert dunes. Chapman and Hall, LondonGoogle Scholar
  121. 121.
    Zingg AW (1951) A portable wind tunnel and dust collector developed to evaluate the erodibility of field surfaces. Agronomie 43:189–191CrossRefGoogle Scholar
  122. 122.
    Chepil WS, Woodruff NP (1963) The physics of wind erosion and its control. Adv Agron 15:211–302CrossRefGoogle Scholar
  123. 123.
    Chepil WS (1965) Transport of soil and snow by wind. In: Agricultural meteorology, vol 6, No. 28. American Meteorological SocietyGoogle Scholar
  124. 124.
    Chepil WS, Milne RA (1941) Wind erosion of soil in relation to roughness of surface. Soil Sci 52:417–433CrossRefGoogle Scholar
  125. 125.
    Chepil WS (1945, 1946) Dynamics of wind erosion. Soil Sci 60:305–320, 397–411, 475–480; 61:167–177, 257–263Google Scholar
  126. 126.
    Chepil WS (1950, 1951) Properties of soil which influence wind erosion. Soil Sci 69:149–162, 403–414; 71:141–153; 72:387–401, 465–478Google Scholar
  127. 127.
    Chepil WS, Englehorn CL, Zingg AW (1952) The effect of cultivation on erodibility of soils by wind. Soil Sci Soc Am Proc 16:19–21CrossRefGoogle Scholar
  128. 128.
    Chepil WS (1953, 1954, 1955) Factors that influence clod structure and erodibility of soil by wind. Soil Sci 75:473–483; 77:473–480; 80:155–162, 413–421CrossRefGoogle Scholar
  129. 129.
    Chepil WS, Woodruff NP (1957) Sedimentary characteristics of dust storms. Am J Sci 255:12–22, 104–114, 206–213Google Scholar
  130. 130.
    Chepil WS (1959) Equilibrium of soil grains at the threshold of movement by wind. Soil Sci Soc Am Proc 23:422–428CrossRefGoogle Scholar
  131. 131.
    Chepil WS (1960) How to determine required width of field strips to control wind erosion. J Soil Water Conserv 15:72–75Google Scholar
  132. 132.
    Chepil WS (1961) The use of spheres to measure lift and drag on wind-eroded soil grains. Soil Soc Am Proc 25:343–345CrossRefGoogle Scholar
  133. 133.
    Sheppard PA (1947) The aerodynamic drag of the earth’s surface and value of von Karman’s constant in the lower atmosphere. P Roy Soc London, A 188:208–222CrossRefGoogle Scholar
  134. 134.
    Ippen AT, Verma RP (1953) The motion of discrete particles along the bed of a turbu1ent stream. In: Proceedings: Minnesota International Hydraulic Convention, pp 7–20Google Scholar
  135. 135.
    Einstein HA, El-Samni EA (1949) Hydrodynamic forces on a rough wall. Rev Mod Phys 21:520–524CrossRefGoogle Scholar
  136. 136.
    Coppin NJ, Richards IG (1990) Use of vegetation in civil engineering. Construction Industry Research and Information Association, CIRIA, Butterworths, UKGoogle Scholar
  137. 137.
    Brown S (1961) World of the wind. Bobbs-Merrill, Indianapolis, New YorkGoogle Scholar
  138. 138.
    Jacks GV, Whyte RO (1939) Vanishing lands. Doubleday, Doran, New YorkGoogle Scholar
  139. 139.
    Goliger AM, Retief JV (2007) Severe wind phenomena in Southern Africa and the related damage. J Wind Eng Ind Aerodyn 95:1065–1078CrossRefGoogle Scholar
  140. 140.
    Johnson GDB (1852) Nogle ord om snedreev, snefog och snefonner. P.T. Mallings forlags boghande, Christiania, Reprinted in faximilia Scientia et Tecnica Norvegica 31, NTH, Trondheim, 1969, 22Google Scholar
  141. 141.
    Schubert E (1887) Ueber Schnecschutzanlagen. Centralblatt der Bauverwaltung, Jahrgang VII, pp 5–7Google Scholar
  142. 142.
    Schubert E (1902) Form and magnitude of snow accumulations around snow fences. Organ Forlsch Eisenbahnwesens 39:1–4Google Scholar
  143. 143.
    Cornish V (1902) On snow-waves and snow-drifts in Canada. Geogr J XX:137–173CrossRefGoogle Scholar
  144. 144.
    William WD (1909) Protection against and removal of snow. Rail Road Age Gazette 46:623–624Google Scholar
  145. 145.
    Palmer WC (1918) Tree planting to control snow and wind. Sci Am 85:356–357CrossRefGoogle Scholar
  146. 146.
    Drought RA (1920) Natural snow fences. Public Works 60:289–291Google Scholar
  147. 147.
    Burton VR (1925) Snow drift prevention and control on highways. Eng News Rec 95:752–754Google Scholar
  148. 148.
    Burton VR (1928) Recent developments in snow removal. Public Works 59:291–294Google Scholar
  149. 149.
    Burton VR (1928) Some economic consideration in using snow fences. Eng. News Rec. 100:100–120Google Scholar
  150. 150.
    Klein RM (1930) Snow fence. Good Roads, 73, 24Google Scholar
  151. 151.
    Watkins CW (1930) Living snow fences. Am Forests 36:99Google Scholar
  152. 152.
    Finney EA (1934) Snow control on the highways. Michigan Engineering Experiment Station, Michigan State College of Agriculture and Applied Science, Bulletin 57Google Scholar
  153. 153.
    Finney EA (1937) Snow control by tree planting. Michigan Engineering Experiment Station, Michigan State College of Agriculture and Applied Science, Bulletin 75Google Scholar
  154. 154.
    Finney EA (1939) Snow drift control by highway design. Michigan Engineering Experiment Station, Michigan State College of Agriculture and Applied Science, Bulletin 86Google Scholar
  155. 155.
    Gold LW (1968) Annotated bibliography on snow drift and its control. Division of Building Research, National Research Council of Canada, OttawaGoogle Scholar
  156. 156.
    Nøkkentved C (1939) Undersøgelse af snehegn. Stads-og Havneingeniøren. Arg 30, Hefte 8:111–114Google Scholar
  157. 157.
    Nøkkentved C (1940) Drivedannelse ved sneskaerme. Stads-og Havneingeniøren. Arg 31, Hefte 9:85–92Google Scholar
  158. 158.
    Hallberg S (1943) Några undersökningar av snöskärmar. Statens Väginstitut. Meddelande, Stockolm, 67:5–8, 9–38, 39–45, 46–51, 52–65Google Scholar
  159. 159.
    Pugh HLD (1950) Snow fences. Great Britain Department of Scientific and Industrial Research, Road Research Laboratory, Road Research Technical Paper 19Google Scholar
  160. 160.
    Bekker MG (1951) Snow studies in Germany. National Research Council of Canada, Associate Committee on Soil and Snow Mechanics, Technical Memorandum 20Google Scholar
  161. 161.
    Pugh HLD, Price WIJ (1954) Snow drifting and the use of snow fences. Polar Rec 7:4–23CrossRefGoogle Scholar
  162. 162.
    Shiotani M, Arai H (1954) Snow control of the shelterbelt. Int Union Géodésique Géophys, Intern Assoc Hydrologie Sci, Assemb Gn, Rome, 4:82–91Google Scholar
  163. 163.
    Dyunin AK (1954) Vertical distribution of solid flux in a snow-wind flow. National Research Council of Canada, Ottawa, Technical Translation 999 (1961)Google Scholar
  164. 164.
    Komarov AA (1954) Some rules on the migration and deposition of snow in Western Siberia and their application to control measures. National Research Council of Canada, Ottawa, Technical Translation 1094 (1961)Google Scholar
  165. 165.
    Komarov AA (1954) Ways of increasing the efficiency of snow fences. National Research Council of Canada, Ottawa, Technical Translation 1095 (1961)Google Scholar
  166. 166.
    Dyunin AK (1954) Solid flux of snow-bearing air flow. National Research Council of Canada, Ottawa, Technical Translation 1102 (1963)Google Scholar
  167. 167.
    Dyunin AK, Komarov AA (1954) On the construction of snow fences. National Research Council of Canada, Ottawa, Technical Translation 1103 (1963)Google Scholar
  168. 168.
    Dyunin AK (1959) Fundamentals of the theory of snowdrifting. National Research Council of Canada, Ottawa, Technical Translation 952 (1961)Google Scholar
  169. 169.
    Kreutz W, Walter W (1956) Der Strömungsverlauf sowie die Erosionsvorgänge und Schneeablagerungen an künstlichen Windschirmen nach Untersuchungen im Wind-kanal. Ber Dtsch Wetterdienstes 4:1–25Google Scholar
  170. 170.
    Jensen M (1959) Aerodynamik i den naturlige Vind. Danish Technical Press, CopenhagenGoogle Scholar
  171. 171.
    Shiotani MS, Arai H (1953) A short note on the snow-storm. In: Proceedings of 2nd Japanese National Congress of applied mechanics, 1952, pp 217–218Google Scholar
  172. 172.
    Loewe F (1956) Etudes de glaciologie en Terre Adelie. Hermann, ParisGoogle Scholar
  173. 173.
    Mellor M, Radok U (1960) Some properties of drifting snow. Antarctic meteorology. Pergamon Press, Oxford, pp 333–346Google Scholar
  174. 174.
    Dingle WRJ, Radok U (1961) Antarctic snow drift and mass transport. General Assembly Helsinki, 1960, IASH Publication 55, pp 77–87Google Scholar
  175. 175.
    Kimura K, Yoshisaka T (1942) Scale model experiments on snow-drift around buildings. Report 1, Seppya, 4, pp 96–99Google Scholar
  176. 176.
    Gerdel RW, Strom GH (1961) Scale simulation of a blowing snow environment. P I Envir Sci 53:53–63Google Scholar
  177. 177.
    Roots EF, Swithinbank CWM (1955) Snow drifts around buildings and stores. Polar Record 7:380–387CrossRefGoogle Scholar
  178. 178.
    Bates CG (1911) Windbreaks: their influence and value. U.S.D.A. Forest Serv Bull 86Google Scholar
  179. 179.
    Esbjerg N (1917) Beretning om laevirkningsundersogelser i 1913-1915. Tidsskrift for Planteavl 24:531–574Google Scholar
  180. 180.
    Bernbeck OEG (1920) Das Wachstum im Winde. Forstwiss Centralbl 42:27–40, 59–69, 93–100Google Scholar
  181. 181.
    Maximov NA (1929) The plant in relation to water. Allen & Unwin, LondonGoogle Scholar
  182. 182.
    Zon R (1935) Possibilities of shelterbelt planting in the plains region: prospective effects of the tree-planting program. United States Forest Service, 33–47Google Scholar
  183. 183.
    Den Uyl D (1936) The zone of effective windbreak influence. J Forestry 34:689–695Google Scholar
  184. 184.
    Bates CG (1945) Shelterbelt influences. J Forestry 43:88–92Google Scholar
  185. 185.
    Brooks CEP (1951) Climate in everyday life. Philosophical Library, New YorkCrossRefGoogle Scholar
  186. 186.
    Stoeckeler JH, Williams AR (1949) Windbreaks and shelterbelts. Yearbook of Agriculture, Washington, DC, pp 191–199Google Scholar
  187. 187.
    Woodruff NP, Zingg AW (1952) Wind-tunnel studies of fundamental problems related to windbreaks. Publication SCS-TP-112, Soil Conservation Service, US Department of Agriculture, Washington, DCGoogle Scholar
  188. 188.
    Woodruff NP (1954) Shelterbelt and surface barrier effects. Agricultural Experimental Station, Manhattan, Kansas, Technical Bulletin 77Google Scholar
  189. 189.
    Staple WJ, Lehane JJ (1955) The influence of field shelterbelts on wind velocity, evaporation, soil moisture, and crop yield. Can J Agr Sci 35:440–453Google Scholar
  190. 190.
    Rudolf PO, Gevorkiantz SR (1935) Possibilities of shelterbelt planting in the plains region: Shelterbelt experience in other lands. U.S. Forest Service, pp 59–76Google Scholar
  191. 191.
    Bodrov VA (1936) The influence of shelterbelts over the microclimate of adjacent territories. J Forestry 34:696–697Google Scholar
  192. 192.
    Woelfle M (1938) Heeken als WindschutzanJagen. Forstw Zhl 60:15–28, 52–63, 73–86Google Scholar
  193. 193.
    Kreutz W (1938) Das Windschutzproblem. Bioklim. BeiblGoogle Scholar
  194. 194.
    Gorshenin NM (Ed) (1941) Agricultural improvement through forestry. Govt. Publisher Kolkhoz and Sovkhoz Literature, MoscowGoogle Scholar
  195. 195.
    Nägeli W (1942) Importance des rideaux-abris contre le vent pour la protection des cultures agricoles. J For Suisse 93:1–20Google Scholar
  196. 196.
    Nägeli W (1943) Untersuchungen über die Windverhältnisse im Bereich von Windschutz-streifen. Mitt schweiz Anst forstl Versuchsw 23:223–276Google Scholar
  197. 197.
    Irminger JOV, Nøkkentved C (1930) Wind-pressure on buildings: experimental researches (1st series). Ingeniørvidenskabelige Skrifter, A, 23, CopenhagenGoogle Scholar
  198. 198.
    Irminger JOV, Nøkkentved C (1936) Wind-pressure on buildings: experimental researches (2nd series). Ingeniørvidenskabelige Skrifter, A, 42, CopenhagenGoogle Scholar
  199. 199.
    Jensen M (1954) Shelter effects: investigations into the aerodynamics of shelter and its effects on climate and crops. The Danish Technical Press, CopenhagenGoogle Scholar
  200. 200.
    Caborn JM (1957) Shelterbelts and microclimate. Department of Forestry, Edinburgh University, Bulletin 29Google Scholar
  201. 201.
    Greb BW, Black AL (1961) Effect of windbreak planting on adjacent crops. J Soil Water Conserv 16:223–227Google Scholar
  202. 202.
    Aronin JE (1953) Climate and architecture. Reinhold, New YorkGoogle Scholar
  203. 203.
    Dodi G (1985) Città e territorio. Masson, MilanGoogle Scholar
  204. 204.
    Howard E (1902) Garden cities of tomorrow. Swan Sonnenschein, LondonGoogle Scholar
  205. 205.
    Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied Science Publishers, LondonGoogle Scholar
  206. 206.
    Tafuri M, Dal Co F (1988) Architettura contemporanea. Electra, MilanGoogle Scholar
  207. 207.
    Kampffmeyer H (1932) Homes should be built near workshops. Julius Hofman Verlag, StuttgartGoogle Scholar
  208. 208.
    Gallo C (1998) Architettura bioclimatica. ENEA, RomeGoogle Scholar
  209. 209.
    Marks RW (1960) The Dymaxion world of Buckminster Fuller. Reinhold, New YorkGoogle Scholar
  210. 210.
    Grimaldi R (1990) R. Buckminster Fuller. Officina Edizioni, RomeGoogle Scholar
  211. 211.
    Solari G (2009) Forma e aerodinamica nell’evoluzione strutturale e architettonica dei grattacieli. Parte I: L’esperienza del passato. Costruzioni Metalliche 4:51–62Google Scholar
  212. 212.
    Solari G (2009) Forma e aerodinamica nell’evoluzione strutturale e architettonica dei grattacieli. Parte II: Tendenze attuali e prospettive future. Costruzioni Metalliche 5:75–87Google Scholar
  213. 213.
    Tanaka H, Tamura, Y, Ohtake K, Nakai M, Kim YC (2012) Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. J Wind Eng Ind Aerodyn 107–108:179–191Google Scholar
  214. 214.
    Tanaka H, Tamura Y, Ohtake K (2013) Aerodynamic and flow characteristics of tall buildings with various unconventional configurations. Int J High-Rise Build 2:213–228Google Scholar
  215. 215.
    Lonero G (2005) Chandigarh prima e dopo Chandigarh: il contributo di Albert Mayer e della sua squadra. Annali di Architettura 17:211–226Google Scholar
  216. 216.
    Mayer A (1950) The new capital of the Punjab. J Am Inst Arch, p 168Google Scholar
  217. 217.
    Olgyay V (1963) Design with climate. Princeton University Press, PrincetonGoogle Scholar
  218. 218.
    Collymore P (1994) The architecture of Ralph Erskine. Academy, LondonGoogle Scholar
  219. 219.
    Egelius M (1990) Ralph Erskine, architect. Byggförlaget, StockholmGoogle Scholar
  220. 220.
    Givoni B (1969) Man, climate and architecture. Elsevier, AmsterdamGoogle Scholar
  221. 221.
    Winslow CEA (1926) Objectives and standards of ventilation. ASHVE J 32:113–152Google Scholar
  222. 222.
    Yaglou CP, Witheridge WN (1937) Ventilation requirements. ASHVE T 43:425–437Google Scholar
  223. 223.
    Consolazio WV, Pecora LJ (1947) Minimal replenishment air required for living spaces. ASHVE J Section, HPAC, pp 103–114Google Scholar
  224. 224.
    Shaw WN (1907) Air currents and the laws of ventilation. Cambridge University Press, CambridgezbMATHGoogle Scholar
  225. 225.
    Dick JB (1949) Experimental studies in natural ventilation of houses. J Inst Heating Ventilating Eng 17:420–466Google Scholar
  226. 226.
    Bailey A, Vincent NDG (1943) Wind-pressures on buildings including effects of adjacent buildings. J Inst Civ Eng 20:243–275CrossRefGoogle Scholar
  227. 227.
    Dick JB (1950) The fundamentals of natural ventilation for houses. Heating Ventilating Eng J 18:123–134Google Scholar
  228. 228.
    White RF (1945) Effects of landscape development on the natural ventilation of buildings and their adjacent area. Texas Engineering Experiment Station, Research Report 45Google Scholar
  229. 229.
    Caudill WW, Crites SE, Smith EG (1951) Some general considerations in the natural ventilation of buildings. Texas Engineering Experiment Station, Research Report 22Google Scholar
  230. 230.
    Smith EG (1951) The feasibility of using models for predetermining natural ventilation. Texas Engineering Experiment Station, Research Report 26Google Scholar
  231. 231.
    Holleman TR (1951) Air flow through conventional window openings. Texas Engineering Experiment Station, Research Report 33Google Scholar
  232. 232.
    Caudill WW, Reed BH (1952) Geometry of classrooms as related to natural lighting and natural ventilation. Texas Engineering Experiment Station, Research Report 36Google Scholar
  233. 233.
    Holleman TR (1954) Air flow through conventional window openings. Texas Engineering Experiment Station, Research Report 45Google Scholar
  234. 234.
    Koenigsberger OH, Ingersoll TG, Mayhew A, Szokolay SV (1973) Manual of tropical housing and building. Part 1: Climatic design. Longman, LondonGoogle Scholar
  235. 235.
    Weston ET (1954) Natural ventilation in industrial-type buildings. Special Report 14, Commonwealth Experimental Building Station, SydneyGoogle Scholar
  236. 236.
    Weston ET (1956) Air movement in industrial buildings. Effects of nearby buildings. Special Report 19, Commonwealth Experimental Building Station, SydneyGoogle Scholar
  237. 237.
    Wannenburg JJ, Van Straaten JF (1957, March) Wind tunnel tests on scale model buildings as a means for studying ventilation and allied problems. J Inst Heat Vent EngGoogle Scholar
  238. 238.
    Richards SJ, van Straaten JF, van Deventer N (1960) Some ventilation and thermal considerations in buildings design to suit climate. S A Archit Rec 45:1Google Scholar
  239. 239.
    Gold E (1935) The effect of wind, temperature, humidity and sunshine on the loss of heat of a body at temperature 98F. Q J Roy Meteor Soc 61:316–346CrossRefGoogle Scholar
  240. 240.
    Siple PA, Passel CF (1945) Measurements of dry atmospheric cooling in subfreezing temperatures. Proc Am Phil Soc 89:177Google Scholar
  241. 241.
    Evans BH (1957) Natural air flow around buildings. Texas Engineering Experiment Station, Research Report 59Google Scholar
  242. 242.
    Penwarden AD (1974) Acceptable wind speeds in towns. Building Research Establishment, CP 1/74, Garston, UKGoogle Scholar
  243. 243.
    Hutchinson D (1978) Wind—a planner’s view. J Ind Aerod 3:117–127CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations