Wind Hazard, Vulnerability and Risk

  • Giovanni SolariEmail author
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


With the onset of the twentieth century, mankind grew a renewed awareness about the risks affecting whole areas exposed to wind phenomena of devastating strength, such as tropical cyclones, tornadoes and thunderstorms. This chapter deals with this issue pointing out the trend, which gained ground in this period, aimed at collecting the data concerning the location, recurrence and intensity of wind storms, the relationships between the intensity of calamitous phenomena, the characteristics of structures and of their elements, and the damage they suffered, the consequences of such damage and the strategies to mitigate losses through the attenuation of hazard and vulnerability.


  1. 1.
    Tannehill IR (1938) Hurricanes: their nature and history; particularly those of the West Indies and the southern coasts of the United States. Princeton University Press, New JerseyGoogle Scholar
  2. 2.
    Anthes RA (1982) Tropical cyclones. Their evolution, structure and effects. American Meteorology Society, Boston, MAGoogle Scholar
  3. 3.
    Simpson RH, Riehl H (1981) The hurricane and its impact. Louisiana State University Press, Baton RougeGoogle Scholar
  4. 4.
    Hebert PJ, Taylor G (1979) Everything you always wanted to know about hurricanes. Weatherwise 32(2):61–67CrossRefGoogle Scholar
  5. 5.
    An International Decade for Natural Hard Reduction (1987) Confronting natural disasters. National Academy Press, Washington, D.C.Google Scholar
  6. 6.
    (1998) World map of natural hazards. Münchener Rück, MunichGoogle Scholar
  7. 7.
    (1999) Topics 2000: natural catastrophes—the current position. Münchener Rück, MunichGoogle Scholar
  8. 8.
    Algue J (1904) The cyclones of the Far East. Philippine Weather Bureau, ManilaGoogle Scholar
  9. 9.
    Bender CB (1882) The design of structures to resist wind-pressure. In: P. I. Civil Eng., vol LXIX, pp 80–119Google Scholar
  10. 10.
    Melaragno MG (1982) Wind in architectural and environmental design. Van Nostrand Reinhold, New YorkGoogle Scholar
  11. 11.
    Whipple ABC (1982) Storm. Time-Life Books, AmsterdamGoogle Scholar
  12. 12.
    Krebs W (1911) The lowest barometric minima at sea level. Mon Weather Rev 39:471CrossRefGoogle Scholar
  13. 13.
    Visher SS (1925) Tropical cyclones of the Pacific. Bulletin 20, Bernice Bishop Musemum, HonoluluGoogle Scholar
  14. 14.
    Schmitt FE (1926, October) The Florida Hurricane and some of its effects. Eng News Rec 97:586Google Scholar
  15. 15.
    Tsuchiya Y, Kawata Y (1988) Historical changes of storm surge disasters in Osaka. In: El-Sabh MI, Murty TS (eds) Natural and man-made hazards. Reidel Publishing, pp 279–303Google Scholar
  16. 16.
    Sugg AL (1968) Beneficial aspects of the tropical cyclone. J Appl Met 7:39–45CrossRefGoogle Scholar
  17. 17.
    Serra S (1971) Hurricanes and tropical storms of the west coast of Mexico. Mon Weather Rev 99:302–308CrossRefGoogle Scholar
  18. 18.
    Lutgens FK, Tarbuck EJ (2001) The atmosphere: an introduction to meteorology. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  19. 19.
    Wegener A (1911) Thermodynamik der atmosphäre. J.A Barth, LeipzigzbMATHGoogle Scholar
  20. 20.
    Bergeron T (1928) Über die dreidimensional verknüpfende Wetteranalysee. Geofys Publ 5:1–111Google Scholar
  21. 21.
    Findeisen W (1938) Kolloid-meteorologische Vorgänge bei Neiderschlags-bildung. Meteor Z 55:121–133Google Scholar
  22. 22.
    Langmuir I (1948) The growth of particles in smokes and clouds and the production of snow from supercooled clouds. Proc Am Philos Soc 92:167–185Google Scholar
  23. 23.
    Schaefer VJ (1946) The production of ice crystals in a cloud or supercooled water droplets. Science 104:457–459CrossRefGoogle Scholar
  24. 24.
    Vonnegut B (1949) Nucleation of supercooled water clouds by silver iodide smokes. Chem Revs 44:177–289CrossRefGoogle Scholar
  25. 25.
    Watson L (1984) Heaven’s breath: a natural history of the wind. Hodder and Stoughton, U.K.Google Scholar
  26. 26.
    Willoughby HE, Jorgensen DP, Black RA, Rosenthal SL (1985) Project STORMFURY: a scientific chronicle 1962–1983. Bull Am Meteorol Soc 66:505–514CrossRefGoogle Scholar
  27. 27.
    Sheets RC (1980) Some aspects of tropical cyclone modification. Aust Meteorol Mag 27:259–280Google Scholar
  28. 28.
    Snow JT (1984) Early tornado photographs. Am Meteorol Soc 65:360–364CrossRefGoogle Scholar
  29. 29.
    Finley JP (1882) Character of six hundred tornadoes. Prof. Papers of the Signa1 Service, No. VII, Washington Office of the Chief Signal OfficerGoogle Scholar
  30. 30.
    Hazen HA (1890) Tornadoes. A prize essay. Am Meteorol I 7, 205–229Google Scholar
  31. 31.
    Hazen HA (1890) The tornado. N.D.C, Hodges, New YorkCrossRefGoogle Scholar
  32. 32.
    Seelye CJ (1945) Tornadoes in New Zealand. New Zealand J Sci Tech 27:166–174Google Scholar
  33. 33.
    Fujita TT (1971) Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago, ILGoogle Scholar
  34. 34.
    Fujita TT (1973) Tornadoes around the world. Weatherwise, April, 56–62, 78–83Google Scholar
  35. 35.
    Harkness OS (1894, October) The tornado at Litt1e Rock, Arkansas, October 2, 1894. Mon Weather Rev 413–414Google Scholar
  36. 36.
    Frankenfield HC (1896) The tornado of May 27, at St. Louis, Missouri. Mon Weather Rev 24(3):77–81CrossRefGoogle Scholar
  37. 37.
    Baier J (1897) Wind pressure in the St. Louis Tornado. Trans Am Soc Civ Eng, XXXVII, pp 221–286Google Scholar
  38. 38.
    Outram TS (1904) Storm of August 20, 1904, Minnesota. Mon Weather Rev 32(8):365–366CrossRefGoogle Scholar
  39. 39.
    Cressman GP (1969) Killer storms. Bull Am Meteorol Soc 50:850–855CrossRefGoogle Scholar
  40. 40.
    Wegener A (1917) Wind-und Wassenhosen in Europa. Vieweg & Sohn, BraunschweigGoogle Scholar
  41. 41.
    Peterson RE (1992) Biography. Johannes Letzmann: a pioneer in the study of tornadoes. Weather Forecast 7:166–184CrossRefGoogle Scholar
  42. 42.
    Letzmann JP (1923) Das Bewegungsfeld im Fuss einer fortschreitenden Wind- oder Wasserhose. Acta Comm Univ Dorpat, AIII, pp 1–136Google Scholar
  43. 43.
    Letzmann JP (1925) Fortschreitende Luftwirbel. Meteorol Z 42:41–52Google Scholar
  44. 44.
    Letzmann JP (1931) Anwendbarkeit der Fronten-Merkmale. Das Wetter 48:275–279Google Scholar
  45. 45.
    Letzmann JP (1931) Zwei Trombenbildungen in stargbewegter Luft. Ann Hydro Maritim Meteor 54:46–53Google Scholar
  46. 46.
    Letzmann JP (1927) Experimentale Untersuchungen an Wasserwirbeln. Gerl Beitr Geophys 17:40–85Google Scholar
  47. 47.
    Letzmann JP (1931) Experimentelle Untersuchungen an Luftwirbeln. Gerl Beitr Geophys 33:130–172Google Scholar
  48. 48.
    Letzmann JP (1933) Einige Ergebnisse experimentellen Wirbelforschungen. Meteorol Z 50:462–466Google Scholar
  49. 49.
    Letzmann J, Koschmieder H (1937) Richtlinien zur Erforschung von Tromben, Tornados, Wasserhosen und Kleintromben. Int Meteor Organiz Klimat Komm 38:91–110Google Scholar
  50. 50.
    Peterson RE (1992) Letzmann’s and Koschmieder’s “Guidelines for research on funnels, tornadoes, waterspouts and whirlwinds”. Bull Am Meteorol Soc 73:597–611CrossRefGoogle Scholar
  51. 51.
    Galway JG (1992) Early severe thunderstorm forecasting and research by the United States Weather Bureau. Weather Forecast 7:564–587CrossRefGoogle Scholar
  52. 52.
    Corfidi SF (1999) The birth and early years of the storm prediction centre. Weather Forecast. 14:507–525CrossRefGoogle Scholar
  53. 53.
    Lloyd JR (1942) The development and trajectories of tornadoes. Mon Weather Rev 70:65–75CrossRefGoogle Scholar
  54. 54.
    Showalter AK, Fulks JR (1943) Preliminary report on tornadoes. U.S. Weather Bureau, Washington, D.CGoogle Scholar
  55. 55.
    Fawbush EJ, Miller RC, Starrett LG (1951) An empirical method of forecasting tornado development. Bull Am Meteorol Soc 32:1–9CrossRefGoogle Scholar
  56. 56.
    Fawbush EJ, Miller RC (1952) A mean sounding representative of the tornadic air mass environment. Bull Am Meteorol Soc 33:303–307CrossRefGoogle Scholar
  57. 57.
    Fawbush EJ, Miller RC (1954) The types of air masses in which North American tornadoes form. Bull Am Meteorol Soc 35:154–165CrossRefGoogle Scholar
  58. 58.
    Flora SD (1953) Tornadoes of the United States. University of Oklahoma Press, NormanGoogle Scholar
  59. 59.
    Tepper M (1950) On the origin of tornadoes. Bull Am Meteorol Soc 31:311–314CrossRefGoogle Scholar
  60. 60.
    Tepper M (1950) A proposed mechanism of squall lines: the pressure jump line. J Meteorol 7:21–29CrossRefGoogle Scholar
  61. 61.
    Kessler E (1970) Tornadoes. Bull Am Meteorol Soc 51:926–936CrossRefGoogle Scholar
  62. 62.
    Pagon WW (1934, December) Aerodynamics and the civil engineer—IV. Wind-tunnel studies reveal pressure distribution on buildings. Eng News Rec 814–819Google Scholar
  63. 63.
    Fleming R (1930) Wind stresses in buildings. John Wiley, New YorkGoogle Scholar
  64. 64.
    Van Tassel EL (1955) The North Platte Valley tornado outbreak of June 27, 1955. Mon Weather Rev 83:255–264CrossRefGoogle Scholar
  65. 65.
    Hoecker WH (1960) Wind speed and air flow patterns in the Dallas Tornado of April 2, 1957. Mon Weather Rev 88:167–180CrossRefGoogle Scholar
  66. 66.
    Smith RL, Holmes DW (1961) Use of Doppler radar in meteorological observations. Mon Weather Rev 89:1–7CrossRefGoogle Scholar
  67. 67.
    Rogers RR (1990) The early years of Doppler radar in meteorology. In: Atlas D (ed) Radar in meteorology. American Meteorological Society, pp 122–129Google Scholar
  68. 68.
    Brown RA, Lewis JM (2005) Path to NEXRAD: Doppler radar development at the National severe storms laboratory. Bull Am Meteorol Soc 86:1459–1470CrossRefGoogle Scholar
  69. 69.
    Fujita TT (1955) Results of detailed synoptic studies of squall lines. Tellus 7:405–436CrossRefGoogle Scholar
  70. 70.
    Fujita TT, Newstein H, Tepper M (1956) Mesoanalysis: an important scale in the analysis of weather data. USWB Research Paper 39, Washington, D.C.Google Scholar
  71. 71.
    Fujita TT (1963) Analytical mesometeorology: a review. Severe Local Storms Meteor. Monogr 27, Am Meteorol Soc, pp 77–125Google Scholar
  72. 72.
    Fujita TT (1960) A detailed analysis of the Fargo tornadoes of June 20, 1957. USWB Research Paper 42, Washington, D.C.Google Scholar
  73. 73.
    Teesdale LV (1928) Tornado-resistant construction and building possible by venting. Madison Forest Products Laboratory Branch, WisconsinGoogle Scholar
  74. 74.
    Battan LJ (1961) The nature of violent storms. Doubleday, New YorkGoogle Scholar
  75. 75.
    Reynolds GW (1958) Venting and other building practices as practical means of reducing damage from tornado low pressures. Bull Am Meteorol Soc 39:14–20CrossRefGoogle Scholar
  76. 76.
    Wood RA (1985) A dangerous family: the thunderstorm and its offspring. Weatherwise 38:131–151Google Scholar
  77. 77.
    White GF, Haas JE (1975) Assessment of research on natural hazards. The MIT Press, Cambridge, MAGoogle Scholar
  78. 78.
    Simpson CC (1925) Thunderstorms and aviation. J R Aeronaut Soc 29:24–46Google Scholar
  79. 79.
    Fujita TT (1981) Tornadoes and downbursts in the context of generalized planetary scales. J Atmos Sci 38:1511–1534CrossRefGoogle Scholar
  80. 80.
    Koschmieder H (1955) Ergebnisse der deutchen böenmessungen 1939/41. Friedrich Vieweg, BraunschweigGoogle Scholar
  81. 81.
    Fujiwara S (1943) Report of thunderstorm observation project. Japan Meteor, Agency, TokyoGoogle Scholar
  82. 82.
    Byers HR, Braharn RR (1949) The thunderstorm. U.S. Department of Commerce, Weather Bureau, Washington, D.C.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations