Nonmelanoma Skin Cancer and Cutaneous Melanoma in the Pediatric Population

  • Alpin D. Malkan
  • Petros Konofaos
  • Robert D. Wallace
  • John A. SandovalEmail author


Melanoma and nonmelanoma skin cancer in children and adolescents are extremely rare, and the literature guiding the international pediatric medical community remains limited. The oncologic treatment of pediatric skin cancer continues to be extrapolated from the adult literature. A combination of biologic materials and advanced cosmetic reconstructive techniques continues to evolve in an attempt to achieve satisfactory oncologic outcomes while avoiding potentially disfiguring and catastrophic results. The purpose of this chapter is to comprehensively review the most prevalent cutaneous cancers affecting this pediatric population including melanoma, spitzoid melanoma, and squamous and basal cell carcinomas, in addition to the fundamental principles, techniques, and functional outcomes regarding cosmetic reconstruction surgery.


Pediatric Melanoma Spitzoid Basal cell Squamous cell Lymph node Ultraviolet Radiation Reactive oxygen species 


  1. 1.
    Balk SJ. Council on Environmental Health; Section on Dermatology. Ultraviolet radiation: a hazard to children and adolescents. Pediatrics. 2011;127(3):e791–817.PubMedCrossRefGoogle Scholar
  2. 2.
    Senerchia AA, Ribeiro KB, Rodriguez-Galindo C. Trends in incidence of primary cutaneous malignancies in children, adolescents, and young adults: a population-based study. Pediatr Blood Cancer. 2014;61(2):211–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Jung GW, Weinstock MA. Clinicopathological comparisons of index and second primary melanomas in paediatric and adult populations. Br J Dermatol. 2012;167(4):882–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Maguire-Eisen M. Skin cancer: a growing health problem for children. Semin Oncol Nurs. 2013;29(3):206–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Wong JR, Harris JK, Rodriguez-Galindo C, et al. Incidence of childhood and adolescent melanoma in the United States: 1973–2009. Pediatrics. 2013;131(5):846–54.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Baade PD, Youlden DR, Valery PC, et al. Trends in incidence of childhood cancer in Australia, 1983–2006. Br J Cancer. 2010;102(3):620–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Magnanti BL, Dorak MT, Parker L, et al. Sex-specific incidence and temporal trends in solid tumours in young people from Northern England, 1968–2005. BMC Cancer. 2008;8:89.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    de Vries E, Steliarova-Foucher E, Spatz A. Skin cancer incidence and survival in European children and adolescents (1978–1997). Report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42(13):2170–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrari A, Bisogno G, Cecchetto G, et al. Cutaneous melanoma in children and adolescents: the Italian rare tumors in pediatric age project experience. J Pediatr. 2014;164(2):376–382.e1-2.PubMedCrossRefGoogle Scholar
  10. 10.
    Handfield-Jones SE, Smith NP. Malignant melanoma in childhood. Br J Dermatol. 1996;134(4):607–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Hamm H, Höger PH. Skin tumors in childhood. Dtsch Arztebl Int. 2011;108(20):347–53.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Children’s Oncology Group (COG). Melanoma. Available at: Accessed 30 May 2014
  13. 13.
    Strouse JJ, Fears TR, Tucker MA, et al. Pediatric melanoma: risk factor and survival analysis of the surveillance, epidemiology and end results database. J Clin Oncol. 2005;23(21):4735–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Austin MT, Xing Y, Hayes-Jordan AA, et al. Melanoma incidence rises for children and adolescents: an epidemiologic review of pediatric melanoma in the United States. J Pediatr Surg. 2013;48(11):2207–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Hawryluk EB, Liang MG. Pediatric melanoma, moles, and sun safety. Pediatr Clin North Am. 2014;61(2):279–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Bleyer A, Budd T, Montello M. Adolescents and young adults with cancer: the scope of the problem and criticality of clinical trials. Cancer. 2006;107(7 Suppl):1645–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Reed D, Kudchadkar R, Zager JS, et al. Controversies in the evaluation and management of atypical melanocytic proliferations in children, adolescents, and young adults. J Natl Compr Canc Netw. 2013;11(6):679–86.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chao MM, Schwartz JL, Wechsler DS, et al. High-risk surgically resected pediatric melanoma and adjuvant interferon therapy. Pediatr Blood Cancer. 2005;44(5):441–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Moscarella E, Zalaudek I, Cerroni L, et al. Excised melanocytic lesions in children and adolescents: a 10-year survey. Br J Dermatol. 2012;167(2):368–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Ceballos PI, Ruiz-Maldonado R, Mihm MC Jr. Melanoma in children. N Engl J Med. 1995;332(10):656–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Mones JM, Ackerman AB. Melanomas in prepubescent children: review comprehensively, critique historically, criteria diagnostically, and course biologically. Am J Dermatopathol. 2003;25(3):223–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Downard CD, Rapkin LB, Gow KW. Melanoma in children and adolescents. Surg Oncol. 2007;16(3):215–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Mills O, Messina JL. Pediatric melanoma: a review. Cancer Control. 2009;16(3):225–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Pappo AS. Melanoma in children and adolescents. Eur J Cancer. 2003;39(18):2651–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Neier M, Pappo A, Navid F. Management of melanomas in children and young adults. J Pediatr Hematol Oncol. 2012;34(Suppl 2):S51–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Braam KI, Overbeek A, Kaspers GJ. Malignant melanoma as second malignant neoplasm in long-term childhood cancer survivors: a systematic review. Pediatr Blood Cancer. 2012;58(5):665–74.PubMedCrossRefGoogle Scholar
  27. 27.
    National Cancer Institute at the National Institutes of Health. Melanoma (PDQ®). Available at: Accessed 30 May 2014
  28. 28.
    Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol. 2004;195(3):298–308.PubMedCrossRefGoogle Scholar
  29. 29.
    Godar DE, Urbach F, Gasparro FP. UV doses of young adults. Photochem Photobiol. 2003;77(4):453–7.PubMedCrossRefGoogle Scholar
  30. 30.
    D’Orazio J, Jarrett S, Amaro-Ortiz A. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Geller AC, Colditz G, Oliveria S. Use of sunscreen, sunburning rates, and tanning bed use among more than 10 000 US children and adolescents. Pediatrics. 2002;109(6):1009–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Lazovich D, Vogel RI, Berwick M. Indoor tanning and risk of melanoma: a case-control study in a highly exposed population. Cancer Epidemiol Biomarkers Prev. 2010;19(6):1557–68.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Meyskens FL Jr, Farmer P, Fruehauf JP. Redox regulation in human melanocytes and melanoma. Pigment Cell Res. 2001;14(3):148–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Corona R, Mele A, Amini M. Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions. J Clin Oncol. 1996;14(4):1218–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16(5):523–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Uribe P, Wistuba II, Solar A. Comparative analysis of loss of heterozygosity and microsatellite instability in adult and pediatric melanoma. Am J Dermatopathol. 2005;27(4):279–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin. 1985;35(3):130–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Cordoro KM, Gupta D, Frieden IJ. Pediatric melanoma: results of a large cohort study and proposal for modified ABCD detection criteria for children. J Am Acad Dermatol. 2013;68(6):913–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Slade AD, Austin MT. Childhood melanoma: an increasingly important health problem in the USA. Curr Opin Pediatr. 2014;26(3):356–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Balch CM, Gershenwald JE, Soong SJ. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pollock PM, Meltzer PS. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell. 2002;2(1):5–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172(5):902–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Livestro DP, Kaine EM, Michaelson JS. Melanoma in the young: differences and similarities with adult melanoma: a case-matched controlled analysis. Cancer. 2007;110(3):614–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Lewis KG. Trends in pediatric melanoma mortality in the United States, 1968 through 2004. Dermatol Surg. 2008;34(2):152–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferrari A, Bono A, Baldi M, et al. Does melanoma behave differently in younger children than in adults? A retrospective study of 33 cases of childhood melanoma from a single institution. Pediatrics. 2005;115(3):649–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Lange JR, Balch CM. Melanoma in children: heightened awareness of an uncommon but often curable malignancy. Pediatrics. 2005;115(3):802–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Moore-Olufemi S, Herzog C, Warneke C, et al. Outcomes in pediatric melanoma: comparing prepubertal to adolescent pediatric patients. Ann Surg. 2011;253(6):1211–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Mu E, Lange JR, Strouse JJ. Comparison of the use and results of sentinel lymph node biopsy in children and young adults with melanoma. Cancer. 2012;118(10):2700–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Navid F, Furman WL, Fleming M, et al. The feasibility of adjuvant interferon alpha-2b in children with high-risk melanoma. Cancer. 2005;103(4):780–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Spitz S. Melanomas of childhood. Am J Pathol. 1948;24(3):591–609.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Casso EM, Grin-Jorgensen CM, Grant-Kels JM. Spitz nevi. J Am Acad Dermatol. 1992;27:901–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Tom WL, Hsu JW, Eichenfield LF, et al. Pediatric “STUMP” lesions: evaluation and management of difficult atypical Spitzoid lesions in children. J Am Acad Dermatol. 2011;64(3):559–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Miteva M, Lazova R. Spitz nevus and atypical spitzoid neoplasm. Semin Cutan Med Surg. 2010;29(3):165–73.PubMedCrossRefGoogle Scholar
  54. 54.
    Wititsuwannakul J, Mason AR, Klump VR, et al. Neuropilin-2 as a useful marker in the differentiation between Spitzoid malignant melanoma and Spitz nevus. J Am Acad Dermatol. 2013;68(1):129–37.PubMedCrossRefGoogle Scholar
  55. 55.
    Kirkwood JM, Jukic DM, Averbook BJ, et al. Melanoma in pediatric, adolescent, and young adult patients. Semin Oncol. 2009;36(5):419–31.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Schmoeckel C, Wildi G, Schäfer T. Spitz nevus versus malignant melanoma: spitz nevi predominate on the thighs in patients younger than 40 years of age, melanomas on the trunk in patients 40 years of age or older. J Am Acad Dermatol. 2007;56(5):753–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Pratt CB, Palmer MK, Thatcher N, et al. Malignant melanoma in children and adolescents. Cancer. 1981;47(2):392–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Ferrara G, Argenziano G, Soyer HP, et al. The spectrum of Spitz nevi: a clinicopathologic study of 83 cases. Arch Dermatol. 2005;141(11):1381–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Marghoob AA. Practice gaps. Underuse of dermoscopy in assessing Spitz nevi in children: comment on “Spitz nevi: beliefs, behaviors, and experiences of pediatric dermatologists”. JAMA Dermatol. 2013;149(3):291–2.PubMedCrossRefGoogle Scholar
  60. 60.
    Barnhill RL. The Spitzoid lesion: rethinking Spitz tumors, atypical variants, ‘Spitzoid melanoma’ and risk assessment. Mod Pathol. 2006;19(Suppl 2):S21–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Massi G. Melanocytic nevi simulant of melanoma with medicolegal relevance. Virchows Arch. 2007;451(3):623–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Elder DE, Murphy GF. Spindle and epithelioid cell melanocytic tumors/nevi in melanocytic tumors of the skin. In: AFIP atlas of tumor pathology, 4th series, fascicle 12. Washington, DC: American Registry of Pathology; 2010. p. 83–114.Google Scholar
  63. 63.
    Crotty KA, Scolyer RA, Li L, et al. Spitz naevus versus Spitzoid melanoma: when and how can they be distinguished? Pathology. 2002;34(1):6–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Barnhill RL, Argenyi ZB, From L, et al. Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol. 1999;30(5):513–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Barnhill RL. The spitzoid lesion: the importance of atypical variants and risk assessment. Am J Dermatopathol. 2006;28(1):75–83.PubMedCrossRefGoogle Scholar
  66. 66.
    McNutt NS, Urmacher C, Hakimian J, et al. Nevoid malignant melanoma: morphologic patterns and immunohistochemical reactivity. J Cutan Pathol. 1995;22(6):502–17.PubMedCrossRefGoogle Scholar
  67. 67.
    Smith KJ, Barrett TL, Skelton HG 3rd, et al. Spindle cell and epithelioid cell nevi with atypia and metastasis (malignant Spitz nevus). Am J Surg Pathol. 1989;13(11):931–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Palazzo J, Duray PH. Typical, dysplastic, congenital, and Spitz nevi: a comparative immunohistochemical study. Hum Pathol. 1989;20(4):341–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Bergman R, Shemer A, Levy R, et al. Immunohistochemical study of p53 protein expression in Spitz nevus as compared with other melanocytic lesions. Am J Dermatopathol. 1995;17(6):547–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Bergman R, Dromi R, Trau H, et al. The pattern of HMB-45 antibody staining in compound Spitz nevi. Am J Dermatopathol. 1995;17(6):542–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Ribé A, McNutt NS. S100A6 protein expression is different in Spitz nevi and melanomas. Mod Pathol. 2003;16(5):505–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Kanter-Lewensohn L, Hedblad MA, Wejde J, et al. Immunohistochemical markers for distinguishing Spitz nevi from malignant melanomas. Mod Pathol. 1997;10(9):917–20.PubMedGoogle Scholar
  73. 73.
    Li LX, Crotty KA, McCarthy SW, et al. A zonal comparison of MIB1-Ki67 immunoreactivity in benign and malignant melanocytic lesions. Am J Dermatopathol. 2000;22(6):489–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Bergman R, Malkin L, Sabo E, et al. MIB-1 monoclonal antibody to determine proliferative activity of Ki-67 antigen as an adjunct to the histopathologic differential diagnosis of Spitz nevi. J Am Acad Dermatol. 2001;44(3):500–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Niemann TH, Argenyi ZB. Immunohistochemical study of Spitz nevi and malignant melanoma with use of antibody to proliferating cell nuclear antigen. Am J Dermatopathol. 1993;15(5):441–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Tu P, Miyauchi S, Miki Y. Proliferative activities in Spitz nevus compared with melanocytic nevus and malignant melanoma using expression of PCNA/cyclin and mitotic rate. Am J Dermatopathol. 1993;15(4):311–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Kapur P, Selim MA, Roy LC, et al. Spitz nevi and atypical Spitz nevi/tumors: a histologic and immunohistochemical analysis. Mod Pathol. 2005;18(2):197–204.PubMedCrossRefGoogle Scholar
  78. 78.
    Nagasaka T, Lai R, Medeiros LJ, et al. Cyclin D1 overexpression in Spitz nevi: an immunohistochemical study. Am J Dermatopathol. 1999;21(2):115–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Innocenzi D, Alò PL, Balzani A, et al. Fatty acid synthase expression in melanoma. J Cutan Pathol. 2003;30(1):23–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Kaleem Z, Lind AC, Humphrey PA, et al. Concurrent Ki-67 and p53 immunolabeling in cutaneous melanocytic neoplasms: an adjunct for recognition of the vertical growth phase in malignant melanomas? Mod Pathol. 2000;13(3):217–22.PubMedCrossRefGoogle Scholar
  81. 81.
    Sparrow LE, Eldon MJ, English DR, et al. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol. 1998;20:255–61.PubMedCrossRefGoogle Scholar
  82. 82.
    George E, Polissar NL, Wick M. Immunohistochemical evaluation of p16INK4A, E-cadherin, and cyclin D1 expression in melanoma and Spitz tumors. Am J Clin Pathol. 2010;133:370–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Al Dhaybi R, Agoumi M, Gagne I, et al. p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. J Am Acad Dermatol. 2011;65:357–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Rappa G, Fodstad O, Lorico A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells. 2008;26(12):3008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Al Dhaybi R, Sartelet H, Powell J, et al. Expression of CD133+ cancer stem cells in childhood malignant melanoma and its correlation with metastasis. Mod Pathol. 2010;23(3):376–80.PubMedCrossRefGoogle Scholar
  86. 86.
    King MS, Porchia SJ, Hiatt KM. Differentiating Spitzoid melanomas from Spitz nevi through CD99 expression. J Cutan Pathol. 2007;34:576–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Wilkerson AE, Glasgow MA, Hiatt KM. Immunoreactivity of CD99 in invasive malignant melanoma. J Cutan Pathol. 2006;33(10):663–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Ingves C, Jemec GB. Combined imiquimod and acitretin for non-surgical treatment of basal cell carcinoma. Scand J Plast Reconstr Surg Hand Surg. 2003;37(5):293–5.PubMedCrossRefGoogle Scholar
  89. 89.
    National Cancer Institute at the National Institutes of Health. Nonmelanoma skin cancer (PDQ®). Available at: Accessed 30 May 2014
  90. 90.
    de la Luz Orozco-Covarrubias M, Tamayo-Sanchez L, Duran-McKinster C, et al. Malignant cutaneous tumors in children. Twenty years of experience at a large pediatric hospital. J Am Acad Dermatol. 1994;30(2 Pt 1):243–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Kuvat SV, Gücin Z, Keklik B, et al. Basal cell carcinoma in a child. J Skin Cancer. 2011:752901.Google Scholar
  92. 92.
    Sasson M, Mallory SB. Malignant primary skin tumors in children. Curr Opin Pediatr. 1996;8(4):372–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Efron PA, Chen MK, Glavin FL, et al. Pediatric basal cell carcinoma: case reports and literature review. J Pediatr Surg. 2008;43(12):2277–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Awan BA, Alzanbagi H, Samargandi OA, et al. Scalp squamous cell carcinoma in xeroderma pigmentosum. N Am J Med Sci. 2014;6(2):105–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bradford PT, Goldstein AM, Tamura D, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet. 2011;48(3):168–76.PubMedCrossRefGoogle Scholar
  96. 96.
    Roozeboom MH, Lohman BG, Westers-Attema A, et al. Clinical and histological prognostic factors for local recurrence and metastasis of cutaneous squamous cell carcinoma: analysis of a defined population. Acta Derm Venereol. 2013;93(4):417–21.PubMedCrossRefGoogle Scholar
  97. 97.
    Veness MJ, Palme CE, Morgan GJ. High-risk cutaneous squamous cell carcinoma of the head and neck: results from 266 treated patients with metastatic lymph node disease. Cancer. 2006;106(11):2389–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Ramirez CC, Federman DG, Kirsner RS. Skin cancer as an occupational disease: the effect of ultraviolet and other forms of radiation. Int J Dermatol. 2005;44(2):95–100.PubMedCrossRefGoogle Scholar
  99. 99.
    Reszko A, Aasi SZ, Wilson LD, et al. Cancer of the skin. In: De Vita Jr VT, Lawrence TS, Rosenberg SA, editors. Cancer: principles and practice of oncology. 9th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. p. 1610–33.Google Scholar
  100. 100.
    Ping XL, Ratner D, Zhang H, et al. PTCH mutations in squamous cell carcinoma of the skin. J Invest Dermatol. 2001;116(4):614–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Byrd DR, Compton CC, et al. Cutaneous squamous cell carcinoma and other cutaneous carcinomas. In: Edge SB, editor. AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer; 2010. p. 301–14.Google Scholar
  102. 102.
    Posso-De Los Rios CJ, Lara-Corrales I, Ho N. Dermatofibrosarcoma protuberans in pediatric patients: a report of 17 cases. J Cutan Med Surg. 2014;18(3):180–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Jafarian F, McCuaig C, Kokta V, et al. Dermatofibrosarcoma protuberans in childhood and adolescence: report of eight patients. Pediatr Dermatol. 2008;25(3):317–25.PubMedCrossRefGoogle Scholar
  104. 104.
    Cottel WI, Proper S. Mohs’ surgery, fresh-tissue technique. Our technique with a review. J Dermatol Surg Oncol. 1982;8(7):576–87.PubMedCrossRefGoogle Scholar
  105. 105.
    Brodland DG, Zitelli JA. Surgical margins for excision of primary cutaneous squamous cell carcinoma. J Am Acad Dermatol. 1992;27(2. Pt 1):241–8.CrossRefPubMedGoogle Scholar
  106. 106.
    Ratner D. Skin grafting. From here to there. Dermatol Clin. 1998;16(1):75–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Earle SA, Marshall DM. Management of giant congenital nevi with artificial skin substitutes in children. J Craniofac Surg. 2005;16(5):904–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Burke JF, Yannas IV, Quinby WC. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194:413–28.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Moiemen NS, Staiano JJ, Ojeh NO, et al. Reconstructive surgery with a dermal regeneration template: clinical and histologic study. Plast Reconstr Surg. 2001;108(1):93–103.PubMedCrossRefGoogle Scholar
  110. 110.
    Abai B, Thayer D, Glat PM. The use of a dermal regeneration template (Integra) for acute resurfacing and reconstruction of defects created by excision of giant hairy nevi. Plast Reconstr Surg. 2004;114:162–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Fang P, Engrav LH, Gibran NS, et al. Dermatome setting for autografts to cover Integra. J Burn Care Rehabil. 2002;23:327–32.PubMedCrossRefGoogle Scholar
  112. 112.
    Chou TD, Chen SL, Lee TW, et al. Reconstruction of burn scar of the upper extremities with artificial skin. Plast Reconstr Surg. 2001;108:378–84.PubMedCrossRefGoogle Scholar
  113. 113.
    Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54:659–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Stiefel D, Schiestl CM, Meuli M. The positive effect of negative pressure: vacuum-assisted fixation of Integra artificial skin for reconstructive surgery. J Pediatr Surg. 2009;44(3):575–80.PubMedCrossRefGoogle Scholar
  115. 115.
    Kayser M. Surgical flaps. SRPS. 1999;9(2):1–63.Google Scholar
  116. 116.
    Carriquiry C, Costa MA, Vasconez LO. An anatomic study of the septocutaneous vessels of the leg. Plast Reconstr Surg. 1985;76:354–63.PubMedCrossRefGoogle Scholar
  117. 117.
    Lin CH, Mardini S, Wei FC, et al. Free flap reconstruction of foot and ankle defects in pediatric patients: long-term outcome in 91 cases. Plast Reconstr Surg. 2006;117(7):2478–87.PubMedCrossRefGoogle Scholar
  118. 118.
    Upton J, Guo L, Labow BI. Pediatric free-tissue transfer. Plast Reconstr Surg. 2009;124(6 Suppl):e313–26.PubMedCrossRefGoogle Scholar
  119. 119.
    Van Landuyt K, Hamdi M, Blondeel P, et al. Free perforator flaps in children. Plast Reconstr Surg. 2005;116:159–69.PubMedCrossRefGoogle Scholar
  120. 120.
    Hurvitz KA, Rosen H, Meara JG. Pediatric cervicofacial tissue expansion. Int J Pediatr Otorhinolaryngol. 2005;69(11):1509–13.PubMedCrossRefGoogle Scholar
  121. 121.
    Radovan C. Tissue expansion in soft-tissue reconstruction. Plast Reconstr Surg. 1984;74:482–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Vergnes P, Taieb A, Maleville J, et al. Repeated skin expansion for excision of congenital giant nevi in infancy and childhood. Plast Reconstr Surg. 1993;91:450–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Bauer BS, Vicari FA, Richard ME. The role of tissue expansion in pediatric plastic surgery. Clin Plast Surg. 1990;17:101–12.PubMedGoogle Scholar
  124. 124.
    Adler N, Dorafshar AH, Bauer BS, et al. Tissue expander infections in pediatric patients: management and outcomes. Plast Reconstr Surg. 2009;124(2):484–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Han D, Zager JS, Han G, et al. The unique clinical characteristics of melanoma diagnosed in children. Ann Surg Oncol. 2012;19(12):3888–95.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    National Cancer Institute at the National Institutes of Health. Skin Cancer Treatment (PDQ®). Available at: Accessed May 30, 2014.
  127. 127.
    Rowe DE, Carroll RJ, Day CL Jr. Long-term recurrence rates in previously untreated (primary) basal cell carcinoma: implications for patient follow-up. J Dermatol Surg Oncol. 1989;15(3):315–28. ReviewPubMedCrossRefGoogle Scholar
  128. 128.
    LeSueur BW, Silvis NG, Hansen RC. Basal cell carcinoma in children: report of 3 cases. Arch Dermatol. 2000;136(3):370–2. ReviewPubMedCrossRefGoogle Scholar
  129. 129.
    Turner CD, Shea CR, Rosoff PM. Basal cell carcinoma originating from a nevus sebaceus on the scalp of a 7-year-old boy. J Pediatr Hematol Oncol. 2001;23(4):247–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Motley R, Kersey P, Lawrence C. British Association of Dermatologists; British Association of Plastic Surgeons; Royal College of Radiologists, Faculty of Clinical Oncology. Multiprofessional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. Br J Dermatol. 2002;146(1):18–25.PubMedCrossRefGoogle Scholar
  131. 131.
    Varan A, Gököz A, Akyüz C, et al. Primary malignant skin tumors in children: etiology, treatment and prognosis. Pediatr Int. 2005;47(6):653–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Terzis JK, Konofaos P. Experience with 60 adult patients with facial paralysis secondary to tumor extirpation. Plast Reconstr Surg. 2012;130(1):51e–66e.PubMedCrossRefGoogle Scholar
  133. 133.
    Terzis JK, Konofaos P. Reanimation of facial palsy following tumor extirpation in pediatric patients: our experience with 16 patients. J Plast Reconstr Aesthet Surg. 2013;66(9):1219–29.PubMedCrossRefGoogle Scholar
  134. 134.
    Pajulo OT, Pulkki KJ, Alanen MS, et al. Duration of surgery and patient age affect wound healing in children. Wound Repair Regen. 2000;8:174–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Hogg NJ. Primary and secondary management of pediatric soft tissue injuries. Oral Maxillofac Surg Clin North Am. 2012;24(3):365–75.PubMedCrossRefGoogle Scholar
  136. 136.
    Kung TA, Gosain AK. Pediatric facial burns. J Craniofac Surg. 2008;19:951–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Tsao SS, Dover JS, Arndt KA. Scar management: keloid, hypertrophic, atrophic and acne scars. Semin Cutan Med Surg. 2002;21:46–55.PubMedCrossRefGoogle Scholar
  138. 138.
    Arnez ZM, Hanel DP. Free tissue transfer for reconstruction of traumatic limb injuries in children. Microsurgery. 1991;12:207–15.PubMedCrossRefGoogle Scholar
  139. 139.
    Konttila E, Koljonen V, Kauhanen S, et al. Microvascular reconstruction in children-a report of 46 cases. J Trauma. 2010;68(3):548–52.PubMedCrossRefGoogle Scholar
  140. 140.
    Friedman RM, Ingram AE, Rohrich RJ, et al. Risk factors for complications in pediatric tissue expansion. Plast Reconstr Surg. 1996;98:1242–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Pisarski GP, Mertens D, Warden GD, et al. Tissue expander complications in the pediatric burn patient. Plast Reconstr Surg. 1998;102:1008–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alpin D. Malkan
    • 1
  • Petros Konofaos
    • 2
  • Robert D. Wallace
    • 2
  • John A. Sandoval
    • 1
    Email author
  1. 1.Department of SurgerySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Plastic SurgeryUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations