Advertisement

Scientific Progress and Its Impact on Wind

  • Giovanni SolariEmail author
Chapter
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)

Abstract

This chapter deals with fluid dynamics, probability theory and automatic computation. Just in the first half of the twentieth century they displayed major improvements, both in general terms and as regards the basic tools for the knowledge of wind that would come to maturity in the second half of the twentieth century. After almost two centuries of trials, fluid dynamics overcame the doubts about D’Alembert’s paradox and the resistance of bodies, formulating the founding principles of the boundary layer, of the vortex wake, and of the transition from laminar to turbulent flows. The probability theory, reorganised on axiomatic grounds, produced a broad range of developments including extreme value theory, principal component analysis, random processes and Monte Carlo methods. The appearance of the electronic computer gave rise to advances firstly addressed to meteorological forecasts, then aimed to solve the increasingly complex problems posed by the renewed culture of the wind.

References

  1. 1.
    Strouhal V (1878) Uber eine besondere art dey tonnerregung. Wied Ann Physid Chem 10:216–251 Neue Folge, Band V, HeftCrossRefGoogle Scholar
  2. 2.
    Zdravkovich MM (1996) Different modes of vortex shedding: an overview. J Fluid Struct 10:427–437CrossRefGoogle Scholar
  3. 3.
    Lamb H (1895) Hydrodynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  4. 4.
    Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos T R Soc. 174Google Scholar
  5. 5.
    Rouse H, Ince S (1954–1956) History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of IowaGoogle Scholar
  6. 6.
    von Karman T (1954) Aerodynamics. Cornell University Press, IthacazbMATHGoogle Scholar
  7. 7.
    Reynolds O (1894) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos T R Soc. 186Google Scholar
  8. 8.
    Anderson JD (1998) A history of aerodynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  9. 9.
    Prandtl L (1905) Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des dritten internationalen Mathematiker-Kongresses, Heidelberg, 1904, pp 484–491Google Scholar
  10. 10.
    Tani I (1977) History of boundary-layer theory. Ann Rev Fluid Mech 9:87–111zbMATHCrossRefGoogle Scholar
  11. 11.
    Blasius H (1908) Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math Phys 56:1–37zbMATHGoogle Scholar
  12. 12.
    Töpfer C (1912) Bemerkungen zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math Phys 60:397–398Google Scholar
  13. 13.
    Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmigen Flüssigkeits-strom eingetatuchten geraden Kreiszylinder. Gottinga, Ph.D. thesis. Dingler’s Polytech J. 326, 321–324, 344–348, 357–362, 372–376, 391–393, 407–410Google Scholar
  14. 14.
    von Kármán T (1911,1912) Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten, Math. Phys. Klasse. 509–517, 547–556Google Scholar
  15. 15.
    Mallock A (1907) On the resistance of air. Proc R Soc London, Ser A 79:262–265zbMATHCrossRefGoogle Scholar
  16. 16.
    Bénard H (1908) Formation de centres de giration à l’arrière d’un obstacle en mouvement. C R Acad Sci, Paris. 147:839–842, 970–972Google Scholar
  17. 17.
    von Karman T, Rubach H (1912) Über den Mechanismus des Flussigkeits und Luft-widerstandes. Phys Zeits. 13, Jan 15Google Scholar
  18. 18.
    Eiffel G (1912) Sur la résistance des sphères dans l’air en mouvement. C R Acad Sci Paris 155:1597–1599zbMATHGoogle Scholar
  19. 19.
    Prandtl L (1914) Der luftwiderstand von kugeln. Göttinger Nachrichten. Math Phys Klasse 177–190Google Scholar
  20. 20.
    Wieselsberger C (1914) Der Luftwiderstand von Kugeln. Z Flugtechn Motorluftshiffahrt 5:140–144Google Scholar
  21. 21.
    Buckingham E (1914) On physically similar systems: illustrations of the use of dimensional equations. Phys Rev 4:345CrossRefGoogle Scholar
  22. 22.
    Buckingham E (1915) The principle of similitude. Nature 96:396–397zbMATHCrossRefGoogle Scholar
  23. 23.
    Rayleigh Lord (1915) Aeolian tones. Philos Mag Ser 6:433–444CrossRefGoogle Scholar
  24. 24.
    von Karman T (1921) Über laminare und turbulente Reibung. Z Angew Math Mech 1:233–252zbMATHCrossRefGoogle Scholar
  25. 25.
    Pohlhausen K (1921) Zur näherungsweisen Integration der Differentialgleichung der laminaren Reibungsschicht. Z Angew Math Mech 1:252–268zbMATHCrossRefGoogle Scholar
  26. 26.
    Anderson JD (2005) Ludwig Prandtl’s boundary layer. Phys Today 58:42–48CrossRefGoogle Scholar
  27. 27.
    Prandtl L (1927) The generation of vortices in fluids of small viscosity. J R Aeronaut Soc 31:720–741CrossRefGoogle Scholar
  28. 28.
    Tollmien W (1931) Grenzschichttheorie. In: Wien W, Harms F (eds) Handbuch der Experimentalphysik, vol IV, 1. Akademische, Leipzig, pp 239–287Google Scholar
  29. 29.
    Prandtl L (1931) Abriss der Strömungslehre. Vieweg, BraunschweigzbMATHGoogle Scholar
  30. 30.
    Prandtl L (1935) The mechanism of viscous fluids. In: Durand WF (ed) Aerodyamic theory, vol 3. Springer, Berlin, pp 34–209Google Scholar
  31. 31.
    Goldstein S (1938) Modern developments fluid dynamics. Clarendon, OxfordGoogle Scholar
  32. 32.
    Dryden HL (1948) Recent advances in the mechanics of boundary layer flow. Academic Press, New YorkCrossRefGoogle Scholar
  33. 33.
    Schlichting H (1955) Boundary-layer theory. Mc Graw Hill, New YorkzbMATHGoogle Scholar
  34. 34.
    Van der Hegge-Zijnen BG (1924) Measurements of the velocity distribution in the boundary layer along a plane surface. Ph.D. Thesis, University of DelftGoogle Scholar
  35. 35.
    Burgers JM (1925) The motion of a fluid in the boundary layer along a plane smooth surface. Proc, First Intern Congress of Appl Mech, Delft 1924:113–128Google Scholar
  36. 36.
    Hansen M (1928) Die Geschwindigkeitsverteilung in der Grenzschicht an einer eingetauchten Platte. Z Angew Math Mech, 8:185–199. (English translation in NACA TM 585, 1930)Google Scholar
  37. 37.
    Tollmien W (1929) Über die Entstehung der Turbulenz. I Mitt Nachr Ges Wiss Göttingen, Math Phys Klasse, 21–44. (English translation in NACA TM 609, 1931)Google Scholar
  38. 38.
    Tollmien W (1935) Ein allgemeines Kriterium der Instabilität laminarer Geschwindigkeitsverteilungen. Nachr Ges Wiss Göttingen, Math Phys Klasse, Fachgruppe I 1:79–114zbMATHGoogle Scholar
  39. 39.
    Rayleigh Lord (1880) On the stability or certain fluid motions. Proc Math Soc London 11:57–72MathSciNetzbMATHGoogle Scholar
  40. 40.
    Dryden HL (1936) Airflow in the boundary layer near a plate. NACA Report 562Google Scholar
  41. 41.
    Dryden HL (1939) Turbulence and the boundary layer. J Atmos Sci 6:85–105Google Scholar
  42. 42.
    Schubauer GB, Skramstad HK (1947) Laminar boundary layer oscillations and stability of laminar flow. J Atmos Sci 14:69–78Google Scholar
  43. 43.
    Nikuradse J (1942) Laminare Reibungsschichten an der längsangeströmten Platte. Monograph Zentrale f wiss. Berichtswesen, BerlinGoogle Scholar
  44. 44.
    Schiller L (1932) Handbuch der experimental-physik IV, Part 4. Leipzig, pp 1–207Google Scholar
  45. 45.
    Goldstein S (1936) A note on roughness. ARC R&M 1763Google Scholar
  46. 46.
    Fage A, Preston JH (1941) On transition from laminar to turbulent flow in the boundary layer. Proc Roy Soc A 178:201–227CrossRefGoogle Scholar
  47. 47.
    Prandtl L (1921) Über den Reibungswiderstand strömender Luft. Ergebn AVA Göttingen, Ser 1:136zbMATHGoogle Scholar
  48. 48.
    Blasius H (1913) Das Änlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten. Forschg Arb Ing-Wes. 134. BerlinGoogle Scholar
  49. 49.
    Hopf L (1923) Die Messung der hydraulischen Rauhigkeit. Z Angew Math Mech 3:329–339CrossRefGoogle Scholar
  50. 50.
    Prandtl L (1927) Über den Reibungswiderstand strömender Luft. Ergebn AVA Göttingen, Ser IIIGoogle Scholar
  51. 51.
    Nikuradse J (1932) Gesetzmässigkeit der turbulenten Strömung in glatten Rohren. Forschg Arb Ing-Wes N. 356Google Scholar
  52. 52.
    Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. Forschg Arb Ing-Wes, N. 361Google Scholar
  53. 53.
    Prandtl L, Schlichting H (1934) Das Widerstandsgesetz rauthr Platten. Werft, Reederei, Hafen, pp 1–4Google Scholar
  54. 54.
    Schlichting H (1934) Neuere untersuchungen uber die turbulenzentstehung. Naturwiss. 22Google Scholar
  55. 55.
    Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math Mech 5:136–139zbMATHCrossRefGoogle Scholar
  56. 56.
    Prandtl L (1926) Uber die ausgebildete turbulenz. Verhandlungen des zweiten internationalen kongresses fur technische mechanik, Zurich, pp 62–74Google Scholar
  57. 57.
    von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachr Ges Wiss Göttingen Math Phys Klasse. 58–76. (English translation in NACA TM 611, 1931)Google Scholar
  58. 58.
    Betz A (1931) Die von Kármánsche Ähnlichkeitsüberlegung für turbulente Vorgänge in physikalischer Auffassung. Z Angew Math Mech 11:397zbMATHCrossRefGoogle Scholar
  59. 59.
    Prandtl L (1932) Zur turbulenten Stromung in Rohren und laengs Platten. Ergebn Aerodyn Versuchsant Göttingen 4:18–29zbMATHGoogle Scholar
  60. 60.
    Prandtl L (1933) Neuere Ergebnisse der Turbulenzforschung. Z Ver Deutsch Ing 77:105–114zbMATHGoogle Scholar
  61. 61.
    Izakson AA (1937) On the formula for velocity distributions near walls. Tech Phys USSR 4:155–162Google Scholar
  62. 62.
    Millikan CB (1939) A critical discussion of turbulent flows in channels and circular pipes. Proc 5th Int Congr Appl Mech, Cambridge, Mass. 1938, 386–392Google Scholar
  63. 63.
    Goldstein S (1930) Concerning some solutions of the boundary layer equations in hydrodynamics. In: Proceedings of the Cambridge philosophical society, vol 26. pp 1–30Google Scholar
  64. 64.
    Prandtl L (1938) Zur Berechnung der Grenzschichten. Z Angew Math Mech 18:77–82zbMATHCrossRefGoogle Scholar
  65. 65.
    Görtler H (1939) Weiterentwicklung eines Grenzschichtprofiles bei gegebenen Druckverlauf. Z Angew Math Mech 19:129–141zbMATHCrossRefGoogle Scholar
  66. 66.
    Hartree DR (1939) A solution of the laminar boundary-layer equation for retarded flow. ARC R&M 2426Google Scholar
  67. 67.
    Relf EF, Simmons LFG (1924) The frequency of the eddies generated by the motion of circular cylinders through a fluid. ARC R&M, 917Google Scholar
  68. 68.
    Dryden HL, Heald RH (1925) Investigation of turbulence in wind tunnels by a study of the flow about cylinders. NACA Technical Report 231Google Scholar
  69. 69.
    Fage A, Johansen FC (1927) The structure of vortex streets. ARC R&M 1143Google Scholar
  70. 70.
    Ruedy R (1935) Vibrations of power lines in a steady wind. Can J Res A 13:99–110zbMATHCrossRefGoogle Scholar
  71. 71.
    Landweber L (1942) Flow about a pair of adjacent parallel cylinders normal to a stream. Report 485, In: David W. Taylor model basin, Washington, DCGoogle Scholar
  72. 72.
    Spivak HM (1946) Vortex frequency and flow pattern in the wake of two parallel cylinders at varied spacing normal to an air stream. J Aeronaut Sci 6:289–301CrossRefGoogle Scholar
  73. 73.
    Gutsche F (1937) Das, singen’ von schiffsschrauben. Z Ver Dtsch Ing 81:882–883Google Scholar
  74. 74.
    Gongwer CA (1952) A study of vanes singing in water. J Appl Mech 19:432–438Google Scholar
  75. 75.
    Kovasnay LSG (1949) Hot wire investigations or the wake behind cylinders at low Reynolds numbers. P R Soc London, Ser A 198:174CrossRefGoogle Scholar
  76. 76.
    Birkhoff GD (1952) A new theory of vortex streets. P Natl Acad Sci 38:409–410MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Birkhoff GD (1953) Formation or vortex streets. J Appl Phys 24:98–103MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Roshko A (1954) On the development of turbulent wakes from vortex streets. NACA Rep. 1191Google Scholar
  79. 79.
    Roshko A (1955) On the wake and drag of bluff bodies. J Aeronaut Sci 22:124–132zbMATHCrossRefGoogle Scholar
  80. 80.
    Tritton DJ (1959) Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech 6:547–567zbMATHCrossRefGoogle Scholar
  81. 81.
    Humphreys JS (1960) On a circular cylinder in a steady wind at transition Reynolds numbers. J Fluid Mech 9:603–612zbMATHCrossRefGoogle Scholar
  82. 82.
    Wille R (1960) Karman vortex streets. Adv Appl Mech 6:273–287zbMATHCrossRefGoogle Scholar
  83. 83.
    Marris AW (1964) A review on vortex streets, periodic wakes, and induced vibration phenomena. J Basic Eng Trans ASME 86:185–193CrossRefGoogle Scholar
  84. 84.
    Berger E, Wille R (1972) Periodic flow phenomena. Ann Rev Fluid Mech 4:313–340CrossRefGoogle Scholar
  85. 85.
    Lettau H (1939) Atmosphaerische turbulenz. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  86. 86.
    Wehner H (1949) Untersuchung mikrobarographischer wellen auf Jan Mayen. Dissertation University of Leipzig, Akademie-Verlag, BerlinGoogle Scholar
  87. 87.
    Glauert MB (1956) The wall jet. J Fluid Mech 1:625–643MathSciNetCrossRefGoogle Scholar
  88. 88.
    Prandtl L (1942) Bemerkungen zur Theorie der freien Turbulenz. Z Angew Math Mech 22:241–243MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Bakke P (1957) An experimental investigation of a wall jet. J Fluid Mech 2:467–472CrossRefGoogle Scholar
  90. 90.
    Maistrov. A historical sketch LE (1974) Probability theory. Academic Press, New YorkGoogle Scholar
  91. 91.
    Lyapunov MA (1907) Problème général de la stabilité du mouvement. Ann Fac Sci Toulouse. 9:203–274. (translation of a 1893 Russian paper on Comm Soc Math Kharkow)Google Scholar
  92. 92.
    Lindeberg JW (1922) Eine neue Herleitung des Exponentialgesetzes in der Wahrschienlichkeitsrechnung. Math Zeit 15:211–225zbMATHCrossRefGoogle Scholar
  93. 93.
    Bernstein SN (1927) Sur l’extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. Math Ann 97:1–59MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Feller W (1935) Über den Zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung. Math Zeit 40:521–559MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    von Mises R (1939) Probability, statistics and truth. MacMillan, New YorkzbMATHGoogle Scholar
  96. 96.
    Kolmogorov AN (1950) Foundations of the theory of probability. Chelsea, New YorkGoogle Scholar
  97. 97.
    Cramér H (1937) Random variables and probability distributions. Cambridge University Press, LondonzbMATHGoogle Scholar
  98. 98.
    Parzen E (1960) Modern probability and its applications. John Wiley, New YorkzbMATHGoogle Scholar
  99. 99.
    Tippett LHC (1925) On the extreme individuals and the range of samples taken from a normal population. Biometrika 17:364–387zbMATHCrossRefGoogle Scholar
  100. 100.
    Dodd EL (1923) The greatest and the least variate under general laws of error. Trans Am Math Soc 25:525–539MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Fréchet M (1927) Sur la loi de probabilitè de l’écart maximum. Ann de la Soc Polonaise de Math Cracow 6:93–125Google Scholar
  102. 102.
    Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc Cambridge Phil Soc 24:180–190Google Scholar
  103. 103.
    von Mises R (1936) La distribution de la plus grande de n valeurs. Revue Math de l’Union Interbalkanique, Athens 1:141–160Google Scholar
  104. 104.
    Gnedenko BV (1943) Sur la distribution limite du terme maximum d’une serie aléatorie. Ann Math 44:423–453MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Wilks SS (1948) Order statistics. Bull Am Math Soc 54:6–50MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    National Bureau of Standards (1953) Probability tables for the analysis of extreme value data. Appl Math Ser. 22Google Scholar
  107. 107.
    Gumbel EJ (1954) Statistical theory of extreme values and some practical applications. Nat Bureau of Stand, Appl Math Ser 33zbMATHGoogle Scholar
  108. 108.
    Johnson LG (1954) An axiomatic derivation of a general S-N equation. Industrial Math 4:1Google Scholar
  109. 109.
    Silva Leme RAD (1954) Os extremos de amostras ocasionais e suas applicações à engenharia. Thesis, University of São PauloGoogle Scholar
  110. 110.
    Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quart J Roy Meteorol Soc 81:158–171CrossRefGoogle Scholar
  111. 111.
    Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New YorkzbMATHCrossRefGoogle Scholar
  112. 112.
    Rosin P, Rammler E (1933) The laws governing the fineness of powdered coal. J Inst Fuel 7:29–36Google Scholar
  113. 113.
    Weibull W (1939) A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens Handlingar N. 151, StockolmGoogle Scholar
  114. 114.
    Weibull W (1939) The phenomenon of rupture in solids. Ingeniörsvetenskapsakademiens Handlingar 153, StockolmGoogle Scholar
  115. 115.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech ASME 18:293–297zbMATHGoogle Scholar
  116. 116.
    Solari G, Carassale L, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 1: a state-of-the-art and some prospects. Wind Struct 10:153–176CrossRefGoogle Scholar
  117. 117.
    Beltrami E (1873) Sulle funzioni bilineari. G di Mathematiche di Battaglini 11:98–106zbMATHGoogle Scholar
  118. 118.
    Jordan MC (1874) Mémorie sur les Formes Bilinéaires. J Math Pures Appl 19:35–54zbMATHGoogle Scholar
  119. 119.
    Sylvester JJ (1889) On the reduction of a bilinear quantic of the nth order to the form of a sum of n products by a double orthogonal substitution. Messenger Math 19:42–46Google Scholar
  120. 120.
    Schmidt E (1907) Zur Theorie de linearen und nichtlinearen Integralgleichungen. I Teil. Entwecklung willkurlichen Funktionen nach System vorgeschreibener. Math Ann 63:433–476MathSciNetCrossRefGoogle Scholar
  121. 121.
    Weyl H (1912) Das Asymptotische Verteilungs gesetz der Eigenwert linearer partieller Differentialgleichungen (mit einer Anwendung auf der Theorie der Hohlraumstrahlung). Math Ann 71:441–479MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Autonne L (1915) Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann Univ Lyon 38:1–77zbMATHGoogle Scholar
  123. 123.
    Eckart C (1934) The kinetic energy of polyatomic molecules. Phys Rev 46:383–387zbMATHCrossRefGoogle Scholar
  124. 124.
    Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218zbMATHCrossRefGoogle Scholar
  125. 125.
    Eckart C, Young G (1939) A principal axis transformation for non-hermitian matrices. Bull Am Math Soc 45:118–121MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2:559–572zbMATHCrossRefGoogle Scholar
  127. 127.
    Spearman C (1904) General intelligence, objectively determined and measured. Am J Psych 15:201–293CrossRefGoogle Scholar
  128. 128.
    Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:498–520zbMATHCrossRefGoogle Scholar
  129. 129.
    Hotelling H (1936) Simplified calculation of principal components. Psychometrika 1:27–35zbMATHCrossRefGoogle Scholar
  130. 130.
    Girshick MA (1936) Principal components. J Amer Statist Assoc 31:519–528zbMATHCrossRefGoogle Scholar
  131. 131.
    Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena. Terr Mag Atmos Elect 3:13–41CrossRefGoogle Scholar
  132. 132.
    Schuster A (1906) On the periodicities of sunspots. Phil Trans Ser A. 206:69–100CrossRefGoogle Scholar
  133. 133.
    Taylor GI (1921) Diffusion by continuous movements. Proc London Math Soc 20:196–212MathSciNetzbMATHGoogle Scholar
  134. 134.
    Yule GU (1927) On a method of investigating periodicities in disturbed, series with special reference to Wolfer’s sunspot numbers. Phil Trans, Ser A 226:267–298zbMATHCrossRefGoogle Scholar
  135. 135.
    Slutsky E (1937) The summation of random causes as the source of cyclic processes. Econometrika 5:105–146CrossRefGoogle Scholar
  136. 136.
    Wold HO (1938) A study in the analysis of stationary time series. Almquist and Wicksell, UppsalazbMATHGoogle Scholar
  137. 137.
    Box GEP, Jenkins GM (1976) Time series analysis forecasting and control. Holden-Day, Oakland, CaliforniazbMATHGoogle Scholar
  138. 138.
    Wiener N (1930) Generalized harmonic analysis. Acta Math 55:117–258MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Khinchin AJ (1934) Korreltionstheorie der stationaren stochastischen prozesse. Math Ann 109:604–615MathSciNetCrossRefGoogle Scholar
  140. 140.
    Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc London, A 164:476–490zbMATHCrossRefGoogle Scholar
  141. 141.
    Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series. MIT Press, Cambridge, MassachussetszbMATHGoogle Scholar
  142. 142.
    Kosambi DD (1943) Statistics in function space. J Indian Math Soc 7:76–88MathSciNetzbMATHGoogle Scholar
  143. 143.
    Loeve M (1945) Fonctions aléatoire de second ordre. Compte Red Acad Sci, Paris 220Google Scholar
  144. 144.
    Karhunen K (1946) Zur spektraltheorie stochastischer prozess. Ann Acad Sci Fennicae 1:34MathSciNetzbMATHGoogle Scholar
  145. 145.
    Kac M, Siegert AJF (1947) An eplicit representation of a stationary Gaussian process. Ann Math Stat 18:438–442zbMATHCrossRefGoogle Scholar
  146. 146.
    Loeve M (1955) Probability theory. Van Nostrand, New YorkzbMATHGoogle Scholar
  147. 147.
    Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New YorkzbMATHGoogle Scholar
  148. 148.
    Carassale L, Solari G, Tubino F (2007) Proper orthogonal decomposition in wind engineering. Part 2: theoretical aspects and some applications. Wind Struct 10:177–208CrossRefGoogle Scholar
  149. 149.
    Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:46–156MathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Rayleigh Lord (1877) Theory of sound. MacMillan, LondonzbMATHGoogle Scholar
  152. 152.
    Siegert AJF (1951) On the first passage time probability problem. Phys Rev 81:617–623MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    Darling DA, Siegert AJF (1953) The first passage problem for a continuous Markov process. Ann Math Stat 24:624–639MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Cartwright DE, Longuet-Higgins MS (1956) The statistical distribution of the maxima of a random function. Proc Roy Soc London, Ser A 237:212–232MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    Rayleigh Lord (1880) On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos Mag 10:73–78CrossRefGoogle Scholar
  156. 156.
    James HM, Nichols NB, Phillips RS (1947) Theory of servomechanisms. McGraw-Hill, New YorkGoogle Scholar
  157. 157.
    Davenport WB, Root WL (1956) An introduction to the theory of random signals and noise. McGraw-Hill, New YorkzbMATHGoogle Scholar
  158. 158.
    Lanning JH, Battin RH (1956) Random processes in automatic control. McGraw Hill, New YorkGoogle Scholar
  159. 159.
    Hannan EJ (1960) Time series analysis. Methuen, LondonGoogle Scholar
  160. 160.
    Middleton D (1960) An introduction to statistical communication theory. McGraw-Hill, New YorkzbMATHGoogle Scholar
  161. 161.
    Parzen E (1961) An approach to time series analysis. Ann Math Stat 32:951–989zbMATHCrossRefGoogle Scholar
  162. 162.
    Miles JW (1954) On structural fatigue under random loading. J Aero Sci 21:753–762zbMATHCrossRefGoogle Scholar
  163. 163.
    Mark WD (1961) The inherent variation in fatigue damage resulting from random vibration. Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of TechnologyGoogle Scholar
  164. 164.
    Blackman RB, Tukey JW (1959) The measurement of power spectra from the point of view of communications engineering. Dover Publications, New YorkzbMATHGoogle Scholar
  165. 165.
    Parzen E (1961) Mathematical considerations in estimation of spectra. Technometrics 3:167–190MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Cooley JW, Tukey JW (1965) An algorithm for the machine calculation or complex Fourier series. Maths Comput 19:297–301MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Tippett LHC (1927) Random sampling numbers. Cambridge University PressGoogle Scholar
  168. 168.
    Kendall MG, Babington-Smith B (1939) Second paper on random sampling numbers. Suppl J R Stat Soc 6:51–61CrossRefGoogle Scholar
  169. 169.
    von Neumann J (1951) Various techniques used in connection with random digits. Appl Math Ser 12:36–38 U.S. National Bureau of StandardsGoogle Scholar
  170. 170.
    Rosen S (1969) Electronic computers: a historical survey. Comput Surv 1:7–36zbMATHCrossRefGoogle Scholar
  171. 171.
    Goldstine HH (1980) The computer: from Pascal to von Neumann. Princeton University Press, New JerseyzbMATHGoogle Scholar
  172. 172.
    Zientara M (1981) The history of computing: a biographical portrait of the visionaries who shaped the destiny of the computer industry. CW Communications, Redditch Worcs, UKGoogle Scholar
  173. 173.
    Augarten S (1984) Bit by bit: an illustrated history of computers. Ticknor and Fields, New YorkGoogle Scholar
  174. 174.
    Colombo U, Lanzavecchia G (ed) (2002) La nuova scienza, In: La società dell’informazione, vol 3. Libri Scheiwiller, MilanGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations