Wind and Aerodynamics

  • Giovanni SolariEmail author
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


The knowledge about aerodynamic actions is vitally important in many fields, such as those involving structures and transportation. Facing such issues, This chapter illustrates the experimental techniques that appeared around the end of the nineteenth century to measure aerodynamic actions, first of all the technology that represents the symbol of this discipline: the wind tunnel. It also describes the pioneering stage during which this device was aimed at every type of test, and then, the appearance of facilities specialized in various sectors, first of all those aiming to reproduce the atmospheric boundary layer, then those addressed to aircrafts, sailing boats, road and rail vehicles. The evolution of aerodynamic knowledge is overshadowed by the driving role of aeronautics. Relying on the huge impact of the first flights, it inspired an increasingly stricter relationship between theory and experimentation focusing on the study of wings and originating analytical methods and experimental techniques destined to impact on several sectors, first and above all wind actions and effects on structures and transportation.


  1. 1.
    Eiffel G (1910) La resistance de l’air. Examen des formules at des expériences. H. Dunod et E. Pinat, ParisGoogle Scholar
  2. 2.
    Bixby WH (1895) Wind pressures in engineering construction. Eng News 33:174–184Google Scholar
  3. 3.
    Hagen G (1874) Messung des widerstandes den planscheiben erfahren wenn sie in normaler richtung gegen ihre ebene durch die luft bewegt werden. Akad. Abhandl, BerlinGoogle Scholar
  4. 4.
    Bender CB (1882) The design of structures to resist wind-pressure. Proc Inst Civil Eng 69:80–119Google Scholar
  5. 5.
    Perry TO (1899) Experiments with windmills. Department of the Interior, Water Supply and Immigration Papers, US Geological Survey 20, Washington, D.C.Google Scholar
  6. 6.
    Dines WH (1889) Account of some experiments made to investigate the connection between the pressure and velocity of the wind. Q J R Meteor Soc 15:935–982Google Scholar
  7. 7.
    Lilienthal O (1889) Der vogelflug als grundlage der fliegekunst. Revue de l’Aéronautique, 22Google Scholar
  8. 8.
    Anderson JD (1998) A history of aerodynamics. Cambridge University Press, UKzbMATHGoogle Scholar
  9. 9.
    Langley SP (1891) Experiments in aerodynamics. Smithsonian contributions to knowledge, N. 801, Washington, D.C.Google Scholar
  10. 10.
    von Lössl F (1892) Die luftwiderstandsgesetze, del fall dusrch die luft und der vogelflug. VienneGoogle Scholar
  11. 11.
    Tsiolkovsky KE (1951) Collected works of K.E. Tsiolkovsky, The Academy of Sciences of the USSR, Moscow, USSR (English Translation TTF-236, National Aeronautics and Space Administration)Google Scholar
  12. 12.
    Reichel MW (1901) Train électrique à marche rapide. Elektotechnischen Zeitschrift, Zeitschrift des Ver. Deutscher Ing., LIGoogle Scholar
  13. 13.
    Finzi G, Soldati N (1903) Esperimenti sulla dinamica dei fluidi. MilanGoogle Scholar
  14. 14.
    Cailletet L, Colardeau E (1892) Recherches expérimentales sur la chute des corps et sur la résistance de l’air à leur mouvement; expériences exécutées à la Tour Eiffel. Comptes rendus de la Société de l’Academie des Sciences, Paris, CXVGoogle Scholar
  15. 15.
    Le Dantec M (1899) Expériences sur la résistance de l’air. Bull Soc d’Encouragement l’Ind Nationale, IV, Series 5Google Scholar
  16. 16.
    Canovetti C (1907) Expériences sur le coefficient de la résistance de l’air. Bulletin de la Société des Ingénieurs civils de France, MayGoogle Scholar
  17. 17.
    Ricour M (1885) Notice sur le prix de revient de la traction et sur les économies réalisées par l’application de diverses modifications aux machines locomotives. Annales des Ponts et Chaussées, 2Google Scholar
  18. 18.
    Desdouits M (1886) Application de la méthode rationelle aux études dynamométriques, appareils et procédés d’expériences, résultats obtenus dans l’étude de la résistance des trains. Annales des Ponts et Chaussées, 1Google Scholar
  19. 19.
    Nipher FE (1902) Distribution des pressions sur une plaque exposée au vent. Washington, D.C.Google Scholar
  20. 20.
    von Karman T (1954) Aerodynamics. Cornell University Press, IthacazbMATHGoogle Scholar
  21. 21.
    Soreau R (1902) Navigation aérienne. Bulletin de la Société des Ingénieurs civils, OctoberGoogle Scholar
  22. 22.
    Duchemin NV (1842) Recherches experimentales sur les lois de la resistance des fluides. Memorial de l’Artillerie 5:65–379Google Scholar
  23. 23.
    Cottier JGC (1907) A summary of the history of the resistance of elastic fluids. Mon Weather Rev 35:353–356CrossRefGoogle Scholar
  24. 24.
    Gaudard J (1882) The resistance of viaducts to sudden gusts of wind. In: Minutes of the proceedings, The Institution of Civil Engineers, vol 69, Paper 1804, pp 120–137Google Scholar
  25. 25.
    Dines WH (1890) On the variation of the pressure caused by the wind blowing across the mouth of a tube. Q J R Meteor Soc 16:208–213CrossRefGoogle Scholar
  26. 26.
    Franck A (1906) Recherches pour établir la relation entre la résistance de l’air et la forme des corps. Zeitschrift des Vereines Deutscher Ingenieure, L.Google Scholar
  27. 27.
    von Lössl F (1904) Taschenbuch fur flugtechniker, BerlinGoogle Scholar
  28. 28.
    Fidler TC (1887) A practical treatise on bridge construction. Charles Griffin, LondonGoogle Scholar
  29. 29.
    Stanton TE (1907–1908) Experiments on wind-pressure. Proc Inst Civil Eng 171:175–214Google Scholar
  30. 30.
    Rae WH, Pope A (1984) Low-speed wind tunnel testing. Wiley, New YorkGoogle Scholar
  31. 31.
    Stanton TE (1925) Report on the measurement of the pressure of the wind on structures. Proc Inst Civil Eng 219:125–158Google Scholar
  32. 32.
    Davenport AG (1977) Wind engineering—ancient and modern—the relationship of wind engineering research to design. In: Proceedings of 6th Canadian congress of applied mechanics, Vancouver, pp. 487–502Google Scholar
  33. 33.
    Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied Science Publishers, LondonGoogle Scholar
  34. 34.
    Chanute O (1894) Progress in the flying machines. Am Eng Railroad J 68:34–37Google Scholar
  35. 35.
    Phillips HF (1885) Experiments with currents of air. Engineering 40:160–161Google Scholar
  36. 36.
    Cermak JE (1975) Applications of fluid mechanics to wind engineering—a freeman scholar lecture. J Fluid Eng T ASME 97:9–38CrossRefGoogle Scholar
  37. 37.
    Cermak JE (1981) Wind tunnel design for physical modeling of atmospheric boundary layers. J Eng Mech Div ASCE 107:623–642Google Scholar
  38. 38.
    Kernot WC (1892) Wind pressure. J Aust Assoc Adv Sci 5:573–581Google Scholar
  39. 39.
    Goin K (1971, February) The history, evolution and use of wind tunnels. AIAA Student J 3–13Google Scholar
  40. 40.
    Jensen M (1967) Some lessons learned in building aerodynamics research. In: Proceedings of international research seminar on wind effects on buildings and structures, vol 1, Ottawa, Canada, pp 1–18Google Scholar
  41. 41.
    Larose GL, Franck N (1995) Early wind engineering experiments in Denmark. In: Proceedings of 9th international conference on wind engineering, New Delhi, India, vol 4, pp 2212–2223Google Scholar
  42. 42.
    Davenport AG (1975) Perspectives on the full-scale measurement of wind effects. J Ind Aerod 1:23–54CrossRefGoogle Scholar
  43. 43.
    Irminger JOV (1893–1894) Experiments on wind pressures. Proc Inst Civil Eng Lond 118:468–472Google Scholar
  44. 44.
    Maxim H (1908) Artificial and natural flight. Macmillan, New YorkGoogle Scholar
  45. 45.
    Crouch TD, Jakab PL (2003) The Wright Brothers and the invention of the aerial age. Smithsonian National Air and Space Museum, National Geographic, Washington, D.C.Google Scholar
  46. 46.
    Stanton TE (1903–1904) On the resistance of plane surfaces in a uniform current of air. Proc Inst Civil Eng 156:78–126Google Scholar
  47. 47.
    Riabouchinsky D (1906–1909) Bulletin de L’Institut Aerodynamique de Koutchino. Moscow, USSR, vols I, II, and IIIGoogle Scholar
  48. 48.
    Eiffel G (1909) The resistance of the air and aviation: experiments conducted at the Champ-de-Mars Laboratory. Dunod et Pinat, PariszbMATHGoogle Scholar
  49. 49.
    Eiffel G (1914) Nouvelles recherches sur la résistance de l’air et aviation faites au laboratoire d’Auteil. Dunod et Pinat, ParisGoogle Scholar
  50. 50.
    Loyrette H (1985) Gustave Eiffel. Rizzoli, New YorkGoogle Scholar
  51. 51.
    Prandtl L (1909) Die bedeutung von modellversuchen fur die luftschiffahrt und flugtechnik und die einrichtungen fur solche versuche in Gottingen. Z Ver Dtsch Ing 53:1711–1719Google Scholar
  52. 52.
    Irminger JOV, Nøkkentved C (1930) Wind-pressure on buildings: experimental researches (1st series). Ingeniø rvidenskabelige Skrifter, A, 23, CopenhagenGoogle Scholar
  53. 53.
    Irminger JOV, Nøkkentved C (1936) Wind-pressure on buildings: experimental researches (2nd series). Ingeniø rvidenskabelige Skrifter, A, 42, CopenhagenGoogle Scholar
  54. 54.
    Nøkkentved C (1936) Variation of the wind-pressure distribution on sharp-edged bodies. Report 7, Structural Research Laboratory, Royal Technical College, Copenhagen, DenmarkGoogle Scholar
  55. 55.
    Flachsbart O (1932) Winddruck auf geschlossene und offene Gebäude. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchanstalt zu Göttingen, IV Lieferung. Verlag von R. Oldenbourg, Munich, pp 128–134Google Scholar
  56. 56.
    Bailey A (1933) Wind pressures on buildings. J Civil Eng. Selected Engineering Paper 189Google Scholar
  57. 57.
    Bailey A, Vincent NDG (1943) Wind-pressures on buildings including effects of adjacent buildings. J Inst Civil Eng 20:243–275CrossRefGoogle Scholar
  58. 58.
    Harris CL (1934) Influence of neighbouring structures on the wind pressures on tall buildings. U.S. Bureau of Standards, J Res 12:103–118CrossRefGoogle Scholar
  59. 59.
    Nøkkentved C, Flensborg CE (1938) Laevirkningsundersogelser og typebestemmelser af Laehegn. Hedeselskabets TidsskriftGoogle Scholar
  60. 60.
    Nøkkentved C, Flensborg CE (1940) Fortsatte laevirkningsundersogelser. Hedeselskabets TidsskriftGoogle Scholar
  61. 61.
    Jensen M (1954) Shelter effects: investigations into the aerodynamics of shelter and its effects on climate and crops. The Danish Technical Press, CopenhagenGoogle Scholar
  62. 62.
    Davenport AG (1992) Martin Jensen: an appreciation. J Wind Eng Ind Aerod 41–44:15–22CrossRefGoogle Scholar
  63. 63.
    Jensen M, Franck N (1963) Model-scale tests in turbulent wind. Part I: phenomena dependent on the wind speed. The Danish Maritime Press, CopenhagenGoogle Scholar
  64. 64.
    Jensen M, Franck N (1965) Model-scale tests in turbulent wind. Part II: phenomena dependent on the velocity pressure. The Danish Maritime Press, CopenhagenGoogle Scholar
  65. 65.
    Jensen M (1958) The model-law for phenomena in natural wind. Ingenioren Int Ed 2:121–158Google Scholar
  66. 66.
    Jensen M (1959) Aerodynamik i den naturlige Vind. Danish Technical Press, CopenhagenGoogle Scholar
  67. 67.
    Weis-Fogh T, Jensen M (1956) Biology and physics of locust flight. I. Basic principles in insect flight. A critical review. Proc Trans R Soc Lond Ser B 239:415–458CrossRefGoogle Scholar
  68. 68.
    Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Proc Trans R Soc Lond Ser B 239:511–552CrossRefGoogle Scholar
  69. 69.
    Jensen M, Weis-Fogh T (1962) Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Proc Trans R Soc Lond Ser B 245:137–169CrossRefGoogle Scholar
  70. 70.
    Nurmen fur die Belastungsannahmen, die Inbetriebnahme und die Uberwachung der Bauten (1956) Schweizerischer Ingenieur-und-Architekten-Verein, 160Google Scholar
  71. 71.
    Owen PR, Zienkiewicz HK (1957) The production of uniform shear flow in a wind tunnel. J Fluid Mech 2:521–531zbMATHCrossRefGoogle Scholar
  72. 72.
    Elder JW (1959) Steady flow through non uniform gauzes of arbitrary shape. J Fluid Mech 5:355–368MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Cermak JE (1958) Wind tunnel for the study of turbulence in the atmospheric surface layer. Technical report CER58-JEC42. Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, ColoradoGoogle Scholar
  74. 74.
    Plate EJ, Cermak JE (1963) Micromeleorological wind-tunnel facility. Technical report CER63EJP-JEC9. Fluid Dynamics and Diffusion Laboratory. Colorado State University, Fort CollinsGoogle Scholar
  75. 75.
    Hansen JR (ed) (2003) The wind and beyond: A documentary journey into the history of aerodynamics in America. Volume 1: The ascent of the airplane. The NASA History Series, Washington, D.C.Google Scholar
  76. 76.
    Lloyd A, Thomas N (1978) Kytes and kite flying. Hamly, LondonGoogle Scholar
  77. 77.
    Licheri S (1997) Storia del volo e delle operazioni aeree e spaziali da Icaro ai nostri giorni. Aeronautica Militare, Ufficio Storico, RomeGoogle Scholar
  78. 78.
    Lilienthal O (1894) The problem of flying. Annual Report of the Board of Regents of the Smithsonian Institution, Washington, D.C., July, pp 189–194Google Scholar
  79. 79.
    Lilienthal O (1894) Practical experiments in soaring. Annual Report of the Board of Regents of the Smithsonian Institution, Washington, D.C., July, pp 195–199Google Scholar
  80. 80.
    Lilienthal O (1897) The best shapes for wings. The Aeronautical Annual, Clarke, Boston, pp 35–37Google Scholar
  81. 81.
    Shevell RS (1983) Fundamental of flight. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  82. 82.
    Brewer G (1913) The collapse of monoplane wings. Flight, JanuaryGoogle Scholar
  83. 83.
    Rayleigh Lord (1878) On the irregular flight of a tennis-ball. Messenger Math 7:14–16Google Scholar
  84. 84.
    Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Angew Math 55:25–55MathSciNetCrossRefGoogle Scholar
  85. 85.
    Joukowski NY (1907) Obshchestvo liubitelei estestvoznaniia, antropologii i etnografi. Izvjestiia, Mosca, 112 (Trans Phys Sect 13:12–25)Google Scholar
  86. 86.
    Joukowski NY (1912) De la chute dans l’air de corps légers de forme allongée, animés d’un mouvement rotatoire. Bull l’ Inst Aérodynamique Koutchino 1:51–65Google Scholar
  87. 87.
    Kutta MW (1902) Auftriebskräfte in strömenden Flüssigkeiten. Illustrierte Aeronautische Mitteilungen 6:133–135Google Scholar
  88. 88.
    Kutta MW (1910) Über eine mit den Grundlagen des Flugproblems in Beziehung stehende zweidimensionale Stromung. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, pp 1–58zbMATHGoogle Scholar
  89. 89.
    Kutta MW (1911) Über ebene Zirkulationsströmungen nebst flugtechnischen Anwendungen. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, pp 65–125zbMATHGoogle Scholar
  90. 90.
    Rouse H, Ince S (1954–1956) History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of Iowa, Iowa CityGoogle Scholar
  91. 91.
    Lanchester FW (1907) Aerodynamics. Constable, LondonzbMATHGoogle Scholar
  92. 92.
    Lanchester FW (1908) Aerodonetics. Constable, LondonGoogle Scholar
  93. 93.
    Prandtl L (1913) Flüssigkeitsbewegung. In: Handworterbuch der Naturwissenschaften. Verlag von Gustav Fischer, JenaGoogle Scholar
  94. 94.
    Prandtl L (1918) Tragflügeltheorie. I. Göttinger Nachrichten, Mathematischphysikalische Klasse, pp 451–477zbMATHGoogle Scholar
  95. 95.
    Prandtl L (1919) Tragflügeltheorie. II. Göttinger Nachrichten, Mathematischphysikalische Klasse, pp 107–137Google Scholar
  96. 96.
    Eckert M (2005) Strategic internationalism and the transfer of technological knowledge: The United States, Germany, and aerodynamics after World War I. Technol Cult 46:104–131CrossRefGoogle Scholar
  97. 97.
    Prandtl L (1920) Theory of lifting surfaces. Part I and Part II. NACA-TN-9, 10Google Scholar
  98. 98.
    Prandtl L (1921) Applications of modern hydrodynamics to aeronautics. NACA report 116Google Scholar
  99. 99.
    Fage A, Nixon HL (1923–1924) The prediction on the Prandtl theory of the lift and drag for infinite span from measurements on aerofoils of infinite span. Aeronautical Research Committee R. & M. 903Google Scholar
  100. 100.
    Bryant LW, Williams DK (1926) An investigation of the flow of air around an aerofoil of infinite span. Philos Trans R Soc Lond Ser A 225:199–245CrossRefGoogle Scholar
  101. 101.
    Glauert H (1926) The elements of aerofoil and airscrew theory. Cambridge University Press, CambridgezbMATHGoogle Scholar
  102. 102.
    Breguet LC (1922) Aerodynamic efficiency and the reduction of air transport costs. Aeronaut J 26:307–313Google Scholar
  103. 103.
    Jones BM (1929) The streamline airplane. Aeronaut J 33:358–385Google Scholar
  104. 104.
    Pankhurst RC, Holder DW (1952) Wind tunnel techniques. Pitman, LondonGoogle Scholar
  105. 105.
    Barlow BB, Rae WH, Pope A (1999) Low-speed wind tunnel testing. Wiley, New YorkGoogle Scholar
  106. 106.
    Prandtl L (1920) Gottingen wind tunnel for testing aircraft models. NACA-TN-66Google Scholar
  107. 107.
    Ames JS (1926) A resume of the advances in theoretical aeronautics made by Max M. Munk. NACA-TN-213Google Scholar
  108. 108.
    Munk MM (1921) On a new type of wind tunnel. NACA-TN-60Google Scholar
  109. 109.
    Jacobs EN, Ward KE, Pinkerton RM (1933) The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA report 460Google Scholar
  110. 110.
    Durand WF (ed) (1934–1936) Aerodynamic theory. Springer, BerlinGoogle Scholar
  111. 111.
    Lanchester FW (1916) Torsional vibration of the tail of an aeroplane. Aeronautical Research Committee R. & M. 276, Part 1Google Scholar
  112. 112.
    Bairstow L, Fage A (1916) Oscillations of the tail plane and body of an aeroplane in flight. Aeronautical Research Committee R. & M. 276, Part 2Google Scholar
  113. 113.
    Blasius H (1925) Über schwingungserscheinungen an einholmigen unterflügeln. Z Flugtech Motorluftschif 16:39–42Google Scholar
  114. 114.
    (1925) Accident to aeroplanes involving flutter of the wings. Report of the Accidents Investigation Sub-Committee, Report and Memoranda 1041, Aeronautical Research Council, Her Majesty’s Stationery Office, LondonGoogle Scholar
  115. 115.
    Relf EF, Lavender T (1918) The autorotation of stalled aerofoils and its relation to the spinning speed of aeroplanes. Aeronautical Research Committee R. & M. 549Google Scholar
  116. 116.
    Glauert H (1919) The rotation of an aerofoil about a fixed axis. Aeronautical Research Committee R. & M. 595Google Scholar
  117. 117.
    Glauert H (1919) The investigation of the spin of an aeroplane. Aeronautical Research Committee R. & M. 618Google Scholar
  118. 118.
    Birnbaum W (1923) Die tragende wirbelfläche als hilfsmittel zur behandlung des ebenen problems der tragflügeltheorie. Z Angew Math Mech 3:290–297zbMATHCrossRefGoogle Scholar
  119. 119.
    Birnbaum W (1924) Das ebene problem des schlagenden flügels. Z Angew Math Mech 4:277–292zbMATHCrossRefGoogle Scholar
  120. 120.
    Wagner H (1925) Uber die entstehung des dynamischer auftriebes von tragflügeln. Z Angew Math Mech 5:17–35zbMATHCrossRefGoogle Scholar
  121. 121.
    Reissner H (1926) Neuere probleme aus der flugzeugstatik. Z Flugtechnik Motorluftschiffahrt 17:137–146Google Scholar
  122. 122.
    Glauert H (1929) The force and moment of an oscillating aerofoil. Aeronautical Research Committee R. & M. 1242Google Scholar
  123. 123.
    Küssner HG (1929) Schwingungen von Flugzeugflügeln. Luftfahrt-Forsch. 4:41–62Google Scholar
  124. 124.
    Frazer RA, Duncan WJ (1928) A brief survey of wing flutter with an abstract of design recommendations. Aeronautical Research Committee R. & M. 1177Google Scholar
  125. 125.
    Frazer RA, Duncan WJ (1931) The flutter of monoplanes, biplanes, and tail units. Aeronautical Research Committee R. & M. 1255Google Scholar
  126. 126.
    Cox HR (1932) A statistical method of investigating the relations between the elastic stiffness of aeroplane wings and wing-aileron flutter. Aeronautical Research Committee R. & M. 1505Google Scholar
  127. 127.
    Theodorsen Th (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA report 496Google Scholar
  128. 128.
    Scanlan RH, Tomko JJ (1971) Airfoil and bridge deck flutter derivatives. J Eng Mech ASCE 97:1717–1737Google Scholar
  129. 129.
    Cicala P (1935) Le azioni aerodinamiche sui profile di ala oscillanti in presenza di corrente uniforme. Mem della Reale Accad delle Sci Torino Ser 2:73–98Google Scholar
  130. 130.
    Küssner HG (1936) Zusammenfassender Bericht über den instationaren Auftrieb von Flügeln. Luftfahforschung 13:410–424zbMATHGoogle Scholar
  131. 131.
    Kassner R, Fingado H (1936) Das ebene Problem der Flügelschwingung. Luftfahrtforschung 13:374–387. (The two-dimensional problem of wing vibration. J R Aeronaut Soc 41:921–944, 1937.)Google Scholar
  132. 132.
    Garrick IE (1936) Propulsion of a flapping and oscillating airfoil. NACA report 567Google Scholar
  133. 133.
    von Karman T, Sears WR (1938) Airfoil theory for non-uniform motion. J Aeronaut Sci 5:379–390zbMATHCrossRefGoogle Scholar
  134. 134.
    Garrick IE (1938) On some reciprocal relations in the theory of nonstationary flows. NACA report 629Google Scholar
  135. 135.
    Theodorsen T, Garrick IE (1940) Mechanism of flutter. A theoretical and experimental investigation of the flutter problem. NACA report 685Google Scholar
  136. 136.
    Aerodynamics Staff of the N.P.L. (1931) Technical report by the Accident’s Investigation Subcommittee on the accident to the aeroplane G-AAZK at Meopham, Kent (England), on 21 July 1930. Aeronautical Research Committee R. & M. 1360Google Scholar
  137. 137.
    Blenk H, Hertel H, Thalau K (1932) The german investigation of the accident at Meopham, Kent (England). NACA-TM-669Google Scholar
  138. 138.
    Duncan WJ, Ellis DL, Scruton C (1932) First report on the general investigation of tail buffeting. Aeronautical Research Committee R. & M. 1457Google Scholar
  139. 139.
    Duncan WJ, Ellis DL, Scruton C (1933) Second report on the general investigation of tail buffeting. Aeronautical Research Committee R. & M. 1541Google Scholar
  140. 140.
    Sears WR (1941) Some aspects of nonstationary airfoil theory and its practical applications. J Aeronaut Sci 8:104MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Jones RT (1940) The unsteady lift of a wing of finite aspect ratio. NACA report 681Google Scholar
  142. 142.
    Jones WP (1945) Aerodynamic forces on wings in simple harmonic motion. Aeronautical Research Council R. & M. 2026Google Scholar
  143. 143.
    Chen X, Kareem A (2002) Advances in modeling of aerodynamic forces on bridge decks. J Eng Mech ASCE 128:1193–1205CrossRefGoogle Scholar
  144. 144.
    Kryloff N, Bogoliuboff N (1943) Introduction to non-linear mechanics (trans: Russian by Lefschetz S). Princeton University PressGoogle Scholar
  145. 145.
    Minorsky N (1947) Introduction to non-linear mechanics. J.W. Edwards, Ann Arbor, MIzbMATHGoogle Scholar
  146. 146.
    Collar AR (1946) The expanding domain of aeroelasticity. J R Aeronaut Soc L 613–636Google Scholar
  147. 147.
    Scanlan RH, Rosenbaum R (1951) Introduction to the study of aircraft vibration and flutter. Macmillan, New YorkzbMATHGoogle Scholar
  148. 148.
    Fung YC (1955) An introduction to the theory of aeroelaticity. Wiley, New YorkGoogle Scholar
  149. 149.
    Bisplinghoff RL, Ashley H, Halfman RL (1955) Aeroelasticity. Addison-Wesley, Cambridge, MAzbMATHGoogle Scholar
  150. 150.
    (1959). Manual on aeroelasticity. NATO Advisory Group for Aeronautical Research and DevelopmentGoogle Scholar
  151. 151.
    Bisplinghoff RL, Ashley H (1962) Principles of aeroelasticity. Wiley, New YorkzbMATHGoogle Scholar
  152. 152.
    Liepmann HW (1952) On the application of statistical concepts to the buffeting problem. J Aeronaut Sci 19:793–800zbMATHCrossRefGoogle Scholar
  153. 153.
    Rayleigh Lord (1945) Theory of sound. Dover Publications, New YorkzbMATHGoogle Scholar
  154. 154.
    Wiener N (1930) Generalized harmonic analysis. Acta Math 55:117–258MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–212MathSciNetzbMATHGoogle Scholar
  156. 156.
    Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490zbMATHCrossRefGoogle Scholar
  157. 157.
    von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Natl Acad Sci Wash 34:530–539MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Liepmann HW (1955) Extension of the statistical approach to buffeting and gust response of wings of finite span. J Aeronat Sci 22:197–200zbMATHCrossRefGoogle Scholar
  159. 159.
    Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, UKzbMATHGoogle Scholar
  160. 160.
    Cramer HE (1959) Measurements of turbulence structure near the ground within the frequency range from 0.5 to 0.01 cycles sec. In: Advances in geophysics, 6, Atmospheric diffusion and air pollution. Academic Press, New York and London, pp 75–96Google Scholar
  161. 161.
    Cramer HE (1960) Use of power spectra and scales of turbulence in estimating wind loads. Meteor Mon 4:12–18Google Scholar
  162. 162.
    Press H, Meadows MT, Hadlock I (1956) A reevaluation of data on atmospheric turbulence and airplane gust loads for application in spectral calculations. NACA report 1272Google Scholar
  163. 163.
    Press H, Houbolt JC (1955) Some applications of generalized harmonic analysis to gust loads on airplanes. J Aeronaut Sci 22:17–26zbMATHCrossRefGoogle Scholar
  164. 164.
    Thorson KR, Bohne QR (1959) Application of power spectral methods in airplane and missile design. Institute Aerospace Science, report 59-42Google Scholar
  165. 165.
    Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:46–156MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Davenport AG (1961) The application of statistical concepts to the wind loading of structures. Proc Inst Civil Eng 19:449–472Google Scholar
  168. 168.
    Sciarrelli C (1970) Lo yacht: origine ed evoluzione del veliero da diporto. Mursia, MilanGoogle Scholar
  169. 169.
    Giorgetti F (2003) Storia ed evoluzione degli yacht da regata. White Star, Vercelli, ItalyGoogle Scholar
  170. 170.
    Munk MM (1923) The minimum induced drag of aerofoils. NACA report 121Google Scholar
  171. 171.
    Warner EP, Shatswell O (1925) The aerodynamics of yacht sails. Trans Soc Naval Architects Mar Eng 33:207–232Google Scholar
  172. 172.
    Curry M (1948) Yacht racing: the aerodynamics of sails and racing tactics, 5th edn. Charles Scribner’s Sons, New YorkGoogle Scholar
  173. 173.
    DeBord F Jr, Kirkman K, Savitsky D (2004) The evolving role of the to wing tank for grand prix sailing yacht design. In: Proceedings of 27th American towing tank conference, Newfoundland and Labrador, CanadaGoogle Scholar
  174. 174.
    Taylor DW (1933) Speed and power of ships. RansdellGoogle Scholar
  175. 175.
    Davidson KSM (1936) Some experimental studies of the sailing yacht. Trans Soc Naval Architects Mar Eng 44:288–334Google Scholar
  176. 176.
    Herreshoff HC (1964) Hydrodynamics and aerodynamics of the sailing yacht. Trans Soc Naval Architects Mar Eng 72:445–492Google Scholar
  177. 177.
    Melaragno MG (1982) Wind in architectural and environmental design. Van Nostrand Reinhold, New YorkGoogle Scholar
  178. 178.
    Hucho WH (ed) (1998) Aerodynamics of road vehicles. Society of Automotive Engineers, Warrendale, PAGoogle Scholar
  179. 179.
    Hucho WH, Sovran G (1993) Aerodynamics of road vehicles. Annu Rev Fluid Mech 25:485–537CrossRefGoogle Scholar
  180. 180.
    Riedler A (1911) Wissenschaftliche automobilbewertung. Oldenburg, BerlinGoogle Scholar
  181. 181.
    Aston WG (1911) Body design and wind resistance. The Autocar 364–366 (August)Google Scholar
  182. 182.
    Rumpler E (1924) Das Auto in Luftstrom. Z Flugtech Motorluftschiffahrt 15:22–25Google Scholar
  183. 183.
    Jaray P (1922) Der stromlinienwagen - Eine neue form der automobilkarosserie. Der Motorwagen 17:333–336Google Scholar
  184. 184.
    Klemperer W (1922) Luftwiderstandsuntersuchungen an automodellen. Z Flugtech Motorluftschiffahrt 13:201–206Google Scholar
  185. 185.
    Mouboussin P (1933) Voitures aérodynamiques. L’Aéronautique 239–245 (November)Google Scholar
  186. 186.
    Koenig-Fachsenfeld R (1941) Luftwiderstandsmessungen an einem Modell des TatraWagens Typ 87. ATZ 44:286–287Google Scholar
  187. 187.
    Lange A (1937) Vergleichende Windkanalversuche an Fahrzeugmodellen. Berichte Deutscher Kraftfahrzeugforschung im Auftrag des RVM 31Google Scholar
  188. 188.
    Schlör K (1938) Entwicklung und bau einer luftwiderstandsarmen karosserie auf einem 1,7-Ltr-Heckmotor-Mercedes-Benz-Fahrgestell. Deutsche Kraftfahrforschung, Zwischenbericht 48Google Scholar
  189. 189.
    Lay WE (1933) Is 50 miles per gallon possible with correct streamlining? SAE J 32:144–156, 177–186Google Scholar
  190. 190.
    Kamm W, Schmid C, Riekert P, Huber L (1934) Einfluss der Autobahnen auf die Gestaltung der Kraftfahrzeugen. Automobiltech Z 37:341–354Google Scholar
  191. 191.
    Kamm W (1939) Der Weg zum wirtschaftlichen autobahn- und straentüchtigen Fahrzeug. Strae 6:104–109Google Scholar
  192. 192.
    Koenig-Fachsenfeld RV, Ruehle D, Eckert A, Zeuner M (1936) Windkanalmessungen an Omnibusmodellen. Automobiltech Z 39:143–149Google Scholar
  193. 193.
    Heald RH (1933) Aerodynamic characteristics of automobile models. US Department of Commerce, Bureau of Standards, RP 591, 285–291Google Scholar
  194. 194.
    Kamm W (1933) Anforderungen an kraftwagen bei dauerfahrten. Z Ver Dtsch Ing 77:1129–1133Google Scholar
  195. 195.
    Hansen M, Schlör K (1938) Aerodynamische modellmessungen an veschiedenen kraft-wagenformen und verhalten des wirklichen fahrzeugs bei seitenwind. Deutsche Kraftfahrt-forschung, Zwischenbericht 63Google Scholar
  196. 196.
    Fiedler F, Kamm W (1940) Steigerung der wirtschaftlichkeit des personenwagens. Z Ver Dtsch Ing 84:485–491Google Scholar
  197. 197.
    Kieselbach RJF (1986) Streamlining vehicles 1945-1965. A historical review. J Wind Eng Ind Aerodyn 22:105–113CrossRefGoogle Scholar
  198. 198.
    Möller E (1951) Luftwiderstandsmessungen am VW-Lieferwagen. Automobiltechnische Zeitschrift 53:153–156Google Scholar
  199. 199.
    Sherwood AW (1953) Wind tunnel test of trailmobile trailers. University of Maryland, Wind Tunnel report 35Google Scholar
  200. 200.
    Scholz N (1951) Windkanaluntersuchungen am NSU-Weltrekordmotorrad. Die Umschau 51:691–692Google Scholar
  201. 201.
    Scholz N (1953) Windkanaluntersuchungen an motorradmodellen. Z Ver Dtsch Ing 95:17Google Scholar
  202. 202.
    Schlichting H (1953) Aerodynamische untersuchungen an kraftfahrzeugen. Kassel, HochschultagGoogle Scholar
  203. 203.
    Vilain LM (1967) L’évolution du matériel moteur et roulant des chemins defer de l’Etat. Vincent, ParisGoogle Scholar
  204. 204.
    Deharme E, Pulin A (1895) Chemins de fer, matériel roulant, résistance des trains, traction. Gauthier-Villards, ParisGoogle Scholar
  205. 205.
    Goss WFM (1891) An experimental locomotive. Railroad Eng J 65:549Google Scholar
  206. 206.
    Goss WFM (1898) Atmospheric resistance to the motion of railway trains. The Engineer, 12 August, 164–166Google Scholar
  207. 207.
    Goss WFM (1907) Locomotive performance: the result of a series of researches conducted by the Engineering Laboratory of Purdue University. Wiley, New YorkGoogle Scholar
  208. 208.
    Carus-Wilson CA (1907) The predetermination of train resistance. In: Minutes of proceedings, Institution of Civil Engineers, CXLVII, pp 227–265Google Scholar
  209. 209.
    Riley CJ (2002) The encyclopedia of trains & locomotives. Metro Books, New YorkGoogle Scholar
  210. 210.
    Schafer M, Welsh J (2002) Streamliners: history of a railroad icon. Motorbooks, St. Paul, MNGoogle Scholar
  211. 211.
    Davis WJ Jr (1926) The tractive resistance of electric locomotives and cars. Gen Electr Rev 29:685–707Google Scholar
  212. 212.
    Gawthorpe RG (1978) Aerodynamics of trains in the open air. Railway Eng Int 3:7–12Google Scholar
  213. 213.
    Giedion S (1948) Mechanization takes command. Norton, New YorkGoogle Scholar
  214. 214.
    Tollmien W (1927) Air resistance and pressure zones around train in railway tunnels. Z Ver Dtsch Ing 71:199–203Google Scholar
  215. 215.
    Hara T, Okushi J (1962) Model tests on the aerodynamical phenomena of high speed trains entering a tunnel. Quarterly report of RTRI, vol 3, pp 6–10Google Scholar
  216. 216.
    Fujii T, Maeda T, Ishida H, Imai T, Tanemoto K, Suzuki M (1999) Wind-induced accidents of train/vehicles and their measures in Japan. Quarterly report of RTRI, vol 40, pp 50–55CrossRefGoogle Scholar
  217. 217.
    Gawthorpe RG (1994) Wind effects on ground transportation. J Wind Eng Ind Aerodyn 52:73–92CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations