Wind Meteorology, Micrometeorology and Climatology

  • Giovanni SolariEmail author
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


This chapter addresses wind knowledge between the late nineteenth century and the first half of the twentieth century. First, it examines the evolution of ground-level and upper air measurements, emphasising the revolution related to the appearance of remote monitoring. It then discusses the understanding and forecasting of circulation phenomena on a planetary scale, highlighting the dualism between the deterministic and probabilistic view, and the genesis of wind classification, underlining the existence of various phenomena with different space and timescales. Later on, it addresses the growing importance given to the physical processes that occur in the thin atmospheric belt in contact with the Earth surface, which originated micrometeorology and the two turbulence representations that arose in this period: the phenomenological and the statistical theory. In turn, they produced the first models of the wind speed close to the ground that took place through a mixture interfacing theory, experience and empiricism. Finally, this chapter addresses wind climatology and the first distributions of the wind speed.


  1. 1.
    Handbook of meteorological instruments. Part I: Instruments for surface observation. Meteorological Office, Her Majesty’s Stationery Office, London, 1953Google Scholar
  2. 2.
    Middleton WEK (1969) Invention of meteorological instruments. The Johns Hopkins Press, BaltimoreGoogle Scholar
  3. 3.
    Wyngaard JC (1981) Cup, propeller, vane and sonic anemometers in turbulence research. Annu Rev Fluid Mech 13:399–423CrossRefGoogle Scholar
  4. 4.
    Patterson J (1926) The cup anemometer. Trans Roy Soc Canada, Ser III 20:1–54Google Scholar
  5. 5.
    Schrenk O (1929) Über die trägheitsfehler des schalenkreuz-anemometers beischwankender windstärke. Z Tech Phys, Berlin 10:57–66Google Scholar
  6. 6.
    Deacon EL (1951) The over-estimation error of cup anemometers in fluctuating winds. J Sci Instrum, London 28:231–234Google Scholar
  7. 7.
    Ower E (1949) The measurement of air flow. Chapman and Hall, LondonzbMATHGoogle Scholar
  8. 8.
    Sachs P (1972) Wind forces in engineering. Pergamon Press, OxfordGoogle Scholar
  9. 9.
    Sanuki M, Kimura S, Tsunda N (1951) Studies on biplane wind vanes, ventilator tubes and cup anemometers. Pap Met Geophys, Tokyo, 2:317–333Google Scholar
  10. 10.
    Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied science publishers, LondonGoogle Scholar
  11. 11.
    Hardy R, Wright P, Gribbin J, Kington J (1982) The weather book. Harrow House, U.K.Google Scholar
  12. 12.
    Giblett MA (1932) The structure of wind over level country. Geophys Mem, London 6:54Google Scholar
  13. 13.
    Sherlock RH, Stout MB (1931) An anemometer for a study of wind gusts. Bull Dep Eng Res, Univ Mich, Ann Arbor Mich 20Google Scholar
  14. 14.
    Rosenbrock HH, Tagg JR (1951) Wind and gust-measuring instruments. Proc IEE, Paper 1065Google Scholar
  15. 15.
    Rouse H, Ince S (1954–1956). History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of IowaGoogle Scholar
  16. 16.
    King LV (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phil Trans London A 214:373–432CrossRefGoogle Scholar
  17. 17.
    Dryden HL, Kuethe AM (1929) The measurement of fluctuations of air speed by the hot-wire anemometer. N.A.C.A. Report 320, Washington, D.C.Google Scholar
  18. 18.
    Simmons LFG (1949) A shielded hot-wire anemometer for low speeds. J Sci Instrum London 26:407–411CrossRefGoogle Scholar
  19. 19.
    Hart C (1967) Kites. An historical survey. Frederick Praeger, New YorkGoogle Scholar
  20. 20.
    Yolan W (1976) The complete book of kites and kite flying. Simon & Schuster, New YorkGoogle Scholar
  21. 21.
    Handbook of meteorological instruments. Part II: Instruments for upper air observations, Meteorological Office, London, Her Majesty’s Stationery Office, 1961Google Scholar
  22. 22.
    Cave CJP (1947) The great days of kite flying. Weather 2:134–136CrossRefGoogle Scholar
  23. 23.
    Schreiber P (1886) Bestimmung der bewegung eines luftballons durch trigonometrische messungen von zwei standpunkte. Meteorol Z 3:341Google Scholar
  24. 24.
    Archibald ED (1882–1883) On the use of kites for meteorological observation. Q J Roy Meteorol Soc 9:62Google Scholar
  25. 25.
    Archibald ED (1883) Mr. Stevenson’s observations on the increase of the velocity of the wind with the altitude. Nature 29:506–507CrossRefGoogle Scholar
  26. 26.
    Lloyd A, Thomas N (1978) Kites and kite flying. Hamly, LondonGoogle Scholar
  27. 27.
    Sorbjan Z (1996) Hands-on meteorology. American Meteorology Society, Boston, MAGoogle Scholar
  28. 28.
    Palmieri S (2000) Il mistero del tempo e del clima: La storia, lo sviluppo, il futuro. CUEN, NaplesGoogle Scholar
  29. 29.
    Dines WH (1906) Two new light meteorographs for use with unmanned balloons. Symon’s Met Mag, London 41:101Google Scholar
  30. 30.
    Dines WH (1904) A new meteograph for kites. Symon’s Met Mag, London 39:109Google Scholar
  31. 31.
    de Quervain A (1906) Über die bestimmung atmosphärischen strömungen durch registrier-und pilotballons. Meteor Z 23:149–152Google Scholar
  32. 32.
    Riabouchinsky D (1906–1909) Bulletin of the Institute Aerodynamique de Koutchino. MoscowGoogle Scholar
  33. 33.
    Douglas CKM (1916) Weather observations from an aeroplane. F Scot Met Soc, Edinburgh 17:65–73Google Scholar
  34. 34.
    Tannehill IR (1938) Hurricanes: their nature and history; particularly those of the West Indies and the southern coasts of the United States. Princeton University Press, New JerseyGoogle Scholar
  35. 35.
    Idrac P, Bureau R (1927) Expériences sur la propagation des sondes radiotélégraphiques en altitude. C R Acad Sci, Paris 184:691Google Scholar
  36. 36.
    Molchanov P (1928) Zur technik der erforschung den atmosphäre. Beitr Phys Frei Atmos, Leipzig 14:45Google Scholar
  37. 37.
    Duckert P (1931) Die entwicklung der telemeteorographie und ihrer instrumentarien. Beitr Phys Frei Atmos, Leipzig 18:68Google Scholar
  38. 38.
    Duckert P (1933) Das radiosondenmodell telefunken und seine anwendung. Beitr Phys Frei Atmos, Leipzig 20:303–311Google Scholar
  39. 39.
    Blair WR, Lewis HM (1931) Radio tracking of meteorological ba1loons. Proc Inst Radio Eng, New York 19:1529–1560Google Scholar
  40. 40.
    Corriez M, Perlat A (1935) La méthode radiogoniométrique de l’Office National Météorologique pour la mésure de la direction et de la vitesse du vent par temps couvert. Météorologie, Paris 11:368Google Scholar
  41. 41.
    Smith-Rose RL, Hopkins HG (1946) The application of ultra-short-wave direction finding to radio sounding balloons. Proc Phys Soc, London 58:184–200CrossRefGoogle Scholar
  42. 42.
    Diamond H, Hinman WS, Dunmore FW (1937) The development of a radio-meteorograph system for the Navy Department. Bull Am Meteorol Soc 18:73–99CrossRefGoogle Scholar
  43. 43.
    Hitschfeld WF (1986) The invention of radar meteorology. Bull Am Meteorol Soc 67:33–37CrossRefGoogle Scholar
  44. 44.
    Maynard RH (1945) Radar and weather. J Meteorol 2:214–226CrossRefGoogle Scholar
  45. 45.
    Battan LJ (1961) The nature of violent storms. Doubleday and Company, New YorkGoogle Scholar
  46. 46.
    Bent AE (1946) Radar detection of precipitation. J Meteorol 3:78–84CrossRefGoogle Scholar
  47. 47.
    Donaldson RJ Jr (1965) Methods for identifying severe thunderstorms by radar: a guide and bibliography. Bull Am Meteorol Soc 46:174–193CrossRefGoogle Scholar
  48. 48.
    Whipple ABC (1982) Storm. Time-Life Books, AmsterdamGoogle Scholar
  49. 49.
    Barratt P, Browne IC (1953) A new method for measuring vertical air currents. Q J Roy Meteorol Soc 79:550–560CrossRefGoogle Scholar
  50. 50.
    Brantley JQ, Barczys DA (1957) Some weather observations with a continuous-wave Doppler radar. In: Preprints, 6th conference on weather radar. Cambridge, MA, American Meteorological Society, pp 297–306Google Scholar
  51. 51.
    Smith RL, Holmes DW (1961) Use of Doppler radar in meteorological observations. Mon Weather Rev 89:1–7CrossRefGoogle Scholar
  52. 52.
    Lhermitte RM, Atlas D (1961) Precipitation motion by pulse-Doppler radar. In: Preprints, 9th conference on radar meteorology. American Meteorological Society, pp 218–223Google Scholar
  53. 53.
    Rogers RR (1990) The early years of Doppler radar in meteorology. In: Atlas D (ed) Radar in meteorology. American Meteorological Society, pp 122–129Google Scholar
  54. 54.
    Brown RA, Lewis JM (2005) Path to NEXRAD: Doppler radar development at the National Severe Storms Laboratory. Bull Am Meteorol Soc 86:1459–1470CrossRefGoogle Scholar
  55. 55.
    Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Angew Math 55:25–55MathSciNetCrossRefGoogle Scholar
  56. 56.
    Thomson W (1867) On vortex atoms. Proc Roy Soc, Edinburgh 6:94–105CrossRefGoogle Scholar
  57. 57.
    Bjerknes V (1898) Über einen hydrodynamischen Fundamentalsatz und seine Anwendung besonders auf die Mechanik der Atmosphäre und des Weltmeeres. Kongl Sven Vetensk Akad Handlingar 31:1–35zbMATHGoogle Scholar
  58. 58.
    Thorpe AJ, Volkert H, Ziemianski MJ (2003) The Bjerknes’ circulation theorem: a historical perspective. Bull Am Meteorol Soc 84:471–480CrossRefGoogle Scholar
  59. 59.
    Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteor Zeit 21:1–7zbMATHGoogle Scholar
  60. 60.
    Tribbia JJ, Anthes RA (1987) Scientific basis of modern weather prediction. Science 237:493–499CrossRefGoogle Scholar
  61. 61.
    Bjerknes V (1910) Dynamic meteorology and hydrography. Carnegie Institution of Washington, D.C.zbMATHGoogle Scholar
  62. 62.
    Bjerknes J (1919) On the structure of moving cyclones. Geofys. Publikasjoner, Norske Videnskaps-Akad. Oslo, vol 1, pp 1–8Google Scholar
  63. 63.
    Shapiro M, Gronas S (eds) (1999) The life cycles of extratropical cyclones. American Meteorology Society, Boston, MAGoogle Scholar
  64. 64.
    Bjerknes J, Solberg H (1921) Meteorological conditions for the formation of rain. Kristiania, Geofvsiake Publikationer 2:3–61Google Scholar
  65. 65.
    Bjerknes V (1921) On the dynamics of the circular vortex with applications to the atmos-phere and atmospheric vortex and wave motions. Kristiania, Geofvsiake Publikationer 2:1–89Google Scholar
  66. 66.
    Bjerknes J, Solberg H (1922) Live cycle or cyclones and the polar front theory on atmos-pheric circulation. Kristiania, Geofvsiake Publikationer 3:484–491Google Scholar
  67. 67.
    Bergeron T (1928) Über die dreidimensional verknüpfende Wetteranalysee. Kristiania, Geofvsiake Publikationer 5:1–111Google Scholar
  68. 68.
    Sutton OG (1961) The challenge of the atmosphere. Harper, New YorkGoogle Scholar
  69. 69.
    Hayes B (2001) The weatherman. Am Sci 89:10–14CrossRefGoogle Scholar
  70. 70.
    Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, CambridgezbMATHGoogle Scholar
  71. 71.
    Dines WH (1925) The correlation between pressure and temperature in the upper air with a suggested explanation. Q J Roy Meteorol Soc 51:31–38CrossRefGoogle Scholar
  72. 72.
    Bjerknes J (1932) Exploration de quelques perturbations atmosphèriques à l’aide de son-dages rapproches dan le temps. Geofys Publ, Norske Videnskaps-Akad, vol 9. Oslo, pp 1–52Google Scholar
  73. 73.
    Palmén E (1935) Registrierballonaufstiege in einer tiefen Zyklone. Soc Sci Fennica Commentationes Phys Math 8:3Google Scholar
  74. 74.
    Bjerknes J, Palmén E (1937) Investigations or selected European cyclones by means of serial ascents. Geofys Publ, Norske Videnskaps-Akad, vol 12, Oslo, pp 1–62Google Scholar
  75. 75.
    Rossby CG (1939) Relation between variations in the intensity or the zonal circulation or the atmosphere and the displacement or the semi-permanent centres of action. J Marine Res 2:38–55CrossRefGoogle Scholar
  76. 76.
    Rossby CG (1940) Planetary flow patterns in the atmosphere. Q J Roy Meteorol Soc 66(Supplement):68–87Google Scholar
  77. 77.
    Brunt D (1939) Physical and dynamical meteorology. Cambridge University Press, CambridgeGoogle Scholar
  78. 78.
    Humphreys WJ (1940) Physics of the air. McGraw-Hill, New YorkGoogle Scholar
  79. 79.
    Byers HR (1944) General meteorology. McGraw-Hill, New YorkGoogle Scholar
  80. 80.
    Scorer RS (1958) Natural aerodynamics. Pergamon Press, London.zbMATHGoogle Scholar
  81. 81.
    Hess SL (1959) Introduction to theoretical meteorology. Holt, New YorkzbMATHGoogle Scholar
  82. 82.
    Palmén E (1951) The role of atmospheric disturbances in the general circulation. Q J Roy Meteorol Soc 77:337–354CrossRefGoogle Scholar
  83. 83.
    Courant R, Friedrichs KO, Lewy H (1928) Über die partiellien Differenzengleichung en der mathematischen Physik. Math Ann 100:32–74MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteorol 4:135–162MathSciNetCrossRefGoogle Scholar
  85. 85.
    Charney JG (1948) On the scale of atmospheric motions. Geofys Publ 17:3–17MathSciNetGoogle Scholar
  86. 86.
    Charney JG (1949) On a physical basis for numerical prediction of largescale motions in the atmosphere. J Meteorol 6:371–385CrossRefGoogle Scholar
  87. 87.
    Charney JG, Eliassen A (1949) A numerical method for predicting the perturbations of middle latitude westerlies. Tellus 1:38–54MathSciNetCrossRefGoogle Scholar
  88. 88.
    Charney JG, Fjörtoft R, von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254MathSciNetCrossRefGoogle Scholar
  89. 89.
    Lynch P (2008) The ENIAC forecasts: a recreation. Bull Am Meteorol Soc 89:45–55CrossRefGoogle Scholar
  90. 90.
    Charney JG, Phillips NA (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Meteorol 10:71–99MathSciNetCrossRefGoogle Scholar
  91. 91.
    Thompson PD (1961) Numerical weather analysis and prediction. The MacMillan Company, New YorkzbMATHGoogle Scholar
  92. 92.
    Holmström EI (1963) On a method for a parametric representation of the state of the atmosphere. Tellus 15:127–149CrossRefGoogle Scholar
  93. 93.
    Freiberger W, Grenander U (1967) On the formulation of statistical meteorology. Rev Int Stat Inst 33:59–86MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Wadsworth GP, Bryan JG, Gordon CH (1948) Short range and extended forecasting by statistical methods. U.S. Air Force, Air Weather Service Tech. Report 105–38, Washington, DCGoogle Scholar
  95. 95.
    Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Science Report No. 1, Department of Meteorology, M.I.T., Cambridge, MAGoogle Scholar
  96. 96.
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141zbMATHCrossRefGoogle Scholar
  97. 97.
    Atkinson BW (1981) Meso-scale atmospheric circulations. Academic Press, LondonGoogle Scholar
  98. 98.
    Jeffreys H (1922) On the dynamics of wind. Q J Roy Meteorol Soc 48:29–47CrossRefGoogle Scholar
  99. 99.
    Lamb H (1906) Hydrodynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  100. 100.
    Simpson RH, Riehl H (1981) The hurricane and its impact. Louisiana State University Press, Baton RougeGoogle Scholar
  101. 101.
    Dunn GE, Gentry RC, Lewis BM (1968) An eight-year experiment in improving forecasts of hurricane motion. Mon Weather Rev 96:708–713CrossRefGoogle Scholar
  102. 102.
    Dunn GE (1940) Aerology in the Hurricane warning service. Mon Weather Rev 68:303–315CrossRefGoogle Scholar
  103. 103.
    Depperman CE (1947) Notes on the origin and structure of Philippine typhoons. Bull Am Meteorol Soc 28:399–404CrossRefGoogle Scholar
  104. 104.
    Rodewald M (1936) Die entstehungsbedingungen der tropischen orkane. Meteorologischen Zeitschrift, Heft 6, BerlinGoogle Scholar
  105. 105.
    True AE (1937) The structure of tropical cyclones. In: Proceedings of U.S. Naval Institute, Annapolis, MarchGoogle Scholar
  106. 106.
    Riehl H (1948) On the formation of typhoons. J Meteorol 5:247–264CrossRefGoogle Scholar
  107. 107.
    Riehl H (1954) Tropical meteorology. McGraw-Hill, New YorkGoogle Scholar
  108. 108.
    Malkus J, Riehl H (1960) On the dynamics and energy transformations in steady-state hurricanes. Tellus 12:1–20CrossRefGoogle Scholar
  109. 109.
    Riehl H, Haggard WH, Sanborn RW (1956) On the prediction of 24-hour hurricane motion. J Meteorol 5:415–430CrossRefGoogle Scholar
  110. 110.
    Hubert WE (1957) Hurricane trajectory forecasts from a non-divergent, non-geostrophic, barotropic model. Mon Weather Rev 85:83–87CrossRefGoogle Scholar
  111. 111.
    Miller BI, Moore PL (1960) A comparison of hurricane steering levels. Bull Am Meteorol Soc 41:59–63CrossRefGoogle Scholar
  112. 112.
    Finley JP (1887) Tornadoes. What they are and how to observe them: with practical suggestions for the protection of life and property. Insurance Monitor Press, New YorkGoogle Scholar
  113. 113.
    Finley JP (1882) Character of six hundred tornadoes. Prof. Papers of the Signal Service, no. VII, Washington Office of the Chief Signal OfficerGoogle Scholar
  114. 114.
    Möller M (1884) Untersuchung über die Lufttemperatur und Luftbewegung in einer Böe. Meteorol Z l:230–243Google Scholar
  115. 115.
    Davis WM (1894) Elementary meteorology. Ginn, BostonGoogle Scholar
  116. 116.
    Wegener A (1911) Thermodynamik der atmosphäre. J. A. Barth, LeipzigzbMATHGoogle Scholar
  117. 117.
    Peterson RE (1992) Johannes Letzmann: a pioneer in the study of tornadoes. Weather Forecast. 7:166–184CrossRefGoogle Scholar
  118. 118.
    Letzmann L (1921) Sitzungsber. Naturforsch Ges Univ, Dorpat, 28Google Scholar
  119. 119.
    Brooks CF (1922) The local or heat thunderstorm. Mon Weather Rev 50:281–287CrossRefGoogle Scholar
  120. 120.
    Simpson GC, Scrase FJ (1937) The distribution of electricity in thunderclouds. Proc Roy Soc Lond A 161:309–352CrossRefGoogle Scholar
  121. 121.
    Suckstorff GA (1938) Kaltlufterzeugung durch Niederschlag. Z Meteorol 55:287–292Google Scholar
  122. 122.
    Byers HR (1937) Synoptic and aeronautical meteorology. McGraw-Hill, New YorkGoogle Scholar
  123. 123.
    Simpson GC, Robinson GD (1941) The distribution of electricity in thunderclouds, II. Proc R Soc Lond A 177:281–329CrossRefGoogle Scholar
  124. 124.
    Gunn R (1947) The electric charge on precipitation at various altitudes and its relation to thunderstorms. Phys Rev 71:181–186CrossRefGoogle Scholar
  125. 125.
    Benard H (1901) Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en regime permanent. Annales de Chimie et de Physique, Paris 7:62–144Google Scholar
  126. 126.
    Rayleigh Lord (1916) On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos Mag 32:529–546zbMATHCrossRefGoogle Scholar
  127. 127.
    Tepper M (1950) A proposed mechanism of squall lines: The pressure jump line. J Meteorol 7:21–29CrossRefGoogle Scholar
  128. 128.
    Byers HR, Braharn RR (1949) The thunderstorm. U.S Department of Commerce, Weather Bureau, Washington, D.C.Google Scholar
  129. 129.
    Byers HR (1965) Elements of cloud physics. University of Chicago PressGoogle Scholar
  130. 130.
    Wichmann H (1951) Über das Vorkommen und Verhalten des Hagels in Gewitterwolken. Ann Meteorol 1:218–225Google Scholar
  131. 131.
    Scorer RS, Ludlam FH (1953) Bubble theory of penetrative convection. Q J Roy Meteorol Soc 79:94–103CrossRefGoogle Scholar
  132. 132.
    Fujita TT, Wakimoto RM (1981) Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon Weather Rev 109:1438–1456CrossRefGoogle Scholar
  133. 133.
    Müldner W (1950) Die Windbruchschäden des 22.7.1948 im Reichswald bei Nürenberg. Berichte Dtsch Wetterdienstes 19:3–39Google Scholar
  134. 134.
    Gunn R (1956) Electric field intensity at the ground under active thunderstorms and tornadoes. J Meteorol 13:269–275CrossRefGoogle Scholar
  135. 135.
    Vonnegut B (1960) Electrical theory of tornadoes. J Geophys Res 65:203–212CrossRefGoogle Scholar
  136. 136.
    Kobayasi T, Sasaki T (1932) Uber Land- und Seewinde. Beitr Phys Frei Atmos 19:17–21Google Scholar
  137. 137.
    Arakawa H, Utsugi M (1937) Theoretical investigation on land and sea breezes. Geophys Mag Tokyo 11:97–104zbMATHGoogle Scholar
  138. 138.
    Haurwitz B (1947) Comments on the sea-breeze circulation. J Meteorol 4:1–8CrossRefGoogle Scholar
  139. 139.
    Schmidt FH (1947) An elementary theory of the land and sea breeze circulation. J Meteorol 4:9–15CrossRefGoogle Scholar
  140. 140.
    Pierson WJ Jr (1950) The effects of eddy viscosity, Coriolis deflection and temperature fluctuation on the see breeze as a function of time and height. New York University, Meteorol, Papers, 1Google Scholar
  141. 141.
    Willett HC (1944) Descriptive meteorology. Academic Press, New YorkGoogle Scholar
  142. 142.
    Defant F (1950) Theorie der land- und seewind. Arch Meteorol Geophys Bioklimatol Ser A 2:404–425CrossRefGoogle Scholar
  143. 143.
    Defant F (1951) Local winds. Compendium of meteorology. American Meteorological Society, Boston, MA, pp 655–672CrossRefGoogle Scholar
  144. 144.
    Pearce RP (1955) The calculation of a sea breeze circulation in terms of the differential heating across the coastline. Q J Roy Meteorol Soc 81:351–381CrossRefGoogle Scholar
  145. 145.
    Estoque MA (1961) A theoretical investigation of the sea breeze. Q J Roy Meteorol Soc 87:136–146CrossRefGoogle Scholar
  146. 146.
    Fisher EL (1961) A theoretical study of the sea breeze. J Meteorol 18:215–233CrossRefGoogle Scholar
  147. 147.
    Hann J (1866) Zur Frage über den Ursprung des Föhn. Z öst Ges Meteorol 1:257–263Google Scholar
  148. 148.
    Hann J (1878) Zur Meteorologie der Alpengipfel. S B Akad Wiss Wien Abt Ha 78:829–866Google Scholar
  149. 149.
    Defant F (1910) Zur Theorie der Berg- und Talwinde. Meteorol Z 27:161–168Google Scholar
  150. 150.
    Ekhart E (1931) Zur Aerologie des Berg- und Talwindes. Beitr Phys Frei Atmos 18:1–26Google Scholar
  151. 151.
    Wagner A (1932) Neuere Theorie des Berg- und Talwindes. Meteorol Z 49:329–341zbMATHGoogle Scholar
  152. 152.
    Wagner A (1938) Theorie und Beobachtungen der periodischen Gebirgswinde. Beitr Geophys 52:408–449Google Scholar
  153. 153.
    Prandtl L (1942) Führer durch die Strömungslehre. Braunschweig, F. Vieweg Sohn, pp 373–375Google Scholar
  154. 154.
    Defant F (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch Meteorol Geophys Biokl 1(A):421–450Google Scholar
  155. 155.
    Ficker H, De Rudder B (1943) Föhn und Föhnwirkungen. Beeker & Erler, LeipzigGoogle Scholar
  156. 156.
    Mazelle E (1907) Kälteeinbruch und Bora in Triest, Januar, 1907. Meteor Z 24:171–172Google Scholar
  157. 157.
    Kesslitz W (1914) Über die Windverhältnisse an der Adria. Météor Z 31:248–251Google Scholar
  158. 158.
    Galzi L (1927) Le mistral à Nîmes. La Météorol 3:213–214Google Scholar
  159. 159.
    Rubin MJ (ed) (1966) Studies in Antarctic meteorology. Antarctic Research Series, 9, American Geophysical Union, Washington, D.C., Publication 1482Google Scholar
  160. 160.
    Corby GA (1954) The airflow over mountains. A review of the state of current knowledge. Q J Roy Meteorol Soc 80:491–521CrossRefGoogle Scholar
  161. 161.
    Abe M (1929) Mountain clouds, their forms and connected air current. Bull Central Meteorol Observatory Tokyo Jpn 7(3)Google Scholar
  162. 162.
    Horsley T (1945) New light on the standing wave. Aeronaut Lond 11:38Google Scholar
  163. 163.
    Turner HS (1951) Standing waves and powered flight. Met Mag London 81:106Google Scholar
  164. 164.
    Austin ARI (1952) Wave clouds over southern England. Weather 7:50–53CrossRefGoogle Scholar
  165. 165.
    Förchtgott J (1952) Mechanical turbulence. Letecká Met, Prague, p 114Google Scholar
  166. 166.
    Lord Kelvin (1886) On stationary waves in flowing water. Philos Mag 5:353–357, 445–452, 517–530Google Scholar
  167. 167.
    Queney P (1948) The problem of air flow over mountains: a summary of theoretical studies. Bull Am Meteorol Soc 29:16–26CrossRefGoogle Scholar
  168. 168.
    Scorer RS (1949) Theory of waves in the lee of mountains. Q J Roy Meteorol Soc 75:41–56CrossRefGoogle Scholar
  169. 169.
    Scorer RS (1955) Theory of air flow over mountains. IV—Separation of flow from the surface. Q J Meteorol Soc 81:340–350CrossRefGoogle Scholar
  170. 170.
    Long RR (1953) Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5:42–58MathSciNetCrossRefGoogle Scholar
  171. 171.
    Long RR (1954) Some aspects of the flow of stratified fluids. II. Experiments with a two-fluid system. Tellus 6:97–115Google Scholar
  172. 172.
    Abe M (1942) An attempt to make visible the mountain air current. J Met Soc, Tokyo, p 69Google Scholar
  173. 173.
    Field JH, Warden R (1933) A survey of the air currents in the Bay of Gibraltar, 1929–1930. Geophys Mem Met Off, Lond 7(59)Google Scholar
  174. 174.
    Kampé de Fériet J (1936) Atmosphärische Stromungen; Wolkenstudien nach Kinoaufnahmen in Hochgebirge, Jungfrau und Matterhorn. Meteorol Zeitschr 53:277–280Google Scholar
  175. 175.
    Warden R, Burge CH (1947) Wind flow over a mountainous area. NPL Aero Report 151Google Scholar
  176. 176.
    Rouse H (1951) Model techniques in meteorological research. Compendium of Meteorology, American Meteorological Society, 1249Google Scholar
  177. 177.
    Fujita T (1951) Microanalytical study of a thundernose. Geophys Mag 22:71–88Google Scholar
  178. 178.
    Fujita T, Newstein H, Tepper M (1956) Mesoanalysis—an important scale in the analysis of weather data. U.S Weather Bureau, Research Paper 39Google Scholar
  179. 179.
    Huschke RE (ed) (1959) Glossary of meteorology. American Meteorological Society, Boston, MAGoogle Scholar
  180. 180.
    Tepper M (1959) Mesometeorology—The link between macro-scale atmospheric motions and local weather. Bull Am Meteorol Soc 40:56–72CrossRefGoogle Scholar
  181. 181.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  182. 182.
    Sutton OG (1953) Micrometeorology. McGraw-Hill, New YorkGoogle Scholar
  183. 183.
    Stevenson T (1880) Report on the simultaneous abservations of the force of the wind at different heights above the ground. J Scot Meteorol Soc 5:348–351Google Scholar
  184. 184.
    Archibald ED (1885) An account of some preliminary experiments with Birams anemometers, attached to kite strings. Nature 31:6-66–68CrossRefGoogle Scholar
  185. 185.
    Archibald ED (1886) Some results of observations with kite wire suspended anemometers up to 1300 feet above the ground in 1883–85. Nature 33:593––595CrossRefGoogle Scholar
  186. 186.
    Prandtl L (1921) Über den Reibungswiderstand strömender Luft. Ergebnisse AVA Göttingen, Serie 1:136zbMATHGoogle Scholar
  187. 187.
    Eiffel G (1900) Travaux Scientifiques executes a la tour de trois cents metres de 1889 a 1900. Maretheux, ParisGoogle Scholar
  188. 188.
    von Kármán T (1954) Aerodynamics. Cornell University Press, IthacazbMATHGoogle Scholar
  189. 189.
    Davenport AG (1975) Perspectives on the full-scale measurement of wind effects. J Ind Aerodyn 1:23–54CrossRefGoogle Scholar
  190. 190.
    Loyrette H (1985) Gustave Eiffel. Rizzoli, New YorkGoogle Scholar
  191. 191.
    Harriss J (1975) The tallest tower. Regnery Gateway, Washington, D.C.Google Scholar
  192. 192.
    Nansen F (1902) Oceanography of the North Pole Basin. The Norwegian North Pole expedition 1893–1896. Sci Results III(9) KristianiaGoogle Scholar
  193. 193.
    Ekman VW (1902) Om jordrotationens inverkan pa vindströmmar i hafvet. Nyt Magazin for Naturvidenskab, B. 40, H. 1, KristianiaGoogle Scholar
  194. 194.
    Ekman VW (1905) On the influence of the earth’s rotation on ocean currents. Arkiv för Matematik, Astronomi ocn Fysik, Stockholm, SwedenzbMATHGoogle Scholar
  195. 195.
    Kremser V (1909) Ergebnisse vieljähriger Windregistrierungen in Berlin. Meteor Z 26:238–252Google Scholar
  196. 196.
    Rawson HE (1913) Atmospheric waves, eddies and vortices. Aeronaut J 17:245–256Google Scholar
  197. 197.
    Dobson GMB (1914) Pilot balloon ascents at the central flying school. Upavon during the year 1913. Q J Roy Meteorol Soc 40:123–135CrossRefGoogle Scholar
  198. 198.
    Taylor GI (1915) Eddy motion in the atmosphere. Philos Trans Roy Soc Lond 215:1–26CrossRefGoogle Scholar
  199. 199.
    Taylor GI (1916) Skin friction of the wind on the earth’s surface. Proc Roy Soc Lond A 92:196–199CrossRefGoogle Scholar
  200. 200.
    Richardson LF (1920) The supply of energy to and from atmospheric eddies. Proc Roy Soc Lond A 97:354–373CrossRefGoogle Scholar
  201. 201.
    Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–212MathSciNetzbMATHGoogle Scholar
  202. 202.
    Richardson LF (1925) Turbulence and vertical temperature difference near trees. Philos Mag 49:81–90CrossRefGoogle Scholar
  203. 203.
    Prandtl L (1926) Uber die ausgebildete turbulenz. Verhandlungen des zweiten internationalen kongresses fur technische mechanik, Zurich, pp 62–74zbMATHGoogle Scholar
  204. 204.
    von Kármán TH (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr. Ges. Wiss. Göttingen. Math Phys Klasse, pp 58–76 (English translation in NACA TM 611, 1931)Google Scholar
  205. 205.
    Prandtl L (1932) Zur turbulenten Stromung in Rohren und laengs Platten. Ergeb Aerodyn Versuchsant Göttingen 4:18–29zbMATHGoogle Scholar
  206. 206.
    Prandtl L (1933) Neuere Ergebnisse der Turbulenzforschung. Z Ver Deutsch Ing 77:105–114zbMATHGoogle Scholar
  207. 207.
    Taylor GI (1932) The transport of vorticity and heat through fluids in turbulent motion. Proc Roy Soc Lond A 135:685–705zbMATHCrossRefGoogle Scholar
  208. 208.
    Schlichting H (1955) Boundary-layer theory. Mc Graw Hill, New YorkzbMATHGoogle Scholar
  209. 209.
    Goldstein S (1937) The similarity theory or turbulence, and flow between planes and through pipes. Proc Roy Soc Lond A 159:473–496zbMATHCrossRefGoogle Scholar
  210. 210.
    Taylor GI (1937) Flow in pipes and between parallel planes. Proc Roy Soc Lond A 159:496–506zbMATHCrossRefGoogle Scholar
  211. 211.
    Dryden HL, Kuethe AM (1931) Effect of turbulence in wind-tunnel measurements. NACA Report 342Google Scholar
  212. 212.
    Dryden HL (1931) Reduction of turbulence in wind tunnels. NACA Report 392Google Scholar
  213. 213.
    Townend HCH (1934) Statistical measurements of turbulence in the flow of air through a pipe. Proc Roy Soc. Lond A 145:180–211CrossRefGoogle Scholar
  214. 214.
    Fage A, Townend HCH (1932) An examination of turbulent flow with an ultra-microscope. Proc Roy Soc Lond A 135:656–684CrossRefGoogle Scholar
  215. 215.
    Simmons LFG, Salter C (1934) Experimental investigation and analysis of the velocity variations in turbulent flow. Proc Roy Soc Lond A 145:212–234zbMATHCrossRefGoogle Scholar
  216. 216.
    Prandtl L, Reichardt H (1934) Einfluss von Wärmeschinchtung auf de Eigenschaften einer turbulenten Strömung. Deutsche Forschung, Berlin, Germany, no 21, pp 110–121Google Scholar
  217. 217.
    Taylor GI (1935, 1936). Statistical theory of turbulence. Proc Roy Soc Lond A 151:421–478; 156:307–317Google Scholar
  218. 218.
    Schubauer GB (1936) A turbulence indicator utilizing the diffusion of heat. NACA Report 524Google Scholar
  219. 219.
    Dryden HL, Schubauer GB, Mock WC, Skramstad HK (1937). Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Report 581Google Scholar
  220. 220.
    Dryden H (1938) Turbulence investigation at the National Bureau of Standards. In: Proceedings of 5th international congress applied mechanics, p 366Google Scholar
  221. 221.
    Simmons LFG, Salter C (1938) An experimental determination of the spectrum of turbulence. Proc Roy Soc Lond A 165:73–89zbMATHCrossRefGoogle Scholar
  222. 222.
    Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc Lond A 164:476–490zbMATHCrossRefGoogle Scholar
  223. 223.
    Solari G (1993) Gust buffeting. I: peak wind velocity and equivalent pressure. J Struct Eng ASCE 119:365–382CrossRefGoogle Scholar
  224. 224.
    von Kármán T (1937) The fundamentals of the statistical theory of turbulence. J Aero Sci 4:131zbMATHCrossRefGoogle Scholar
  225. 225.
    von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc Roy Soc Lond. A 164:192–215zbMATHCrossRefGoogle Scholar
  226. 226.
    Kolmogoroff A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad Sci URSS 30:301–305MathSciNetzbMATHGoogle Scholar
  227. 227.
    Kolmogoroff A (1941) Dissipation of energy in the locally isotropic turbulence. C R Acad Sci URSS 32:16–18MathSciNetGoogle Scholar
  228. 228.
    Dryden H (1943) A review of the statistical theory of turbulence. Q J Appl Math 1:7–42MathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    Batchelor GK (1947) Kolmogoroff’s theory of locally isotropic turbulence. Proc Camb Philos Soc 43:533–559MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    Obukhov AM (1941) On the distribution of energy in the spectrun of turbulent flow. C R Acad Sci URSS 32:19Google Scholar
  231. 231.
    Onsager L (1945) The distribution of energy in turbulence. Phys Rev II(68):286Google Scholar
  232. 232.
    Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Phys 124:628–657MathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    von Weizsacker CF (1948) Das spektrum der turbulenz bei grossen Reynoldsschen zahlen. Z Phys 124:614–627MathSciNetzbMATHCrossRefGoogle Scholar
  234. 234.
    Townsend AA (1947) The measurement of double and triple correlation derivatives in isotropic turbulence. Proc Camb Philos Soc 43:560–570CrossRefGoogle Scholar
  235. 235.
    Corrsin S (1949) An experimental verification of local isotropy. J Aero Sci 16:757–759Google Scholar
  236. 236.
    von Kármán T (1948) Progress in the statistical theory of turbulence. Proc Nat Acad Sci Wash. 34:530–539MathSciNetzbMATHCrossRefGoogle Scholar
  237. 237.
    Batchelor GK (1949) The role of big eddies in homogeneous turbulence. Proc Roy Soc London A 195:513–532MathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    Solari G, Piccardo G (2001) Probabilistic 3-D turbulence modeling for gust buffeting of structures. Prob Eng Mech 16:73–86CrossRefGoogle Scholar
  239. 239.
    Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, U.K.zbMATHGoogle Scholar
  240. 240.
    Townsend AA (1956) The structure of turbulent shear flow. Cambridge University Press, U.K.zbMATHGoogle Scholar
  241. 241.
    Hinze JO (1959) Turbulence. McGraw Hill, New YorkGoogle Scholar
  242. 242.
    Counihan J (1975) Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmos Environ 9:871–905CrossRefGoogle Scholar
  243. 243.
    Pagon WW (1935) Aerodynamics and the civil engineer—VII. Wind velocity in relation to height above ground. Eng News-Rec 742–745Google Scholar
  244. 244.
    Hellmann G (1917) Über die Bewegung der Luft in den untersten Scichten der Atmosphäre. Zweite Mitteilung, Meteorol Z 34:273–285Google Scholar
  245. 245.
    Chapman EH (1919) The variation of wind velocity with height. Prof. Notes-Met. Office No 6Google Scholar
  246. 246.
    Rossby CG (1932) A generalisation of the theory of the mixing length with applications to atmospheric and oceanic turbulence. Massachusetts Institute of Technology, Meteorological Papers, vol I, no 4, Cambridge, MAGoogle Scholar
  247. 247.
    Prandtl L (1932) Meteorologische anwedung der strömunglehre. Beiträge zur Physik der Freien Atmosphäre 19:188–202zbMATHGoogle Scholar
  248. 248.
    Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Papers in Physical Oceanography and Meteorology, M.I.T. and Woods Hole Ocean and Met. Inst., 3, 3Google Scholar
  249. 249.
    Scrase FJ (1930) Some characteristics of eddy motion in the atmosphere. Met Off Geophys Mem 52Google Scholar
  250. 250.
    Mildner P (1932) Über reibung in einer speziellen luftmasse. Beitr Phys freien Atmosph 19:151–158zbMATHGoogle Scholar
  251. 251.
    Ali B (1932) Variation of wind with height. Q J Roy Meteorol Soc 58:285–288Google Scholar
  252. 252.
    Sutton OG (1932) Notes on the variation of wind with height. Q J Roy Meteorol Soc 58:285–288Google Scholar
  253. 253.
    Durst CS (1933) Notes on the variations of the structure of wind over different surfaces. Q J Roy Meteorol Soc 59:361–372CrossRefGoogle Scholar
  254. 254.
    Sverdrup HU (1936) Austausch und stabilitat in der untersten luftschict. Meteorol Z 53:10–15zbMATHGoogle Scholar
  255. 255.
    Paeschke W (1937) Experimentelle untersuchungen zum rauhigkeits und stabilitätsproblem an der bodernen luftschicht. Beitr Phys Atmos 24:163–189Google Scholar
  256. 256.
    Jacobs W (1939) Unformung eines turbulenten geschwindigkeitsprofiles. Z Angew Math Mech 19:87–100 (English translation N.A.C.A. Tech. Mem. 951)Google Scholar
  257. 257.
    Lettau H (1939) Atmosphaerische turbulenz. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  258. 258.
    Thornthwaite CW, Halstead M (1942) Note on the variation of wind with height in the layer near the ground. Trans Am Geophys Union 23:249–255CrossRefGoogle Scholar
  259. 259.
    Thornthwaite CW, Kaser P (1943) Wind gradient observations. Trans Am Geophys Union 1:166–182CrossRefGoogle Scholar
  260. 260.
    Obukhov AM (1946) Turbulence in an atmosphere with a non uniform temperature. Tr Akad Nauk SSSR Inst Teoret Geofis No. 1 (translated in Bound-Lay Meteorol, 1971, 2:7–29)Google Scholar
  261. 261.
    Sheppard PA (1947) The aerodynamic drag of the earth’s surface and value of von Karman’s constant in the lower atmosphere. Proc Roy Soc Lond A 188:208–222CrossRefGoogle Scholar
  262. 262.
    Prandtl L (1927) Über den Reibungswiderstand strömender Luft. Ergebnisse AVA Göttingen, III SerieszbMATHGoogle Scholar
  263. 263.
    Deacon EL (1949) Vertical diffusion in the lowest layers of the atmosphere. Q J Roy Meteorol Soc 75:89–103CrossRefGoogle Scholar
  264. 264.
    Sutton OG (1949) Atmospheric turbulence. Methuen, LondonGoogle Scholar
  265. 265.
    Wurtele MG, Sharman RD, Datta A (1996) Atmospheric lee waves. Annu Rev Fluid Mech 28:429–476MathSciNetCrossRefGoogle Scholar
  266. 266.
    Wood N (2000) Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling. Bound-Lay Meteorol 96:11–32CrossRefGoogle Scholar
  267. 267.
    Scorer RS (1956) Airflow over an isolated hill. Q J Roy Meteorol Soc 82:75–81CrossRefGoogle Scholar
  268. 268.
    Scorer RS, Wilkinson M (1956) Waves in the lee of an isolated hill. Q J Roy Meteorol Soc 82:419–427CrossRefGoogle Scholar
  269. 269.
    Thuillier RH, Lappe UO (1964) Wind and temperature profile characteristics from observations on a 1400 ft tower. J Appl Meteorol 3:299–306CrossRefGoogle Scholar
  270. 270.
    Berman S (1965) Estimating the longitudinal wind spectrum near the ground. Q J Roy Meteorol Soc 91:302–317CrossRefGoogle Scholar
  271. 271.
    Sherlock RH (1953) Variation of wind velocity and gusts with height. Trans Am Soc Civil Eng Paper No. 2553, 118:463–488Google Scholar
  272. 272.
    Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trudy Geofizs Inst An SSSR 2:13Google Scholar
  273. 273.
    Businger JA (1959) A generalization of the mixing-length concept. J Meteorol 16:516–523MathSciNetCrossRefGoogle Scholar
  274. 274.
    Swinbank WC (1960) Wind profile in thermally stratified flow. Nature 186:463–464zbMATHCrossRefGoogle Scholar
  275. 275.
    Charnock H (1955) Wind stress on a water surface. Q J Roy Meteorol Soc 81:639–640CrossRefGoogle Scholar
  276. 276.
    Elliot WP (1958) The growth of the atmospheric internal boundary layer. Trans Am Geophys Union 39:1048–1054CrossRefGoogle Scholar
  277. 277.
    Kutzbach JE (1961) Investigations of the modification of wind profiles by artificially controlled surface roughness. University of Wisconsin, Department of Meteorology, Annual Report, 71Google Scholar
  278. 278.
    Davenport AG (1960) Rationale for determining design wind velocities. J Struct Div ASCE 86:39–68Google Scholar
  279. 279.
    Goldie AHR (1925) Gustiness of wind in particular cases. Q J Roy Meteorol Soc 51:216–357Google Scholar
  280. 280.
    Becker R (1930) Investigation of the small scale structure of the wind by means of a matrix of wind vanes. Beitre Phys Atmos 16:271Google Scholar
  281. 281.
    Best AC (1935) Transfer of heat and momentum in the lowest layers of the atmosphere. Met. Office Geophys Memoirs, 65Google Scholar
  282. 282.
    Schmidt W (1935) Turbulence near the ground. J Roy Aeronaut Soc 39:335–376Google Scholar
  283. 283.
    Calder KL (1939) A note on the consistency of horizontal turbulent shearing stress in the lowest layers of the atmosphere. Q J Roy Meteorol Soc 65:57–60Google Scholar
  284. 284.
    Pasquill F, Smith FB (1983) Atmospheric diffusion. John Wiley, New YorkGoogle Scholar
  285. 285.
    Cooley JW, Tukey JW (1965) An algorithm for the machine calculation or complex Fourier series. Maths Comput 19:297–301MathSciNetzbMATHCrossRefGoogle Scholar
  286. 286.
    Blackman RB, Tukey JW (1959) The measurement of power spectra from the point of view of communications engineering. Dover Publications, New YorkzbMATHGoogle Scholar
  287. 287.
    Shiotani M, Yamamoto G (1948) Atmospheric turbulence over a large city; turbulence in the free atmosphere-2. Geophys Mag 21:2Google Scholar
  288. 288.
    Sheppard PA, Omar T (1952) The wind stress over the ocean form observations in the trades. Q J Roy Meteorol Soc 78:583–589CrossRefGoogle Scholar
  289. 289.
    Priestley CHB, Sheppard PA (1952) Turbulence and transfer processes in the atmosphere. Q J Roy Meteorol Soc 78:488–529CrossRefGoogle Scholar
  290. 290.
    Gerhardt JR, Crain CM, Smith HW (1952) Fluctuations of atmospheric temperature as a measure of the scale and intensity of turbulence near the earth’s surface. J Meteor 9:299–310CrossRefGoogle Scholar
  291. 291.
    Shiotani M (1953) Some notes on the structure of wind in the lowest layers of the atmosphere. J. Meteor. Soc. Jpn 31:327–335CrossRefGoogle Scholar
  292. 292.
    Ogura Y (1953) The relation between the space- and time- correlation functions in a turbulent flow. J Meteor Soc Japan 31:355–369CrossRefGoogle Scholar
  293. 293.
    MacCready PD (1953) Atmospheric turbulence measurements and analysis. J Meteorol 10:325–337CrossRefGoogle Scholar
  294. 294.
    Liepmann HW (1952) On the application of statistical concepts to the buffeting problem. J Aeronaut Sci 19:793–800zbMATHCrossRefGoogle Scholar
  295. 295.
    Panofsky HA, McCormick RA (1954) Properties of spectra of atmospheric turbulence at 100 meters. Q J Roy Meteorol Soc 80:546–564CrossRefGoogle Scholar
  296. 296.
    Webb EK (1955) Auto-correlations and energy spectra of atmospheric turbulence. C.S.I.R.O. Division of Meteorological Physics, Technical Paper 5Google Scholar
  297. 297.
    Press H, Meadows MT, Hadlock I (1956) A reevaluation of data on atmospheric turbulence and airplane gust loads for application in spectral calculations. NACA Report 1272Google Scholar
  298. 298.
    Davenport AG (1961) The spectrum of horizontal gustiness near the ground in high winds. Q J Roy Meteorol Soc 87:194–211CrossRefGoogle Scholar
  299. 299.
    Deacon EL (1955) Gust variation with height up to 50 m. Q J Roy Meteorol Soc 81:562–573CrossRefGoogle Scholar
  300. 300.
    Wax MP (1956) An experimental study of wind structure. Technical Report C/T 114, British Electrical and Allied Industries Research AssociationGoogle Scholar
  301. 301.
    Panofsky HA, van der Hoven I (1955) Spectra and cross-spectra of velocity components of the micro-meteorological range. Q J Roy Meteorol Soc 81:603–606CrossRefGoogle Scholar
  302. 302.
    Griffith HL, Panofsky HA, van der Hoven I (1956) Power-spectrum analysis over large ranges of frequency. J Meteorol 13:279–282CrossRefGoogle Scholar
  303. 303.
    Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14:160–164CrossRefGoogle Scholar
  304. 304.
    Cramer HE (1959) Measurements of turbulence structure near the ground within the frequency range from 0.5 to 0.01 cycles sec. In: Advances in geophysics, 6, Atmospheric diffusion and air pollution. New York and London, Academic Press, pp 75–96Google Scholar
  305. 305.
    Cramer HE (1960) Use of power spectra and scales of turbulence in estimating wind loads. Meteor Mon 4:12–18Google Scholar
  306. 306.
    Favre AJ, Gaviglio JJ, Dumas RJ (1957) Space-time double correlations and spectra in a turbulent boundary layer. J Fluid Mech 2:313–342MathSciNetCrossRefGoogle Scholar
  307. 307.
    Favre AJ, Gaviglio JJ, Dumas RJ (1958) Further space-time correlations of velocity in a turbulent boundary layer. J Fluid Mech 3:344–356CrossRefGoogle Scholar
  308. 308.
    Sherlock RH, Stout MB (1932) Picturing the structure of the wind. Civil Eng 2:358–363Google Scholar
  309. 309.
    Sherlock RH, Stout MB (1937) Wind structure in winter storms. J Aeronaut Sci 5:53–61CrossRefGoogle Scholar
  310. 310.
    Mattice WA (1938) A comparison between wind velocities as recorded by the Dines and Robinson anemometers. Mon Weather Rev 66:238–240CrossRefGoogle Scholar
  311. 311.
    Sherlock RH (1947) Gust factors for the design of buildings. International Association for Bridge and Structural Engineering, vol 8, Zurich, SwitzerlandGoogle Scholar
  312. 312.
    Durst CS (1960) Wind speeds over short period of time. Meteor Mag, Meteor Office 89, 181–186Google Scholar
  313. 313.
    Hesselberg Th, Bjorkdal E (1929) Uber das verteilungsgesetz der windunruhe. Beitr Phys Atmos 15:121–133zbMATHGoogle Scholar
  314. 314.
    Van Orman WT (1931) A preliminary meteorological survey for airship bases on the middle Atlantic seabord. Mon Weather Rev 59:57–65CrossRefGoogle Scholar
  315. 315.
    Brooks CEP, Durst CS, Carruthers N (1946) Upper winds over the world—Part I. Q J Roy Meteorol Soc 72:55–73CrossRefGoogle Scholar
  316. 316.
    Brooks CEP, Durst CS, Carruthers N, Dewar D, Sawyer JS (1950) Upper winds over the world. Geophys. Memoirs, No. 85, Meteorological Office, H.M.S.O.Google Scholar
  317. 317.
    Henry TJG (1957) Maps of upper winds over Canada. Meteorological Branch, Department of Transport, TorontoGoogle Scholar
  318. 318.
    Essenwanger OM (1959) Probleme der windstatistik. Meteor Rundsch 12:37–47Google Scholar
  319. 319.
    Putnam PC (1948) Power from the wind. Van Nostrand Reinhold, New YorkGoogle Scholar
  320. 320.
    Sherlock RH (1951) Analyzing winds for frequency and duration. Meteor Mon, No 4. American Meteorological Society, pp 72–79Google Scholar
  321. 321.
    Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New YorkzbMATHCrossRefGoogle Scholar
  322. 322.
    Baynes CJ (1974) The statistic of strong winds for engineering applications. Ph.D. Thesis, The University of Western Ontario, London, Ontario, CanadaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations