The Diagnosis of Bovine Tuberculosis

  • Nicolaas P. J. Kriek
  • Demelash B. Areda
  • Asseged B. DibabaEmail author


To successfully deal with any specific disease, it is critical to make a correct diagnosis and then to institute the necessary measures to control, and, if possible, to eradicate it. For some diseases this is not a complicated matter, but for Mycobacterium bovis that infects a wide range of mammals, including humans, there is not a single test or procedure by which to reliably confirm the diagnosis in all infected and diseased animals, mostly because of the lack of sensitivity and specificity of all the currently available tests. The various species that can be infected react immunologically different to the infection, respond differently to the various immune-mediated diagnostic tests, show a marked variation in the macro- and microscopical appearance of the lesions caused by the infection and change their appearance as the disease progresses. It is critical to understand that the diagnostic criteria for the different tests in a specific species cannot be used in species in which they have not been validated, and that extrapolation between species cannot be done as the test results cannot then be interpreted correctly. This chapter provides an overview of the currently available diagnostic tests, their deficiencies, and the way in which they can be applied in resource-poor countries to aid efforts to control bovine tuberculosis.


Tuberculosis Bovine tuberculosis Diagnosis Africa Cattle Livestock Wildlife Tuberculin skin test Pathology Serology Molecular diagnostic techniques 


  1. Abdellrazeq GS, Elnaggar MM, Osman HS et al (2014) Prevalence of bovine tuberculosis in Egyptian cattle and the standardization of the interferon-gamma assay as an ancillary test. Transbound Emerg Dis 63(5):497–507PubMedCrossRefGoogle Scholar
  2. Ablordey A, Swings J, Hubans C et al (2005) Multilocus variable-number tandem repeat typing of Mycobacterium ulcerans. J Clin Microbiol 43(4):1546–1551PubMedPubMedCentralCrossRefGoogle Scholar
  3. Addo KK, Owusu-Darko K, Yeboah-Manu D et al (2007) Mycobacterial species causing pulmonary tuberculosis at the Korle Bu Teaching Hospital, Accra, Ghana. Ghana Med J 41(2):52–57PubMedPubMedCentralGoogle Scholar
  4. Adu-Bobi NAK, Mak-Mensah EE, Achel DG (2009) Preliminary investigation of bovine tuberculosis in suspected beef from a metropolitan abattoir in Ghana with Ziehl-Neelsen microscopy. Pak J Biol Sci 12(17):1222–1225PubMedCrossRefGoogle Scholar
  5. Allix-Béguec C, Harmsen D, Weniger T et al (2008) Evaluation and user-strategy of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46(8):2692–2699PubMedPubMedCentralCrossRefGoogle Scholar
  6. Álvarez J, de Juan L, Bezos J et al (2008) Interference of paratuberculosis with the diagnosis of tuberculosis in a goat flock with a natural mixed infection. Vet Microbiol 128:72–80PubMedCrossRefGoogle Scholar
  7. Ameni G, Aseffa A, Engers H (2007) High prevalence and increased severity of pathology of bovine tuberculosis in Holsteins compared to Zebu breeds under field cattle husbandry in central Ethiopia. Clin Vaccine Immunol 14(10):1356–1361PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anon (1994) Livestock disease eradication evaluation of the cooperative state–federal bovine tuberculosis eradication program. Committee on bovine tuberculosis. National Academy Press, WashingtonGoogle Scholar
  9. Anon (2007) Bovine TB: the scientific evidence. Final report of the independent scientific group on cattle TB. Department of Environment, Food and Rural Affairs (DEFRA), LondonGoogle Scholar
  10. Asiak IE, Ohare OB, Emikpe BO et al (2007) The use of ELISA in the detection of bovine tuberculosis in slaughtered trade cattle and sedentary herds in south west Nigeria. J Anim Vet Adv 6(7):883–886Google Scholar
  11. Asseged B, Woldesenbet Z, Yimer E et al (2004) Evaluation of abattoir inspection for the diagnosis of Mycobacterium bovis infection in cattle at Addis Ababa Abattoir. Trop Anim Health Prod 36:537–546PubMedCrossRefGoogle Scholar
  12. Atiadeve SK, Gyamfi OK, Mak-Mensah E et al (2014) Slaughter surveillance for tuberculosis among cattle in three metropolitan abattoirs in Ghana. J Vet Med Anim Health 6(7):198–207CrossRefGoogle Scholar
  13. Awad FI (1962) Studies on type-determination and epidemiology of tuberculosis among cattle in Sudan. Zentralbl Veterinarmed B 9(9):890–898CrossRefGoogle Scholar
  14. Awah-Ndukum J, Kudi AC, Bradley G et al (2010) Prevalence of bovine tuberculosis in abattoirs of the littoral and western highland regions of Cameroon: a cause for public health concern. Vet Med Int. CrossRefGoogle Scholar
  15. Awah-Ndukum J, Kudi AC, Bah GS et al (2012) Bovine tuberculosis in cattle in the highlands of Cameroon: seroprevalence estimates and rates of tuberculin skin test reactors at modified cut-offs. Vet Med Int. CrossRefGoogle Scholar
  16. Aylate A, Shah SN, Aleme H et al (2013) Bovine tuberculosis: prevalence and diagnostic efficacy of routine meat inspection procedure in Woldiya municipality abattoir north Wollo zone, Ethiopia. Trop Anim Health Prod 45(3):855–864PubMedCrossRefGoogle Scholar
  17. Bedard BG, Martin SW, Chinombo D (1993) A prevalence study of bovine tuberculosis and brucellosis in Malawi. Prev Vet Med 16:193–205CrossRefGoogle Scholar
  18. Bekele M, Belay I (2011) Evaluation of routine meat inspection procedure to detect bovine tuberculosis suggestive lesions in Jimma municipal abattoir, south West Ethiopia. Glob Vet 6(2):172–179Google Scholar
  19. Ben Kahla I, Boschiroli ML, Souissi F et al (2011) Isolation and molecular characterisation of M. bovis from raw milk in Tunisia. Afr Health Sci 11(S1):S2–S5PubMedPubMedCentralGoogle Scholar
  20. Berg S, Firdessa R, Habtamu M et al (2009) The burden of mycobacterial disease in Ethiopian cattle: implications for public health. PLoS One 4(4):e5068. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Berrada J (1993) Mycobacterium bovis infection in cattle in Morocco: preparation and evaluation of chemical extracts for use in detection of immune responses. PhD Thesis, Iowa State UniversityGoogle Scholar
  22. Beyi AF, Gezahegne KZ, Mussa A et al (2014) Prevalence of bovine tuberculosis in dromedary camels and awareness of pastoralists about its zoonotic importance in Eastern Ethiopia. J Vet Med Anim Health 6(4):109–115CrossRefGoogle Scholar
  23. Bezos J, Álvarez J, Romero B et al (2012) Tuberculosis in goats: assessment of current in vivo cell-mediated and antibody-based diagnostic assays. Vet J 191:161–165PubMedCrossRefGoogle Scholar
  24. Bezos J, Casal C, Romero B et al (2014) Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res Vet Sci 97:S44–S52PubMedCrossRefGoogle Scholar
  25. Bhembe NL, Jaja IF, Nwodo UU et al (2017) Prevalence of tuberculous lymphadenitis in slaughtered cattle in Eastern Cape, South Africa. Int J Infect Dis 61:27–37PubMedCrossRefGoogle Scholar
  26. Biadglegne F, Tesfaye W, Sack U et al (2013) Tuberculous lymphadenitis in northern Ethiopia: in a public health and microbiological perspectives. PLoS One 8(12):e81918. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Biffa D, Bogale A, Skjerve E (2010) Diagnostic efficiency of abattoir meat inspection service in Ethiopia to detect carcasses infected with Mycobacterium bovis: implications for public health. BMC Public Health 10(1):462PubMedPubMedCentralCrossRefGoogle Scholar
  28. Biffa D, Johansen TB, Godfroid J et al (2014) Multi-locus variable-number tandem repeat analysis (MLVA) reveals heterogeneity of Mycobacterium bovis strains and multiple genotype infections of cattle in Ethiopia. Infect Genet Evol 23:13–19PubMedCrossRefGoogle Scholar
  29. Boer MD, Zanden AV, van Soolingen D (2004) Simultaneous detection and typing of Mycobacterium tuberculosis complex bacteria. Spoligotyping and TB. Isogen Lifesciences, The NetherlandsGoogle Scholar
  30. Bonsu OA, Laing E, Akanmori BD (2000) Prevalence of tuberculosis in cattle in the Dangme-West district of Ghana, public health implications. Acta Tropica 76:9–14PubMedCrossRefGoogle Scholar
  31. Brosch R, Gordon SV, Marmiesse M et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis Complex. Proc Natl Acad Sci USA 99(6):3684–3689PubMedCrossRefGoogle Scholar
  32. Brüns AC, Tanner M, Williams MC et al (2017) Diagnosis and implications of Mycobacterium bovis infection in banded mongooses (Mungos mungo) in the Kruger National Park, South Africa. J Wildl Dis 53(1):19–29PubMedPubMedCentralCrossRefGoogle Scholar
  33. Brush EF (1898) The association of human and bovine tuberculosis. Wynkoop Hallenbeck Crawford Co. Printers, New York, p 140Google Scholar
  34. Buddle BM, Aldwell FE, Pfeffer A et al (1994) Experimental Mycobacterium bovis infection of cattle: effect of dose of M. bovis and pregnancy on immune responses and distribution of lesions. N Z Vet J 42(5):167–172PubMedCrossRefGoogle Scholar
  35. Buddle BM, de Lisle GW, Pfeffer A (1995) Immunological responses and protection against M. bovis in calves vaccinated with a low dose of BCG. Vaccine 13(12):1123–1130PubMedCrossRefPubMedCentralGoogle Scholar
  36. Buddle BM, Livingstone PG, de Lisle GW (2009) Advances in ante-mortem diagnosis of tuberculosis in cattle. N Z Vet J 57(4):173–180PubMedCrossRefGoogle Scholar
  37. Buxton A, Fraser G (1977) Mycobacterium. In: Animal microbiology, vol I. Blackwell, Oxford, pp 229–235Google Scholar
  38. Byrne AW, Graham J, Brown C et al (2018) Modelling the variation in skin-test tuberculin reactions, post-mortem lesion counts and case pathology in tuberculosis-exposed cattle: effects of animal characteristics, histories and co-infection. Transbound Emerg Dis 65(3):844–858PubMedCrossRefGoogle Scholar
  39. Cadmus SIB, Gordon SV, Hewinson RG (2011) Exploring the use of molecular epidemiology to track bovine tuberculosis in Nigeria: an overview from 2002 to 2004. Vet Microbiol 151:133–138PubMedCrossRefGoogle Scholar
  40. Carmichael J (1937) A brief note on tuberculosis in Tropical Africa with special reference to Uganda. J Cardiovasc Pharmacol Ther 50:383–385Google Scholar
  41. Casal C, Díez-Guerrier A, Álvarez J et al (2014) Strategic use of serology for the diagnosis of bovine tuberculosis after intradermal skin testing. Vet Microbiol 170(3–4):342–351PubMedCrossRefGoogle Scholar
  42. Cassidy JP (2008) The pathology of bovine tuberculosis: time for an audit. Vet J 176:263–264PubMedCrossRefGoogle Scholar
  43. Cassidy JP, Bryson DG, Pollock JM et al (1998) Early lesion formation in cattle experimentally infected with M. bovis. J Comp Pathol 119:27–44PubMedCrossRefGoogle Scholar
  44. Collins DM (1999) Molecular epidemiology: Mycobacterium bovis. In: Rutledge C, Dale J (eds) Mycobacteria–molecular biology and virulence. Blackwell, Boston, MA, pp 123–135Google Scholar
  45. Collins DM (2011) Advances in molecular diagnostics for Mycobacterium bovis. Vet Microbiol 151:2–7PubMedCrossRefGoogle Scholar
  46. Collins CH, Grange JM (1983) The bovine tubercle bacillus: a review. J Appl Bacteriol 55:13–29PubMedCrossRefGoogle Scholar
  47. Collins DM, Radford AJ, de Lisle GW et al (1994) Diagnosis and epidemiology of bovine tuberculosis using molecular biological approaches. Vet Microbiol 40:83–94PubMedCrossRefGoogle Scholar
  48. Corner LA (1994) Post mortem diagnosis of Mycobacterium bovis infection in cattle. Vet Microbiol 40(1-2):53–63PubMedCrossRefGoogle Scholar
  49. Corner LA, Melville L, McCubbin K et al (1990) Efficiency of inspection procedures for the detection of tuberculous lesions in cattle. Aust Vet J 67:389–392PubMedCrossRefGoogle Scholar
  50. Corner LAL, Gormley E, Pfeiffer DU (2012) Primary isolation of Mycobacterium bovis from bovine tissues: conditions for maximizing the number of positive cultures. Vet Microbiol 156:162–171PubMedCrossRefGoogle Scholar
  51. Courcoul A, Moyen JL, Brugere L et al (2014) Estimation of sensitivity and specificity of bacteriology, histopathology and PCR for the confirmatory diagnosis of bovine tuberculosis using latent class analysis. PLoS One 9(3):e90334PubMedPubMedCentralCrossRefGoogle Scholar
  52. Cousins DV, Florisson N (2005) A review of tests available for use in the diagnosis of tuberculosis in non-bovine species. Rev Sci Tech Off Int Epiz 24(3):1039CrossRefGoogle Scholar
  53. Crawshaw TR, Griffiths IB, Clifton-Hadley RS (2008) Comparison of a standard and a detailed postmortem protocol for detecting Mycobacterium bovis in badgers. Vet Rec 163(16):473–477PubMedCrossRefGoogle Scholar
  54. DAFF (2016) Bovine tuberculosis scheme manual (interim). Department of Agriculture, Forestry and Fisheries, Republic of South Africa, pp 80Google Scholar
  55. Damina MS, Owoludun OA, Chukwukere S et al (2011) The use of deletion analysis in the detection of M. bovis, M. tuberculosis and M. africanum among slaughtered cattle in Plateau State, north central Nigeria. Nig Vet J 32(1):9–15CrossRefGoogle Scholar
  56. Davidson RM, Alley MR, Beatson NS (1981) Tuberculosis in a flock of sheep. N Z Vet J 29(1–2):1–2PubMedCrossRefGoogle Scholar
  57. Deriemer K, Daley CL (2004) The molecular epidemiology of tuberculosis. In: Madkour MM (ed) Tuberculosis. Springer, Berlin, pp 57–74CrossRefGoogle Scholar
  58. de Vos V, Bengis RG, Kriek NPJ et al (2001) The epidemiology of tuberculosis in free-ranging African buffalo (Syncerus caffer) in the Kruger National Park, South Africa. Onderstepoort J Vet Res 68:119–130PubMedGoogle Scholar
  59. Diguimbaye-Djaibé C, Hilty M, Ngandolo R et al (2006) Mycobacterium bovis isolates from tuberculous lesions in Chadian zebu carcasses. Emerg Infect Dis 12(5):769–771PubMedPubMedCentralCrossRefGoogle Scholar
  60. Di Marco V, Mazzone P, Capucchio MT et al (2012) Epidemiological significance of the domestic black pig (Sus scrofa) in maintenance of bovine tuberculosis in Sicily. J Clin Microbiol 50(4):1209–1218PubMedPubMedCentralCrossRefGoogle Scholar
  61. Doherty ML, Bassett HF, Quinn PJ et al (1996) A sequential study of the bovine tuberculin reaction. Immunology 87(1):9PubMedPubMedCentralGoogle Scholar
  62. Domingo M, Vidal E, Marco A (2014) Pathology of bovine tuberculosis. Res Vet Sci 97:S20–S29PubMedCrossRefGoogle Scholar
  63. Dowling LA, Schleehauf SM (1991) Specific antibody responses to Mycobacterium bovis in infected cattle analysed with six mycobacterial antigens in enzyme-linked immunosorbent assays. Res Vet Sci 50(2):157–161PubMedCrossRefGoogle Scholar
  64. Downs SH, Parry JE, Upton PA et al (2017) Methodology and preliminary results of a systematic literature review of ante-mortem and post-mortem diagnostic tests for bovine tuberculosis. Prev Vet Med 153:117–126PubMedCrossRefGoogle Scholar
  65. Drewe JA, Smith NH (2014) Molecular epidemiology of M. bovis. In: Thoen CO, Steele JH, Kaneene JB (eds) Zoonotic tuberculosis: M. bovis and other pathogenic mycobacteria, 3rd edn. Wiley, Chichester, pp 79–88CrossRefGoogle Scholar
  66. Durnez L, Sadiki H, Katakweba A et al (2009) The prevalence of Mycobacterium bovis-infection and atypical mycobacterioses in cattle in and around Morogoro, Tanzania. Trop Anim Health Prod 41:1653–1659PubMedCrossRefGoogle Scholar
  67. Egbe NF, Muwonge A, Ndip L et al (2017) Molecular epidemiology of Mycobacterium bovis in Cameroon. Sci Rep 7(1):4652PubMedPubMedCentralCrossRefGoogle Scholar
  68. Elmossalami E, Siam MA, El Sergany M (1971) Studies on tuberculous-like lesions in slaughtered camels. Zbl Vet Med B 18:253–261CrossRefGoogle Scholar
  69. Espie IW, Hlokwe TM, van Pittius NCG et al (2009) Pulmonary infection due to Mycobacterium bovis in a black rhinoceros (Diceros bicornis minor) in South Africa. J Wildl Dis 45(4):1187–1193PubMedCrossRefGoogle Scholar
  70. Etter EMC, Ameni G, Roger FLM (2006) Tuberculosis risk assessment in Ethiopia: safety of meat from cattle slaughtered in abattoirs. In: Proceedings of the 11th international symposium on veterinary epidemiology and economics (ISVEE), Cairns, Australia.
  71. Faksri K, Xia E, Tan JH et al (2016) In silico region of difference (RD) analysis of Mycobacterium tuberculosis complex from sequence reads using RD-Analyzer. BMC Genomics 17(1):847PubMedPubMedCentralCrossRefGoogle Scholar
  72. Firdessa R, Tschopp R, Wubete A et al (2012) High prevalence of bovine tuberculosis in dairy cattle in central Ethiopia: implications for the dairy industry and public health. PLoS One 7(12):e52851PubMedPubMedCentralCrossRefGoogle Scholar
  73. Fischer EAJ, van Roermunda HJW, Hemerik L et al (2005) Evaluation of surveillance strategies for bovine tuberculosis (Mycobacterium bovis) using an individual based epidemiological model. Prev Vet Med 67:283–301PubMedCrossRefGoogle Scholar
  74. Fitzgerald SD, Kaneene JB (2012) Wildlife reservoirs of bovine tuberculosis worldwide: hosts, pathology, surveillance, and control. Vet Pathol 50(3):488–499PubMedCrossRefGoogle Scholar
  75. Francis J (1958) Tuberculosis in animals and man. A study in comparative pathologyGoogle Scholar
  76. Gallagher J, Macadam I, Sayer J et al (1972) Pulmonary tuberculosis in free-living lechwe antelope in Zambia. Trop Anim Health Prod 4:204–213PubMedPubMedCentralCrossRefGoogle Scholar
  77. Garnier T, Eiglmeier K, Camus JC et al (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100(13):7877–7882PubMedCrossRefGoogle Scholar
  78. Gavier-Widén D, Cooke MM, Gallagher J et al (2009) A review of infection of wildlife hosts with Mycobacterium bovis and the diagnostic difficulties of the ‘no visible lesion’ presentation. N Z Vet J 57(3):122–131PubMedCrossRefGoogle Scholar
  79. Good M, Duignan A (2011) Perspectives on the history of bovine TB and the role of tuberculin in bovine TB eradication. Vet Med Int 2011:410470. p11PubMedPubMedCentralCrossRefGoogle Scholar
  80. Goosen WJ, Miller MA, Chegou NN et al (2014) Agreement between assays of cell-mediated immunity utilizing Mycobacterium bovis-specific antigens for the diagnosis of tuberculosis in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 160(1-2):133–138PubMedCrossRefGoogle Scholar
  81. Gordon SV, Brosch R, Billault A et al (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32(3):643–655PubMedCrossRefGoogle Scholar
  82. Gormley E, Doyle MB, Fitzsimons T et al (2006) Diagnosis of M. bovis infection in cattle by use of the gamma-interferon (Bovigam®) assay. Vet Microbiol 112:171–179PubMedCrossRefGoogle Scholar
  83. Gormley E, Doyle M, Duignan A et al (2013) Identification of risk factors associated with disclosure of false positive bovine tuberculosis reactors using the gamma-interferon (IFNγ) assay. Vet Res 44(1):117PubMedPubMedCentralCrossRefGoogle Scholar
  84. Gormley E, Corner LAL, Costello E et al (2014) Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci 97:S30–S43PubMedCrossRefGoogle Scholar
  85. Grobler DG, Michel AL, De Klerk LM et al (2002) The gamma-interferon test: its usefulness in a bovine tuberculosis survey in African buffaloes (Syncerus caffer) in the Kruger National Park. Onderstepoort J Vet Res 69(3):221PubMedGoogle Scholar
  86. Guilbride PDL, Rollinson DHL, McAnulty EG et al (1963) Tuberculosis in the free living African (cape) buffalo (Syncerus caffer caffer Sparrman). J Comp Pathol Ther 73:337–348CrossRefGoogle Scholar
  87. Gutiérrez M, Tellechea J, Marín JFG (1998) Evaluation of cellular and serological diagnostic tests for the detection of Mycobacterium bovis-infected goats. Vet Microbiol 62:281–290PubMedCrossRefGoogle Scholar
  88. Habarugira G, Rukelibuga J, Nanyingi MO et al (2014) Bovine tuberculosis in Rwanda: prevalence and economic impact evaluation by meat inspection at Société des Abattoirs de Nyabugogo-Nyabugogo Abattoir, Kigali. J S Afr Vet Assoc 85(1):1062. CrossRefPubMedGoogle Scholar
  89. Hang’ombe MB, Munyeme M, Nakajima C et al (2012) Mycobacterium bovis infection at the interface between domestic and wild animals in Zambia. BMC Vet Res 8:221PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hauer A, Michelet L, De Cruz K et al (2016) MIRU-VNTR allelic variability depends on Mycobacterium bovis clonal group identity. Infect Genet Evol 45:165–169PubMedCrossRefGoogle Scholar
  91. Hilty M, Diguimbaye C, Schelling E et al (2005) Evaluation of the discriminatory power of variable number tandem repeat (VNTR) typing of M. bovis strains. Vet Microbiol 109:217–222PubMedCrossRefGoogle Scholar
  92. Hines N, Payeur JB, Hoffman LJ (2006) Comparison of the recovery of Mycobacterium bovis isolates using the BACTEC MGIT 960 system, BACTEC 460 system, and Middlebrook 7H10 and 7H11 solid media. J Vet Diagn Invest 18:243–250PubMedCrossRefGoogle Scholar
  93. Hlokwe TM, van Helden P, Michel A (2013) Evaluation of the discriminatory power of variable number of tandem repeat typing of M. bovis isolates from southern Africa. Transbound Emerg Dis 60(Suppl 1):111–120PubMedCrossRefGoogle Scholar
  94. Jenkins AO, Cadmus SIB, Venter EH et al (2011) Molecular epidemiology of human and animal tuberculosis in Ibadan, Southwestern Nigeria. Vet Microbiol 151:139–147PubMedCrossRefGoogle Scholar
  95. Jenkins AO, Gormley E, Gcebe N et al (2018) Cross reactive immune responses in cattle arising from exposure to Mycobacterium bovis and non-tuberculous mycobacteria. Prevent Vet Med 152:16–22CrossRefGoogle Scholar
  96. Jolles AE, Cooper DV, Levin SA (2005) Hidden effects of chronic tuberculosis in African buffalo. Ecology 86(9):2258–2264CrossRefGoogle Scholar
  97. Jubb KVF, Kennedy PC, Palmer N (1993) Pathology of domestic animals, vol 2. Academic, London, pp 641–652Google Scholar
  98. Kamerbeek J, Schouls L, Kolk AM et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914PubMedPubMedCentralGoogle Scholar
  99. Kaneene JB, Miller RA, Meyer RM (2006) Abattoir surveillance: the U.S. experience. Vet Microbiol 112:273–282PubMedCrossRefGoogle Scholar
  100. Karolemeas K, de la Rua-Domenech R, Cooper R et al (2012) Estimation of the relative sensitivity of the comparative tuberculin skin test in tuberculous cattle herds subjected to depopulation. PLoS One 7(8):e43217PubMedPubMedCentralCrossRefGoogle Scholar
  101. Katale BZ, Mbugi EV, Karimuribo ED et al (2013) Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet Res 9(1):267PubMedPubMedCentralCrossRefGoogle Scholar
  102. Keet DF, Kriek NP, Huchzermeyer H et al (1994) Advanced tuberculosis in an African buffalo (Syncerus caffer Sparrman). J S Afr Vet Assoc 65:79–83PubMedGoogle Scholar
  103. Keet DF, Kriek NP, Penrith ML et al (1996) Tuberculosis in buffaloes (Syncerus caffer) in the Kruger National Park: spread of the disease to other species. Onderstepoort J Vet Res 63:239–244PubMedGoogle Scholar
  104. Keet DF, Kriek NPJ, Penrith ML et al (1998) Tuberculosis in free-ranging lions in the Kruger National Park. In: Proceedings of ARC-Onderstepoort OIE international congress on anthrax, brucellosis, contagious bovine pleura-pneumonia, clostridial and mycobacterial diseases, with WHO co-sponsorship. Bergen-Dal, Kruger National Park, South AfricaGoogle Scholar
  105. Keet DF, Kriek NPJ, Bengis RG et al (2000) The rise and fall of tuberculosis in a free-ranging chacma baboon troop in the Kruger National Park. Onderstepoort J Vet Res 67(2):115PubMedGoogle Scholar
  106. Keet DF, Kriek NPJ, Bengis RG (2001) Tuberculosis in kudus (Tragelaphus strepsiceros) in the Kruger National Park. Onderstepoort J Vet Res 68(3):225PubMedGoogle Scholar
  107. Keet DF, Michel AL, Bengis RG et al (2010) Intradermal tuberculin testing of wild African lions (Panthera leo) naturally exposed to infection with Mycobacterium bovis. Vet Microbiol 144(3–4):384–391PubMedCrossRefGoogle Scholar
  108. Kinne J, Johnson B, Jahans KL et al (2006) Camel tuberculosis—a case report. Trop Anim Health Prod 38:207–213PubMedCrossRefGoogle Scholar
  109. Kleeberg HH (1984) Human tuberculosis of bovine origin in relation to public health. Rev Sci Tech Off Int Epiz 3(1):11–32CrossRefGoogle Scholar
  110. Koro FK, Foko E, Ngatchou AF et al (2013) First insight into the current prevalence of bovine tuberculosis in cattle slaughtered in Cameroon: the case of main abattoirs of Yaoundé and Douala. Br Microbiol Res J 3(3):272–279CrossRefGoogle Scholar
  111. Krasnow I, Wayne LG (1969) Comparison of methods for tuberculosis bacteriology. Appl Microbiol 18(5):915–917PubMedPubMedCentralGoogle Scholar
  112. Kriek N, Bengis R, de Vos V et al (1994) The pathology of tuberculosis in buffalo in the Kruger National Park. In: Wildlife ranching: a celebration of diversity: Proceedings of the 3rd international wildlife ranching symposium, October 1992, Pretoria, South Africa, p 170Google Scholar
  113. Kuria JKN, Gathogo SM (2013) Concomitant fungal and Mycobacterium bovis infections in beef cattle in Kenya. Onderstepoort J Vet Res 80(1):1–4CrossRefGoogle Scholar
  114. Laval G, Ameni G (2004) Prevalence of bovine tuberculosis in zebu cattle under traditional animal husbandry in Boji district of western Ethiopia. Rev Med Vet (Toulouse) 155(10):494–499Google Scholar
  115. Lepper A, Pearson CW, Corner LA (1977) Anergy to tuberculin in beef cattle. Aust Vet J 53(5):214–216PubMedCrossRefGoogle Scholar
  116. Leslie LW, Hebert CN (1965) The use of dilute tuberculins for testing cattle. Br Vet J 121(9):427–436CrossRefGoogle Scholar
  117. Laisse CJM, Gavier-Widén D, Ramis R et al (2011) Characterization of tuberculous lesions in naturally infected African buffalo (Syncerus caffer). J Vet Diagn Invest 23:1022–1027PubMedCrossRefGoogle Scholar
  118. Liebana E, Johnson L, Gough J et al (2008) Pathology of naturally occurring bovine tuberculosis in England and Wales. Vet J 176:354–360PubMedCrossRefGoogle Scholar
  119. Little TWA, Swan C, Thompson HV et al (1982) Bovine tuberculosis in domestic and wild mammals in an area of Dorset. III. The prevalence of tuberculosis in mammals other than badgers and cattle. Epidemiol Infect 89(2):225–234Google Scholar
  120. Lugton IW, Johnstone AC, Morris RS (1995) Mycobacterium bovis infection in New Zealand hedgehogs (Erinaceus europaeus). N Z Vet J43(7):342–345CrossRefGoogle Scholar
  121. Lyashchenko KP, Gortázar C, Miller MA et al (2018) Spectrum of antibody profiles in tuberculous elephants, cervids, and cattle. Vet Microbiol 214:89–92PubMedCrossRefGoogle Scholar
  122. Maas M, Michel AL, Rutten VPMG (2013) Facts and dilemmas in diagnosis of tuberculosis in wildlife. Comp Immunol Microbiol Infect Dis 36:269–285PubMedCrossRefGoogle Scholar
  123. Malama S, Johansen TB, Muma JB et al (2014) Characterization of M. bovis from humans and cattle in Namwala District, Zambia. Vet Med Int. CrossRefGoogle Scholar
  124. Mamo G, Bayleyegn G, Tessema TS et al (2011) Pathology of camel tuberculosis and molecular characterization of its causative agents in pastoral regions of Ethiopia. PLoS One 6(1):e15862PubMedPubMedCentralCrossRefGoogle Scholar
  125. Marcotty T, Matthys F, Godfroid J et al (2009) Zoonotic tuberculosis and brucellosis in Africa: neglected zoonoses or minor public-health issues? The outcomes of a multi-disciplinary workshop. Ann Trop Med Parasitol 103(5):401–411PubMedCrossRefGoogle Scholar
  126. Martin SW (1984) Estimating disease prevalence and the interpretation of screening test results. Prev Vet Med 2:463–472CrossRefGoogle Scholar
  127. Martrenchar A, Njanpop BM, Yaya A et al (1993) Problems associated with tuberculosis and brucellosis skin-test methods in northern Cameroon. Prev Vet Med 15:221–229CrossRefGoogle Scholar
  128. Mason FE (1917) Tuberculosis in camels. J Comp Pathol Ther 30:80–84CrossRefGoogle Scholar
  129. Menin Á, Fleith R, Reck C et al (2013) Asymptomatic cattle naturally infected with M. bovis present exacerbated tissue pathology and bacterial dissemination. PLoS One 8(1):e53884. CrossRefPubMedPubMedCentralGoogle Scholar
  130. Michel AL (2008) Tuberculosis in wild and domestic animals in South Africa. PhD thesis, Universiteit Utrecht, The NetherlandsGoogle Scholar
  131. Michel AL, Hlokwe TM, Coetzee ML et al (2008) High M. bovis genetic diversity in a low prevalence setting. Vet Microbiol 126:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  132. Michel AL, Cooper D, Jooste J et al (2011) Approaches towards optimising the gamma interferon assay for diagnosing Mycobacterium bovis infection in African buffalo (Syncerus caffer). Prev Vet Med 98(2-3):142–151PubMedCrossRefGoogle Scholar
  133. Mikota SK, Peddie L, Peddie J et al (2001) Epidemiology and diagnosis of Mycobacterium tuberculosis in captive Asian elephants (Elephas maximus). J Zoo Wildl Med 32(1):1–16PubMedCrossRefGoogle Scholar
  134. Milián-Suazo F, Banda-Ruíz V, Ramírez-Casillas C et al (2002) Genotyping of M. bovis by geographic location within Mexico. Prev Vet Med 55:255–264PubMedCrossRefGoogle Scholar
  135. Miller JM, Jenny AL, Payeur JB (2002) Polymerase chain reaction detection of Mycobacterium tuberculosis complex and Mycobacterium avium organisms in formalin-fixed tissues from culture-negative ruminants. Vet Microbiol 87(1):15–23PubMedCrossRefGoogle Scholar
  136. Miller M, Buss P, Hofmeyr J et al (2015) Antemortem diagnosis of Mycobacterium bovis infection in free-ranging African lions (Panthera leo) and implications for transmission. J Wildl Dis 51(2):493–497PubMedCrossRefGoogle Scholar
  137. Miller MA, Buss PE, van Helden PD et al (2017) Mycobacterium bovis in a free-ranging black rhinoceros, Kruger National Park, South Africa, 2016. Emerg Infect Dis 23(3):557PubMedPubMedCentralCrossRefGoogle Scholar
  138. Mohamed M, Moussa LM, Mohamed KF et al (2011) BACTEC MGIT 960™ system for screening of Mycobacterium tuberculosis complex among cattle. Afr J Biotechnol 10(63):13919–13923Google Scholar
  139. Monaghan ML, Doherty ML, Collins JD et al (1994) The tuberculin test. Vet Microbiol 40:111–124PubMedCrossRefGoogle Scholar
  140. Morar D, Tijhaar E, Negrea A et al (2007) Cloning, sequencing and expression of white rhinoceros (Ceratotherium simum) interferon-gamma (IFN-γ) and the production of rhinoceros IFN-γ specific antibodies. Vet Immunol Immunopathol 115(1–2):146–154PubMedCrossRefGoogle Scholar
  141. Morar D, Schreuder J, Mény M et al (2013) Towards establishing a rhinoceros-specific interferon-gamma (IFN-γ) assay for diagnosis of tuberculosis. Transbound Emerg Dis:60(s1):60–60(s1):66Google Scholar
  142. Müller B, Steiner B, Bonfoh B et al (2008) Molecular characterization of M. bovis isolated from cattle slaughtered at the Bamako abattoir in Mali. BMC Vet Res 4:26PubMedPubMedCentralCrossRefGoogle Scholar
  143. Müller B, Vounatsou P, Ngandolo BNR et al (2009) Bayesian receiver operating characteristic estimation of multiple tests for diagnosis of bovine tuberculosis in Chadian cattle. PLoS One 4(12):e8215. CrossRefPubMedPubMedCentralGoogle Scholar
  144. Muma B, Syakalima M, Munyeme M et al (2013) Bovine tuberculosis and brucellosis in traditionally managed livestock in selected districts of southern province of Zambia. Vet Med Int 2013:ID 730367. CrossRefGoogle Scholar
  145. Muñoz-Mendoza M, Romero B, Cerro AD et al (2016) Sheep as a potential source of bovine TB: epidemiology, pathology and evaluation of diagnostic techniques. Transbound Emerg Dis 63(6):635–646PubMedCrossRefGoogle Scholar
  146. Munyeme M, Rigouts L, Shamputa IC et al (2009) Isolation and characterization of M. bovis strains from indigenous Zambian cattle using Spacer Oligonucleotide typing technique. BMC Microbiol 9:144. CrossRefPubMedPubMedCentralGoogle Scholar
  147. Munyeme M, Muma JB, Siamudaala VM et al (2010) Tuberculosis in Kafue lechwe antelopes (Kobus leche kafuensis) of the Kafue Basin in Zambia. Prev Vet Med 95:305–308PubMedCrossRefGoogle Scholar
  148. Murray G (1986) Ante-mortem and post-mortem meat inspection: an Australian Inspection Service perspective. Aust Vet J 63(7):211–215PubMedCrossRefGoogle Scholar
  149. Mwakapuja RS, Makondo ZE, Malakalinga J et al (2013) Molecular characterization of M. bovis isolates from pastoral livestock at Mikumi-Selous ecosystem in the eastern Tanzania. Tuberculosis 93:668–674PubMedCrossRefGoogle Scholar
  150. Neill SD, Bryson DG, Pollock JM (2001) Pathogenesis of tuberculosis in cattle. Tuberculosis 81(1):79–86PubMedCrossRefGoogle Scholar
  151. Ngandolo BNR, Müller B, Diguimbaye-Djaïbe C et al (2009) Comparative assessment of fluorescence polarization and tuberculin skin testing for the diagnosis of bovine tuberculosis in Chadian cattle. Prev Vet Med 89:81–89PubMedCrossRefGoogle Scholar
  152. Njanpop-Lafourcade BM, Inwald J, Ostyn A et al (2001) Molecular typing of M. bovis isolates from Cameroon. J Clin Microbiol 39(1):222–227PubMedPubMedCentralCrossRefGoogle Scholar
  153. Norby B, Bartlett PC, Fitzgerald SD et al (2004) The sensitivity of gross necropsy, caudal fold and comparative cervical tests for the diagnosis of bovine tuberculosis. J Vet Diagn Invest 16(2):126–131PubMedCrossRefPubMedCentralGoogle Scholar
  154. Nuñez-Garcia J, Downs SH, Parry JE et al (2018) Meta-analyses of the sensitivity and specificity of ante-mortem and post-mortem diagnostic tests for bovine tuberculosis in the UK and Ireland. Prev Vet Med 153:94–107PubMedCrossRefPubMedCentralGoogle Scholar
  155. O’Brien DJ, Schmitt SM, Berry DE et al (2008) Estimating the true prevalence of Mycobacterium bovis in free-ranging elk in Michigan. J Wildl Dis 44(4):802–810PubMedCrossRefPubMedCentralGoogle Scholar
  156. OIE (2009) Bovine tuberculosis. In: Terrestrial manual. Chapter 2.4.7, p 16Google Scholar
  157. OIE (2017) Manual of diagnostic tests and vaccines for terrestrial animals.
  158. Olivier TT, Viljoen IM, Hofmeyr J et al (2017) Development of a gene expression assay for the diagnosis of Mycobacterium bovis infection in African lions (Panthera leo). Transbound Emerg Dis 64(3):774–781PubMedCrossRefPubMedCentralGoogle Scholar
  159. Palmer MV, Waters WR (2006) Advances in bovine tuberculosis diagnosis and pathogenesis: what policy makers need to know. Vet Microbiol 112:181–190PubMedCrossRefPubMedCentralGoogle Scholar
  160. Parsons LM, Brosch R, Cole ST et al (2002) Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40(7):2339–2345PubMedPubMedCentralCrossRefGoogle Scholar
  161. Parsons SD, Cooper D, McCall AJ et al (2011) Modification of the QuantiFERON-TB Gold (In-Tube) assay for the diagnosis of Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Vet Immunol Immunopathol 142(1–2):113–118PubMedCrossRefPubMedCentralGoogle Scholar
  162. Perla D (1927) Experimental epidemiology of tuberculosis. J Exp Med 45(2):209–226PubMedPubMedCentralCrossRefGoogle Scholar
  163. Pollock JM, McNair J, Bassett H et al (2003) Specific delayed-type hypersensitivity responses to ESAT-6 identify tuberculosis-infected cattle. J Clin Microbiol 41(5):1856–1860PubMedPubMedCentralCrossRefGoogle Scholar
  164. Praud A, Boschiroli ML, Meyer L et al (2015) Assessment of the sensitivity of the gamma-interferon test and the single intradermal comparative cervical test for the diagnosis of bovine tuberculosis under field conditions. Epidemiol Infect 143(1):157–166PubMedCrossRefGoogle Scholar
  165. Raath JP, Bengis RG, Bush M et al (1995) Diagnosis of tuberculosis due to Mycobacterium bovis in the African Buffalo (Syncerus caffer) in the Kruger National Park. In: Griffin F, de Lisle G (eds) Tuberculosis in wildlife and domestic animals. University of Otago Press, Dunedin, pp 313–315Google Scholar
  166. Radunz BL, Lepper AW (1985) Suppression of skin reactivity to bovine tuberculin in repeat tests. Aust Vet J 62(6):191–194PubMedCrossRefGoogle Scholar
  167. Ramadan HH, El-Gohary AHN, Mohamed AA et al (2012) Detection of Mycobacterium bovis and Mycobacterium tuberculosis from clinical samples by conventional and molecular techniques in Egypt. Glob Vet 9(6):648–654Google Scholar
  168. Ramos DF, Tavares L, da Silva PE (2014) Molecular typing of Mycobacterium bovis isolates: a review. Braz J Microbiol 45(2):365–372PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ramos DF, Silva PEA, Dellagostin OA (2015) Diagnosis of bovine tuberculosis: review of main techniques. Braz J Biol 75(4):830–837PubMedCrossRefGoogle Scholar
  170. Rao KR, Kauser F, Srinivas S et al (2005) Analysis of genomic downsizing on the basis of region-of-difference polymorphism profiling of Mycobacterium tuberculosis patient isolates reveals geographic partitioning. J Clin Microbiol 43(12):5978–5982PubMedPubMedCentralCrossRefGoogle Scholar
  171. Razanamparany VR, Quirin R, Rapaoliarijaona A et al (2006) Usefulness of restriction fragment length polymorphism and spoligotyping for epidemiological studies of M. bovis in Madagascar: description of new genotypes. Vet Microbiol 114:115–122CrossRefGoogle Scholar
  172. Renwick R, White PCL, Bengis RG (2007) Bovine tuberculosis in southern African wildlife: a multi-species host–pathogen system. Epidemiol Infect 135:529–540PubMedCrossRefGoogle Scholar
  173. Rigouts L, Maregeyat B, Traore H et al (1996) Use of DNA restriction fragment typing in the differentiation of Mycobacterium tuberculosis complex isolates from animals and humans in Burundi. Tuber Lung Dis 77:264–268PubMedCrossRefGoogle Scholar
  174. Ritacco V, López B, De Kantor IN et al (1991) Reciprocal cellular and humoral immune responses in bovine tuberculosis. Res Vet Sci 50:365–367PubMedCrossRefGoogle Scholar
  175. Ritchie JN (1959) Tuberculosis. In: Stableforth AW, Galloway IA (eds) Diseases due to bacteria, vol 2. Butterworths, London, UK, pp 713–744Google Scholar
  176. Rogers RJ, Donald BA, Schultz K (1980) The distribution of Mycobacterium bovis in Queensland cattle herds with observations on the laboratory diagnosis of tuberculosis. Aust Vet J 56(11):542–546PubMedCrossRefGoogle Scholar
  177. Rohonczy EB, Balachandran AV, Dukes TW et al (1996) A comparison of gross pathology, histopathology, and mycobacterial culture for the diagnosis of tuberculosis in elk (Cervus elaphus). Can J Vet Res 60(2):108PubMedPubMedCentralGoogle Scholar
  178. Ryan TJ, Livingstone PG, Ramsey DSL et al (2006) Advances in understanding disease epidemiology and implications for control and eradication of tuberculosis in livestock: the experience from New Zealand. Vet Microbiol 112:211–219PubMedCrossRefGoogle Scholar
  179. Sahraoui N, Müller B, Guetarni D (2009) Molecular characterization of M. bovis strains isolated from cattle slaughtered at two abattoirs in Algeria. BMC Vet Res 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  180. Sahraoui N, Muller B, Mamache B et al (2011) Tuberculosis in cattle and goats in the north of Algeria. Vet Res 4(4):100–103Google Scholar
  181. Sanchez J, Tomás L, Ortega N et al (2011) Microscopical and immunological features of tuberculoid granulomata and cavitary pulmonary tuberculosis in naturally infected goats. J Comp Pathol 145(2-3):107–117PubMedCrossRefGoogle Scholar
  182. Sanou A, Tarnagda Z, Kanyala E et al (2014) Mycobacterium bovis in Burkina Faso: epidemiologic and genetic links between human and cattle isolates. PLoS Negl Trop Dis 8(10):e3142. CrossRefPubMedPubMedCentralGoogle Scholar
  183. Schiller I, Oesch B, Vordermeier HM et al (2010a) Bovine tuberculosis: a review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound Emerg Dis 57(4):205–220PubMedGoogle Scholar
  184. Schiller I, Vordermeier HM, Waters WR et al (2010b) Bovine tuberculosis: effect of the tuberculin skin test on in vitro interferon gamma responses. Vet Immunol Immunopathol 136:1–11PubMedCrossRefGoogle Scholar
  185. Seva J, Hernández D, Bernabé A et al (2000) Immunophenotypical characterization of the lymphocyte infiltrate in caprine pulmonary tuberculosis. J Comp Pathol 123(2–3):96–103PubMedCrossRefGoogle Scholar
  186. Skuce RA, Neill SD (2001) Molecular epidemiology of Mycobacterium bovis: exploiting molecular data. Tuberculosis 81(1–2):169–175PubMedCrossRefGoogle Scholar
  187. Smith NH (2012) The global distribution and phylogeography of M. bovis clonal complexes. Infect Genet Evol 12:857–865PubMedPubMedCentralCrossRefGoogle Scholar
  188. Smith NH, Upton P (2012) Naming spoligotype patterns for the RD9-deleted lineage of the Mycobacterium tuberculosis complex: Infect Genet Evol 12:873–876PubMedCrossRefGoogle Scholar
  189. Smith NH, Gordon SV, de la Rua-Domenech R et al (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681PubMedCrossRefGoogle Scholar
  190. Stärk KDC, Alonso S, Dadios N et al (2014) Strengths and weaknesses of meat inspection as a contribution to animal health and welfare surveillance. Food Control 39:154–162CrossRefGoogle Scholar
  191. Stewart LD, McCallan L, McNair J et al (2017) Multilaboratory evaluation of a novel lateral flow immunochromatographic assay for confirming isolation of Mycobacterium bovis from veterinary diagnostic specimens. J Clin Microbiol 55(12):3411–3425PubMedPubMedCentralCrossRefGoogle Scholar
  192. Sulieman MS, Hamid ME (2002) Identification of acid fast bacteria from caseous lesions in cattle in Sudan. Zoonoses Public Health 49:415–418Google Scholar
  193. Tarnagda Z, Kanyala E, Zingué D et al (2014) Prevalence of tuberculosis in bovine carcasses in two slaughterhouses of Burkina Faso. Int J Microbiol Immunol Res 2(6):92–100Google Scholar
  194. Thom M, Morgan JH, Hope JC et al (2004) The effect of repeated tuberculin skin testing of cattle on immune responses and disease following experimental infection with M. bovis. Vet Immunol Immunopathol 102:399–412PubMedCrossRefGoogle Scholar
  195. Thom M, Howard C, Villarreal-Ramos B et al (2008) Consequence of prior exposure to environmental mycobacteria on BCG vaccination and diagnosis of tuberculosis infection. Tubercle 88:324–334CrossRefGoogle Scholar
  196. Thorburn JA, Thomas AD (1940) Tuberculosis in the Cape kudu. J S Afr Vet Med Assoc 11:3–10Google Scholar
  197. Thorel M-F, Huchzermeyer HF, Michel AL (2001) Mycobacterium avium and Mycobacterium intracellulare infection in mammals. Rev Sci Tech Off Int Epiz 20(1):204–218CrossRefGoogle Scholar
  198. Tschopp R, Schelling E, Hattendorf J et al (2010) Repeated cross-sectional skin testing for bovine tuberculosis in cattle kept in a traditional husbandry system in Ethiopia. Vet Rec 167:250–256PubMedCrossRefGoogle Scholar
  199. Tweddle NE, Livingstone P (1994) Bovine tuberculosis control and eradication programs in Australia and New Zealand. Vet Microbiol 40:23–39PubMedCrossRefGoogle Scholar
  200. Van der Heijden EMDL, Jenkins AO, Cooper DV et al (2016) Field application of immunoassays for the detection of Mycobacterium bovis infection in the African buffalo (Syncerus caffer). Vet Immunol Immunopathol 169:68–73PubMedCrossRefGoogle Scholar
  201. Van Embden JDA, Cave MD, Crawford JT et al (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31(2):406–409PubMedPubMedCentralGoogle Scholar
  202. Van Pinxteren LAH, Ravn P, Agger EM et al (2000) Diagnosis of tuberculosis based on the two specific antigens: ESAT-6 and CFP10. Clin Diagn Lab Immunol 7(2):155–160PubMedPubMedCentralGoogle Scholar
  203. van Soolingen D, De Haas PEW, Haagsma J et al (1994) Use of various genetic markers in differentiation of M. bovis strains from animals and humans and for studying epidemiology of bovine tuberculosis. J Clin Microbiol 32(10):2425–2433PubMedPubMedCentralGoogle Scholar
  204. Varello K, Pezzolato M, Mascarino D et al (2008) Comparison of histologic techniques for the diagnosis of bovine tuberculosis in the framework of eradication programs. J Vet Diagn Invest 20(2):164–169PubMedCrossRefGoogle Scholar
  205. Vekemans M, Cartoux M, Diagbouga S et al (1999) Potential source of human exposure to M. bovis in Burkina Faso, in the context of the HIV epidemic. Clin Microbiol Infect 5(10):617–621PubMedCrossRefGoogle Scholar
  206. Vordermeier HM, Whelan A, Cockle PJ et al (2001) Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin Diagn Lab Immunol 8:571–578PubMedPubMedCentralGoogle Scholar
  207. Wangoo A, Johnson L, Gough J et al (2005) Advanced granulomatous lesions in Mycobacterium bovis-infected cattle are associated with increased expression of type I procollagen, γδ (WC1+) T cells and CD 68+ cells. J Comp Pathol 133(4):223–234PubMedCrossRefGoogle Scholar
  208. Warren RM, van Pittius NCG, Barnard M et al (2006) Differentiation of Mycobacterium tuberculosis Complex by PCR amplification of genomic regions of difference. Int J Tuberc Lung Dis 10(7):818–822PubMedGoogle Scholar
  209. Waters WR, Vordermeier HM, Rhodes S et al (2017) Potential for rapid antibody detection to identify tuberculous cattle with non-reactive tuberculin skin test results. BMC Vet Res 13(1):164PubMedCrossRefGoogle Scholar
  210. Watrelot-Virieux D, Drevon-Gaillot E, Toussaint Y et al (2006) Comparison of three diagnostic detection methods for tuberculosis in French cattle. Zoonoses Public Health 53(7):321–325Google Scholar
  211. Weber A, Van Hooven W (1992) Tuberculosis of the parotid salivary gland in a kudu Tragelaphus strepsiceros. Koedoe 35:119–122CrossRefGoogle Scholar
  212. Weniger T, Krawczyk J, Supply P et al (2010) MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res 38(Suppl):326–331CrossRefGoogle Scholar
  213. Whelan AO, Clifford D, Upadhyay B et al (2010) Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J Clin Microbiol 48(9):3176–3181PubMedPubMedCentralCrossRefGoogle Scholar
  214. Whipple DL, Bolin CA, Miller JM (1996) Distribution of lesions in cattle infected with Mycobacterium bovis. J Vet Diagn Invest 8(3):351–354PubMedCrossRefGoogle Scholar
  215. Wood PR, Jones SL (2001) BOVIGAMTM: an in vitro cellular diagnostic test for bovine tuberculosis. Tuberculosis 81(1):147–155PubMedCrossRefGoogle Scholar
  216. Wood PR, Corner LA, Rothel JS et al (1991) Field comparison of the interferon-gamma assay and the intradermal tuberculin test for the diagnosis of bovine tuberculosis. Aust Vet J 68:286–290PubMedCrossRefGoogle Scholar
  217. Woodford MH (1982) Tuberculosis in wildlife in the Ruwenzori National Park Uganda (Part I). Trop Anim Health Prod 14:81–88PubMedCrossRefGoogle Scholar
  218. Zahran RN, El Behiry A, Marzouk E et al (2014) Comparison of LCD array and IS6110-PCR with conventional techniques for detection of Mycobacterium bovis isolated from Egyptian cattle and buffaloes. Int J Mycobacteriol 3:197–204PubMedCrossRefGoogle Scholar
  219. Zumárraga MJ, Martin C, Samper S et al (1999) Usefulness of spoligotyping in molecular epidemiology of Mycobacterium bovis-related infections in South America. J Clin Microbiol 37(2):296–303PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolaas P. J. Kriek
    • 1
  • Demelash B. Areda
    • 2
  • Asseged B. Dibaba
    • 3
    Email author
  1. 1.Department of Paraclinical Sciences, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa
  2. 2.Department of Biological SciencesMinnesota State University, MankatoMankatoUSA
  3. 3.Department of Pathobiology, College of Veterinary MedicineTuskegee UniversityTuskegeeUSA

Personalised recommendations