Molecular Epidemiology of Mycobacterium bovis in Africa

  • Adrian MuwongeEmail author
  • Franklyn Egbe
  • Mark Bronsvoort
  • Demelash B. Areda
  • Tiny Hlokwe
  • Anita Michel


During the past two decades, epidemiology as a discipline has undergone marked changes resulting in a proliferation of subspecialties, one of which is molecular epidemiology. Molecular epidemiology is defined as the application of molecular markers to solve epidemiological problems, and it includes the use of taxonomic, phylogenetic, and population genetic characterization of causal organisms. It is thus a discipline that allows one to conduct a “forensic” audit of the disease dynamics in a population by superimposing host and/or pathogen molecular markers to population structure-based practices and events in time and space. This is usually done retrospectively; therefore, understanding the history of a population is critical to effectively utilize the data generated by molecular epidemiological techniques. The history of Africa was shaped by both local and international events, all of which directly or indirectly affected the health of its people and animals. This chapter describes historical and contemporary insights into the molecular epidemiology of Mycobacterium bovis in Africa.


Africa Bovine tuberculosis Cattle movement Clonal complexes Deletion analysis Mycobacterium bovis Molecular epidemiology Spoligotyping 



The authors are grateful to all contributors to this chapter, especially Dr. Paul Bessel, at the Roslin Institute, who did the Global Information Systems (GIS) and mapping of population data used in this chapter.


  1. Adler P, Pouwels J, Randall L (2007) World civilizations: since 1500, 5th edn. Cengage Learning, Vienna, pp 1–25Google Scholar
  2. African Union (2010) History of rinderpest eradication from Africa: impact, lessons learnt and way forward. African Union (AU), Addis AbabaGoogle Scholar
  3. Afrikaner (2009) The Afrikaner cattle breed. Accessed 29 July 2015.
  4. Alhaji I (1976) Bovine tuberculosis: A general review with special reference to Nigeria. Vet Bull 46:829–841Google Scholar
  5. Allix C, Supply P, Fauville-Dufaux M (2004) Utility of fast mycobacterial interspersed repetitive unit-variable number tandem repeat genotyping in clinical mycobacteriological analysis. Clin Infect Dis 39:783–789PubMedCrossRefGoogle Scholar
  6. Anon (1858) Examination of Nonqause before the Chief Commissioner: British Kaffraria Government GazetteGoogle Scholar
  7. Armando B (1995) Romagnola breeds. Hekpoort, South African Breeding Society, pp 1–2Google Scholar
  8. Awah-Ndukum J, Kudi AC, Bradley G et al (2013) Molecular genotyping of Mycobacterium bovis isolated from cattle tissues in the North West Region of Cameroon. Trop Anim Health Prod 45:829–836PubMedCrossRefGoogle Scholar
  9. Ayele W, Niel S, Zinsstag J et al (2004) Bovine tuberculosis: an old disease but new threat to Africa. Int J Tuberc Lung 8(8):924–937Google Scholar
  10. Barbieri C, Vicente M, Oliveira S (2014) Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in Southern Africa. PLoS ONE 9(6):e99117PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ben Kahla I, Boschiroli ML, Souissi F et al (2011) Isolation and molecular characterisation of Mycobacterium bovis from raw milk in Tunisia. Afr Health Sci 11(3):2–5CrossRefGoogle Scholar
  12. Bengis R, Kock R, Fisher J (2002) Infectious animal diseases: The wildlife/livestock interface. Sci Tech Rev OIE 21:53–65CrossRefGoogle Scholar
  13. Berdah D (2010) Vaccinating cattle against bovine tuberculosis in France, 1921–1963: Between the epistemic value of the animal model and an alternative to sanitary policies. Rev d’Etudes en Agric Environ 91:393–415Google Scholar
  14. Berg S, Garcia-Pelayo MC, Müller B et al (2011) African 2, a clonal complex of M. bovis epidemiologically important in East Africa. J Bacteriol 193(3):670–678PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bienart W (1989) Introduction: The politics of colonial conservation. J South Afr Stud 15:143–163CrossRefGoogle Scholar
  16. Biffa D, Asseged B, Skjerve E (2010) Diagnostic efficiency of abattoir meat inspection service in Ethiopia to detect carcasses infected with Mycobacterium bovis: Implications for public health. BMC Public Health 10(1):46210(462)CrossRefGoogle Scholar
  17. Biffa D, Johansen TB, Godfroid J et al (2014) Multi-locus variable-number tandem repeat analysis (MLVA) reveals heterogeneity of Mycobacterium bovis strains and multiple genotype infections of cattle in Ethiopia. Infect Genet Evol 23:13–19PubMedCrossRefGoogle Scholar
  18. Boardman J (1965) The Greeks overseas, 4th edn. Classical Association of Canada, pp 11–25Google Scholar
  19. Bothar (2008) Bothar—Our history. Accessed 29 July 2015
  20. Brosch R, Gordon SV, Marmiesse M et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99(6):3684–3689PubMedCrossRefGoogle Scholar
  21. Cameron H, O’Brien R, Murray A et al (2001) Evaluation of the Mycobacterium bovis restriction fragment length polymorphism probe pUCD, in combination with the direct repeat probe, for molecular typing of Mycobacterium tuberculosis strains in Ireland. J Clin Microbiol 39:4404–4406PubMedPubMedCentralCrossRefGoogle Scholar
  22. Castrì L, Tofanelli S, Garagnani P et al (2009) mtDNA variability in two Bantu-speaking populations (Shona and Hutu) from Eastern Africa: Implications for peopling and migration patterns in sub-Saharan Africa. Am J Phys Anthropol 140:302–311PubMedCrossRefPubMedCentralGoogle Scholar
  23. Christopher E (2002) The civilizations of Africa. University of Virginia, pp 12–59Google Scholar
  24. Clark JD, Brandt SA (1984) From hunters to farmers: the causes and consequences of food production in Africa, 1st edn. University of California Press, Berkeley, CA, p 33Google Scholar
  25. Cloete PC, Taljaard PR, Grové B (2007) A comparative economic case study of switching from cattle farming to game ranching in the Northern Cape Province. South Afr J Wildl Res 37:71–78CrossRefGoogle Scholar
  26. Cosivi O, Meslin FX, Daborn CJ et al (1995) Epidemiology of Mycobacterium bovis infection in animals and humans, with particular reference to Africa. Rev Sci Tech OIE 14:733–746CrossRefGoogle Scholar
  27. Cosivi O, Grange JM, Daborn CJ et al (1998) Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4:59–70PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cour JM (2001) The Sahel in West Africa: Countries in transition to a full market economy. Glob Environ Change 11:31–47CrossRefGoogle Scholar
  29. Daborn CJ, Grange JM, Kazwala RR (1996) The bovine tuberculosis cycle—An African perspective. J Appl Bacteriol 81:S27–S32Google Scholar
  30. De Garine-Wichatitsky M, Caron A, Kock R et al (2013) A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidemiol Infect 141:1342–1356PubMedCrossRefGoogle Scholar
  31. Deshler W (1963) Cattle in Africa: distribution, types, and problems. Geogr Rev 53:52–58CrossRefGoogle Scholar
  32. Diamond J (1999) Guns, germs, and steel, 1st edn. Norton, New York, pp 15–39Google Scholar
  33. Donoghue HD (2009) Human tuberculosis - an ancient disease, as elucidated by ancient microbial biomolecules. Microbiol Infect 11:1156–1162CrossRefGoogle Scholar
  34. Driscoll J (2009) Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. In: Caugant D (ed) Methods in molecular biology, 1st edn. Humana, New York, pp 117–140Google Scholar
  35. Durr PA, Hewinson RG, Clifton-Hadley RS (2000) Molecular epidemiology of bovine tuberculosis. I. Mycobacterium bovis genotyping. Rev Sci Tech 19:675–688PubMedCrossRefPubMedCentralGoogle Scholar
  36. Esther H (2012) Boran Cattle Breeders’ Society of South Africa. Accessed 10 Sept 2015
  37. FAO (2005) Cattle population. Food and Agricultural Organization of the United Nations (FAO), RomeGoogle Scholar
  38. Fèvre EM, Bronsvoort B, Hamilton K et al (2006) Animal movements and the spread of infectious diseases. Trends Microbiol 14:125–131PubMedCrossRefGoogle Scholar
  39. Firdessa R, Tschopp R, Wubete A et al (2012) High prevalence of bovine tuberculosis in dairy cattle in central Ethiopia: Implications for the dairy industry and public health. PLoS One 7(12):e52851PubMedPubMedCentralCrossRefGoogle Scholar
  40. Foxman B (2001) Molecular epidemiology: Focus on infection. Am J Epidemiol 153:1135–1141PubMedCrossRefGoogle Scholar
  41. Fratkin E (2001) East African pastoralism in transition: Maasai, Boran, and Rendille cases. Afr Stud Rev 44:1–25CrossRefGoogle Scholar
  42. Frothingham R, Meeker-O’Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196PubMedCrossRefGoogle Scholar
  43. Gadd ME (2012) Barriers, the beef industry and unnatural selection: A review of the impact of veterinary fencing on mammals in southern Africa. In: Somers MJ, Hayward M (eds) Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes. Springer, New York, pp 153–186CrossRefGoogle Scholar
  44. Garnier T, Eiglmeier K, Casmus JC et al (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100(13):7877–7882PubMedCrossRefGoogle Scholar
  45. Goody J (1976) Production and reproduction: A comparative study of the domestic domain, 1st edn. Cambridge University Press, Cambridge, pp 6–12Google Scholar
  46. Gumi B, Schelling E, Berg S et al (2012) Zoonotic transmission of tuberculosis between pastoralists and their livestock in South-East Ethiopia. Ecohealth 9:139–149PubMedPubMedCentralCrossRefGoogle Scholar
  47. Haddad N, Ostyn A, Karoui C et al (2001) Spoligotype diversity of Mycobacterium bovis strains isolated in France from 1979 to 2000. J Clin Microbiol 39:3623–3363PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hang’Ombe MB, Munyeme M, Nakajima C et al (2012) Mycobacterium bovis infection at the interface between domestic and wild animals in Zambia. BMC Vet Res 8:221PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hansard A, Harrison JH (1958) Kenya white highlands. House of commons records 598:463–474Google Scholar
  50. HarvestChoice (2015) Cattle population. International Food Policy Research Institute, Washington, DC. Accessed 29 July 2015Google Scholar
  51. He L, Fan X, Xie J (2012) Comparative genomic structures of Mycobacterium. J Cell Biochem 113:2464–2473PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hlavsa MC, Moonan PK, Cowan LS et al (2008) Human tuberculosis due to Mycobacterium bovis in the United States, 1995-2005. Clin Infect Dis 47(2):168–175PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hlokwe TM, Jenkins AO, Streicher EM et al (2011) Molecular characterisation of Mycobacterium bovis isolated from African buffaloes (Syncerus caffer) in Hluhluwe-iMfolozi Park in KwaZulu-Natal, South Africa. Onderstepoort J Vet Res 78(1):39–44CrossRefGoogle Scholar
  54. Hlokwe TM, van Helden P, Michel AL (2014) Evidence of increasing intra- and inter-species transmission of Mycobacterium bovis in South Africa: Are we losing the battle? Prev Vet Med 115:10–17PubMedCrossRefPubMedCentralGoogle Scholar
  55. Homewood KM, Trench P, Brockington D (2012) Pastoralist livelihoods and wildlife revenues in East Africa: a case for coexistence? Pastoralism 2:19CrossRefGoogle Scholar
  56. Huillery E (2009) History matters: The long-term impact of colonial public investments in French West Africa. Am Econ J Appl Econ 1:176–215CrossRefGoogle Scholar
  57. Jackson S-A (2003) Disease and biomedicine: Colonial strategies in Southern Africa. University of California, Riverside, pp 303–308Google Scholar
  58. Jenkins O, Cadmus SIB, Venter EH et al (2011) Molecular epidemiology of human and animal tuberculosis in Ibadan, Southwestern Nigeria. Vet Microbiol 151:139–147PubMedCrossRefGoogle Scholar
  59. Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914PubMedPubMedCentralGoogle Scholar
  60. Kanduma E, McHugh TD, Gillespie SH (2003) Molecular methods for Mycobacterium tuberculosis strain typing: A users guide. J Appl Microbiol 94:781–791PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kazwala RR, Kambarage DM, Daborn CJ et al (2001) Risk factors associated with the occurrence of bovine tuberculosis in cattle in the Southern Highlands of Tanzania. Vet Res Commun 25:609–614PubMedCrossRefPubMedCentralGoogle Scholar
  62. Khapoya VB (2012) The African experience, 2nd edn. Taylor and Francis, New YorkGoogle Scholar
  63. Komal BP (2014) DNA fingerprinting process. Accessed 19 Oct 2015
  64. Lawson L, Zhang J, Gomgnimbou MK et al (2012) A molecular epidemiological and genetic diversity study of tuberculosis in Ibadan, Nnewi and Abuja, Nigeria. PLoS One 7(6):e38409PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lin T, Lin L, Zhang F (2014) Review on molecular typing methods of pathogens. J Med Microbiol 4:147–152Google Scholar
  66. Lunde TM, Lindtjørn B (2013) Cattle and climate in Africa: How climate variability has influenced national cattle holdings from 1961-2008. PeerJ 1:e55. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mahairas CG, Sabo PJ, Hickey MJ et al (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178(5):1274–1282PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mäki-Tanila A, Fernandez J, Toro M et al (2010) Local cattle breeds in Europe. Development of policies and strategies for self-sustaining breeds. Wageningen Academic, Wageningen, p 151Google Scholar
  69. Malama S, Muma J, Munyeme M et al (2014) Isolation and molecular characterization of Mycobacterium tuberculosis from humans and cattle in Namwala District, Zambia. Ecohealth 11(4):564–570PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mariner JC, House JA, Mebus CA et al (2012) Rinderpest eradication: Appropriate technology and social innovations. Science 337(6100):1309–1312PubMedCrossRefGoogle Scholar
  71. Mateos ANA, Dominguez L, Vidal D et al (1996) Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals : A tool for studying epidemiology of tuberculosis. J Clin Microbiol 34:2734–2740PubMedPubMedCentralGoogle Scholar
  72. Mathema B, Kurepina NE, Bifani PJ et al (2006) Molecular epidemiology of tuberculosis: Current insights. Clin Microbiol Rev 19:658–685PubMedPubMedCentralCrossRefGoogle Scholar
  73. McKenna A (2011) The history of Southern Africa Britannica guide to Africa. Rosen, New York, p 220Google Scholar
  74. Michel AL, Hlokwe TM, Coetzee ML et al (2008) High Mycobacterium bovis genetic diversity in a low prevalence setting. Vet Microbiol 126:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  75. Michel AL, Coetzee ML, Keet DF et al (2009) Molecular epidemiology of Mycobacterium bovis isolates from free-ranging wildlife in South African game reserves. Vet Microbiol 133:335–343PubMedCrossRefPubMedCentralGoogle Scholar
  76. More S, Good M (2006) The tuberculosis eradication programme in Ireland: A review of scientific and policy advances since 1988. Vet Microbiol 112(2–4):239–251PubMedCrossRefGoogle Scholar
  77. Mostowy S, Cousins D, Brinkman J et al (2002) Genomic deletions suggests phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186(1):74–80PubMedCrossRefGoogle Scholar
  78. Müller B, Steiner B, Bonfoh B et al (2008) Molecular characterisation of Mycobacterium bovis isolated from cattle slaughtered at the Bamako Abattoir in Mali. BMC Vet Res 4:26PubMedPubMedCentralCrossRefGoogle Scholar
  79. Müller B, Hilty M, Berg S et al (2009) African 1, an epidemiologically important clonal complex of Mycobacterium bovis dominant in Mali, Nigeria, Cameroon, and Chad. J Bacteriol 191:1951–1960PubMedPubMedCentralCrossRefGoogle Scholar
  80. Müller B, Dürr S, Alonso S et al (2013) Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis 19:899–908PubMedPubMedCentralCrossRefGoogle Scholar
  81. Muma JB, Syakalima M, Munyeme M et al (2013) Bovine tuberculosis and brucellosis in traditionally managed livestock in selected districts of Southern Province of Zambia. Vet Med Int. CrossRefGoogle Scholar
  82. Munyeme M, Muma JB, Skjerve E et al (2008) Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia. Prev Vet Med 85:317–328PubMedCrossRefPubMedCentralGoogle Scholar
  83. Munyeme M, Muma J, Samui K et al (2009a) Prevalence of bovine tuberculosis and animal level risk factors for indigenous cattle under different grazing strategies in the livestock/wildlife interface areas of Zambia. Trop Anim Health Prod 41(3):345–352PubMedCrossRefPubMedCentralGoogle Scholar
  84. Munyeme M, Rigouts L, Shamputa IC et al (2009b) Isolation and characterization of Mycobacterium bovis strains from indigenous Zambian cattle using spacer oligonucleotide typing technique. BMC Microbiol 9:144PubMedPubMedCentralCrossRefGoogle Scholar
  85. Musoke J, Hlokwe T, Marcotty T et al (2015) Spillover of Mycobacterium bovis from wildlife to livestock, South Africa. Emerg Infect Dis 21:448–451PubMedPubMedCentralCrossRefGoogle Scholar
  86. Muwonge A, Johansen TB, Vigdis E et al (2012) Mycobacterium bovis infections in slaughter pigs in Mubende district, Uganda: a public health concern. BMC Vet Res 8:168PubMedPubMedCentralCrossRefGoogle Scholar
  87. Muwonge A, Kankya C, Olea-Popelka F et al (2013) Molecular investigation of multiple strain infections in patients with tuberculosis in Mubende District, Uganda. Infect Genet Evol 17:16–22PubMedCrossRefGoogle Scholar
  88. Muwonge A, Motto P, Nkongho EF et al (2016) Predicting cattle movement networks: Mycobacterium bovis spatial-genotyping versus gravity modelling. Paper presented at The Colorado Mycobacteria Conference 2016, Fort Collins, United States, 7 June 16, Accessible here
  89. Neill SD, Skuce R, Pollock JM (2005) Tuberculosis—new light from an old window. J Appl Microbiol 98:1261–1269PubMedCrossRefGoogle Scholar
  90. O’Brien R, Danilowicz BS, Bailey L et al (2000) Characterization of the Mycobacterium bovis restriction fragment length polymorphism DNA probe pUCD and performance comparison with standard methods. J Clin Microbiol 38:3362–3369PubMedPubMedCentralGoogle Scholar
  91. Oloya J, Kazwala R, Lund A et al (2007) Characterisation of mycobacteria isolated from slaughter cattle in pastoral regions of Uganda. BMC Microbiol 7:95PubMedPubMedCentralCrossRefGoogle Scholar
  92. Oloya J, Opuda-Asibo J, Kazwala R et al (2008) Mycobacteria causing human cervical lymphadenitis in pastoral communities in the Karamoja region of Uganda. Epidemiol Infect 136:636–643PubMedCrossRefPubMedCentralGoogle Scholar
  93. Olson J (1996) The peoples of Africa: An ethnohistorical dictionary, 1st edn. Greenwood, Santa Barbara, CA, pp 2–45Google Scholar
  94. Perry BD, Grace D, Sones K (2011) Livestock and global change special feature: Current drivers and future directions of global livestock disease dynamics. Proc Natl Acad Sci USA 110:20871–20877PubMedCrossRefPubMedCentralGoogle Scholar
  95. Razanamparany VR, Quirin R, Rapaoliarijaona A et al (2006) Usefulness of restriction fragment length polymorphism and spoligotyping for epidemiological studies of Mycobacterium bovis in Madagascar: Description of new genotypes. Vet Microbiol 114:115–122CrossRefGoogle Scholar
  96. Reyes JF, Tanaka MM (2010) Mutation rates of spoligotypes and variable numbers of tandem repeat loci in Mycobacterium tuberculosis. Infect Genet Evol 10:1046–1051PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rigouts L, Maregeya B, Traore H et al (1996) Use of DNA restriction fragment typing in the differentiation of Mycobacterium tuberculosis complex isolates from animals and humans in Burundi. Tuber Lung Dis 77:264–268PubMedCrossRefGoogle Scholar
  98. Roring S, Scott A, Brittain D et al (2002) Development of variable-number tandem repeat typing of Mycobacterium bovis: Comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol 40:2126–2133PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sabat AJ, Budimir A, Nashev D et al (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18(4):20380. PubMedCrossRefPubMedCentralGoogle Scholar
  100. Sahraoui N, Müller B, Guetarni D et al (2009) Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria. BMC Vet Res 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sanou A, Tarnagda Z, Kanyala E et al (2014) Mycobacterium bovis in Burkina Faso: Epidemiologic and genetic links between human and cattle isolates. PLoS Negl Trop Dis 8:e3142PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schulte P, Perera F (1993) Molecular epidemiology: Principals and practices. In: Schulte P (ed) Concepts and historical frameworks for molecular epidemiology, 1st edn. Academic, San Diego, CA, p 608Google Scholar
  103. Selander RK, Caugant DA, Ochman H (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884PubMedPubMedCentralGoogle Scholar
  104. Seva J, Sanes JM, Ramis G et al (2014) Evaluation of the single cervical skin test and interferon gamma responses to detect Mycobacterium bovis infected cattle in a herd co-infected with Mycobacterium avium subsp. paratuberculosis. Vet Microbiol 171:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  105. Smith NH, Gordon SV, de la Rua-Domenech R et al (2006) Bottlenecks and broomsticks: The molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681PubMedCrossRefGoogle Scholar
  106. Smith NH, Berg S, Dale J, Allen A et al (2011) European 1: A globally important clonal complex of Mycobacterium bovis. Infect Genet Evol 11:1340–1345PubMedCrossRefPubMedCentralGoogle Scholar
  107. Staal SJ, Nin Pratt A, Jabbar MA (2008) Dairy development for the resource poor. Part 2: Kenya and Ethiopia. Dairy development case studies.
  108. Stackyard (2009) South African Breeds. Accessed 29 July 2015
  109. Sunder S, Lanotte P, Godreuil S et al (2009) Human-to-human transmission of tuberculosis caused by Mycobacterium bovis in immunocompetent patients. J Clin Microbiol 47:1249–1251PubMedPubMedCentralCrossRefGoogle Scholar
  110. Supply P, Allix C, Lesjean S et al (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510PubMedPubMedCentralCrossRefGoogle Scholar
  111. SWAC (2007) Promoting and supporting change in transhumant pastoralism in the Sahel and West Africa. OECD, Paris, pp 2–4. Google Scholar
  112. Tambi EN, Maina OW, Mukhebi AW et al (1999) Economic impact assessment of rinderpest control in Africa. Rev Sci Tech 18:458–477PubMedCrossRefGoogle Scholar
  113. Taneja VK (1999) Chapter 5: Dairy breeds and selection. In: Falvey L, Chantalakhana C (eds) Smallholder dairying in the tropics,. pp 71. ILRI (International Livestock Research Institute), NairobiGoogle Scholar
  114. Tawah C, Rege J, Aboagye S (1997) A close look at a rare African breed—The Kuri cattle of Lake Chad Basin: Origin, distribution, production and adaptive characteristics. Afr J Anim Sci 27:31–40Google Scholar
  115. Taylor GM, Murphy E, Hopkins R et al (2007) First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiology 153:1243–1249PubMedCrossRefGoogle Scholar
  116. Van der Zanden AGM, Kremer K, Schouls LM et al (2002) Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol 40(12):4628–4639PubMedPubMedCentralCrossRefGoogle Scholar
  117. Van Embden JDA, van Soolingen D, Small PM et al (1992) Genetic markers for the epidemiology of tuberculosis. Res Microbiol 143:385–391PubMedCrossRefGoogle Scholar
  118. Van Embden JDA, Cave MD, Crawford JT et al (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J Clin Microbiol 31:406–409PubMedPubMedCentralGoogle Scholar
  119. Van Soolingen D, de Haas P, Hermans P et al (1994) DNA fingerprinting of Mycobacterium tuberculosis. Methods Enzymol 235:196–205PubMedCrossRefGoogle Scholar
  120. Yang ZH, Ijaz K, Bates JH et al (2000) Spoligotyping and polymorphic GC-rich repetitive sequence fingerprinting of Mycobacterium tuberculosis strains having few copies of IS6110. J Clin Microbiol 38:3572–3576PubMedPubMedCentralGoogle Scholar
  121. Zeleza T (1993) A modern economic history of Africa: The nineteenth century, 1st edn. East African Educational Publisher, Nairobi, p 51Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adrian Muwonge
    • 1
    Email author
  • Franklyn Egbe
    • 2
  • Mark Bronsvoort
    • 3
  • Demelash B. Areda
    • 4
    • 5
  • Tiny Hlokwe
    • 6
  • Anita Michel
    • 7
  1. 1.The Roslin Institute, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburgh, MidlothianUK
  2. 2.Microbiology and Parasitology Unit, Faculty of Allied Medical SciencesUniversity of CalabarCalabarNigeria
  3. 3.Genetics and GenomicsRoslin InstituteEdinburgh, MidlothianUK
  4. 4.College of Science Engineering and Technology (CSET)Grand Canyon UniversityPhoenixUSA
  5. 5.Department of Biological SciencesMinnesota State University, MankatoMankatoUSA
  6. 6.Zoonotic Diseases SectionARC-Onderstepoort Veterinary InstituteOnderstepoortSouth Africa
  7. 7.Department Veterinary Tropical Diseases, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa

Personalised recommendations