Advertisement

The Control of Mycobacterium bovis Infections in Africa: A One Health Approach

  • S. I. B. Cadmus
  • P. I. Fujiwara
  • J. A. Shere
  • B. Kaplan
  • C. O. Thoen
Chapter

Abstract

Bovine tuberculosis (BTB) and zoonotic tuberculosis (zTB) caused by Mycobacterium bovis remain global problems, and the diseases are a threat to the health and welfare of humans, livestock, and wildlife. It is estimated that 28% of all cases of human TB, a proportion of which is caused by M. bovis, occurs in Africa, and this may be an underestimation of the number of cases. This situation prevails because of the poor diagnostics and limited data available on BTB in most of the African countries because of the lack of human and financial resources and of the will of politicians to implement BTB and zoonotic TB control programs. Data about the prevalence of zoonotic TB are equally scant and incomplete due to the poor diagnostic capacity and lack of surveillance for the disease, and the actual number of cases may exceed current estimates by far. Zoonotic TB may be far more prevalent than expected because of the extensive consumption of raw milk and cohabitation with cattle and other livestock that carry the infection. The ability in Africa to control both BTB and zBT is hampered by numerous factors including the presence of an increasing number of wildlife maintenance hosts of M. bovis that complicates controlling the disease even further. To deal with the threat of the diseases, and to be aligned with the international objectives of globally eradicating human and animal TB, African authorities will have to take concrete steps to do so. Their activities should be based on the principles of One Health that promote an integrated multidisciplinary approach with intergovernmental collaboration and global support, strengthened by joint medical and veterinary training programs, private–public partnerships, awareness programs, and focused research. These matters are discussed in this chapter.

Keywords

Bovine tuberculosis Mycobacterium bovis Control Eradication One Health Zoonosis Zoonotic TB Africa Policy 

Notes

Acknowledgment

Partial funding support received by Simeon Cadmus from the John D. and Catherine T. MacArthur Foundation, USA, under the Higher Education Initiative in Africa (Grant No. 97944-0-800/406/99) for the establishment of the Center of Control and Prevention of Zoonoses (CCPZ) at the University of Ibadan is acknowledged.

References

  1. Adesokan HK, Jenkins AO, van Soolingen D et al (2012) Mycobacterium bovis infection in livestock workers in Ibadan, Nigeria: evidence of occupational exposure. Int J Tuberc Lung Dis 16(10):1388–1392CrossRefGoogle Scholar
  2. Anon (1932) Bovine tuberculosis and human health. Am J Public Health 22(8):840–843CrossRefGoogle Scholar
  3. AU-IBAR (2013) Tuberculosis. http://www.au-ibar.org/tuberculosis. Accessed 28 July 2016
  4. Ayele WY, Neill SD, Zinsstag J et al (2004) Bovine tuberculosis: an old disease but a new threat to Africa. Int J Tuberc Lung Dis 8:924–937Google Scholar
  5. Brosh R, Gordon SV, Marmiesse VM et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689CrossRefGoogle Scholar
  6. Cadmus S, Palmer S, Okker M et al (2006) Molecular analysis of human and bovine tubercle bacilli from a local setting in Nigeria. J Clin Microbiol 44:29–34CrossRefGoogle Scholar
  7. Cosivi O, Grange JM, Daborn CJ et al (1998) Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4:59–70CrossRefGoogle Scholar
  8. Daniel R, Evans H, Rolfe S et al (2009) Outbreak of tuberculosis caused by Mycobacterium bovis in golden Guernsey goats in Great Britain. Vet Rec 165:335–342CrossRefGoogle Scholar
  9. de Garine-Wichatitsky M, Caron A, Kock R et al (2013) A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidemiol Infect 141(7):1342–1356CrossRefGoogle Scholar
  10. de Lisle GW, Bengis RG, Schmitt SM et al (2002) Tuberculosis in free-ranging wildlife: detection, diagnosis and management. Rev Sci Tech 21(2):317–334CrossRefGoogle Scholar
  11. Egbe NF, Muwonge A, Ndip L et al (2016) Abattoir-based estimates of mycobacterial infections in Cameroon. Sci Rep 6:24320CrossRefGoogle Scholar
  12. El Idrissi A, Parker E (2012) Bovine tuberculosis at the animal-human-ecosystem interface. EMPRES Transb Anim Dis Bull 40:2–11Google Scholar
  13. Etchechoury I, Valencia GE, Morcillo N et al (2010) Molecular typing of Mycobacterium bovis isolates in Argentina: first description of a person-to-person transmission case. Zoonoses Public Health 57:375–381CrossRefGoogle Scholar
  14. EU (2016) EU response to the Ebola outbreak in West Africa. European Commission-Fact Sheet. https://europa.eu/newsroom/highlights/special-coverage/ebola_en. Accessed 9 June 2016
  15. Evans JT, Smith EG, Banerjee A et al (2007) Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK. Lancet 369:1270–1276CrossRefGoogle Scholar
  16. Gibson AL, Hewinson G, Goodchild T et al (2004) Molecular epidemiology of disease due to Mycobacterium bovis in humans in the United Kingdom. J Clin Microbiol 42:431–434CrossRefGoogle Scholar
  17. Godreuil S, Jeziorski E, Banuls AL et al (2010) Intrafamilial cluster of pulmonary tuberculosis due to Mycobacterium bovis of the African 1 clonal complex. J Clin Microbiol 48:4680–4683CrossRefGoogle Scholar
  18. Gortázar C, Delahay RJ, McDonald RA et al (2012) The status of tuberculosis in European wild mammals. Mammal Rev 42:193–206CrossRefGoogle Scholar
  19. Green A (2006) Experts recognise zoonotic TB. Lancet Respir Med 4:433CrossRefGoogle Scholar
  20. Hiko A, Agga GE (2011) First-time detection of Mycobacterium species from goats in Ethiopia. Trop Anim Health Prod 43:133–139CrossRefGoogle Scholar
  21. Hlavsa MC, Moonan PK, Cowan LS et al (2008) Human tuberculosis due to Mycobacterium bovis in the United States, 1995–2005. Clin Infect Dis 47:168–175CrossRefGoogle Scholar
  22. Houlihan MG, Williams SJ, Poff JD (2008) Mycobacterium bovis isolated from a sheep during routine surveillance. Vet Rec 163:94–95CrossRefGoogle Scholar
  23. IUATLD (2015) International Union Against Tuberculosis and Lung Disease: world conference on lung health in Cape Town, South Africa, 2–6 December, 2015. http://edition.cnn.com/2015/12/23/health/tuberculosis-from-animals/index.html
  24. Jenkins AO, Cadmus SI, Venter EH et al (2011) Molecular epidemiology of human and animal tuberculosis in Ibadan, Southwestern Nigeria. Vet Microbiol 151:139–147CrossRefGoogle Scholar
  25. Kaneene JB, Kaplan B, Steele JH et al (2014a) One Health approach for preventing and controlling tuberculosis in animals and humans. In: Thoen CO, Steele JH, Kaneene JB (eds) Zoonotic tuberculosis – Mycobacterium bovis and other pathogenic mycobacteria. Wiley-Blackwell, Ames, IA, pp 9–20CrossRefGoogle Scholar
  26. Kaneene JB, Miller RA, Kaplan B et al (2014b) Preventing and controlling zoonotic tuberculosis: a One Health approach. Vet Ital 50(1):7–22PubMedGoogle Scholar
  27. Kriek N (2014) Tuberculosis in animals in South Africa. In: Thoen O, Steele JH, Kaneene JB (eds) Zoonotic tuberculosis: Mycobacterium bovis and other pathogenic mycobacteria, 3rd edn. Wiley-Blackwell, Ames, IA, pp 99–108CrossRefGoogle Scholar
  28. Kudi AC, Bello A, Ndukum JA (2012) Prevalence of bovine tuberculosis in camels in Northern Nigeria. J Camel Pract Res 19:81–86Google Scholar
  29. LoBue PA, Betancourt W, Cowan L et al (2004) Identification of a familial cluster of pulmonary Mycobacterium bovis disease. Int J Tuberc Lung Dis 8:1142–1146PubMedGoogle Scholar
  30. Majoor CJ, Magis-Escurra C, van Ingen J et al (2011) Epidemiology of Mycobacterium bovis disease in humans, The Netherlands, 1993–2007. Emerg Infect Dis 17:457–463CrossRefGoogle Scholar
  31. Mazet JAK, Clifford DL, Coppolillo PB et al (2009) A “One Health” approach to address emerging zoonoses: the HALI project in Tanzania. PLoS Med 6(12):e1000190CrossRefGoogle Scholar
  32. Mendoza MM, de Juan L, Menéndez S et al (2012) Tuberculosis due to Mycobacterium bovis and Mycobacterium caprae in sheep. Vet J 191:267–269CrossRefGoogle Scholar
  33. Michel AL, Bengis RG, Keet DF et al (2006) Wildlife tuberculosis in South African conservation areas: implications and challenges. Vet Microbiol 112(2–4):91–100CrossRefGoogle Scholar
  34. Mignard S, Pichat C, Carret G (2006) Mycobacterium bovis infection, Lyon, France. Emerg Infect Dis 12:1431–1433CrossRefGoogle Scholar
  35. Miller R, Kaneene JB, Schmitt SM et al (2007) Spatial analysis of Mycobacterium bovis infection in white-tailed deer (Odocoileus virginianus) in Michigan, USA. Prev Vet Med 82:111–122CrossRefGoogle Scholar
  36. Moiane I, Machado A, Santos N et al (2014) Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro district in the Southeast of Mozambique. PLoS One 9(3):e91527CrossRefGoogle Scholar
  37. Monath TP, Kahn LH, Kaplan B (2010) Introduction: One Health perspective. ILAR J 51:193–198CrossRefGoogle Scholar
  38. Müller B, Dürr S, Alonso S et al (2013) Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis 19:899–908CrossRefGoogle Scholar
  39. Munyeme M, Muma JB, Skjerve E et al (2008) Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia. Prev Vet Med 85:317–328CrossRefGoogle Scholar
  40. Naima S, Borna M, Bakir M et al (2011) Tuberculosis in cattle and goats in the north of Algeria. Vet Res 4(4):100–103Google Scholar
  41. Olea-Popelka F, Muwonge A, Perera A et al (2016) Zoonotic tuberculosis in human beings caused by Mycobacterium bovis – a call for action. Lancet Infect Dis 17(1):e21–e25CrossRefGoogle Scholar
  42. Oloya J, Opuda-Asibo J, Kazwala R et al (2008) Mycobacteria causing human cervical lymphadenitis in pastoral communities in the Karamoja region of Uganda. Epidemiol Infect 11(136):636–643CrossRefGoogle Scholar
  43. Palmer MV, Thacker TC, Waters WR et al (2012) Mycobacterium bovis: a model pathogen at the interface of livestock, wildlife, and humans. Vet Med Int 2012:236205, 17.  https://doi.org/10.1155/2012/236205 CrossRefGoogle Scholar
  44. Perez-Guerrero L, Milian-Suazo F, Arriaga-Diaz C et al (2008) Molecular epidemiology of cattle and human tuberculosis in Mexico. Salud Publica Mex 50:286–291CrossRefGoogle Scholar
  45. Perez-Lago L, Navarro Y, Garciav de Viedma D (2014) Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: a review. Res Vet Sci 97:S94–S100CrossRefGoogle Scholar
  46. Porphyre T, Stevenson MA, McKenzie J (2008) Risk factors for bovine tuberculosis in New Zealand cattle farms and their relationship with possum control strategies. Prev Vet Med 86(1–2):93–106CrossRefGoogle Scholar
  47. Radunz B (2006) Surveillance and risk management during the latter stages of eradication: experiences from Australia. Vet Microbiol 112:283–290CrossRefGoogle Scholar
  48. Renwick AR, White PC, Bengis RG (2007) Bovine tuberculosis in southern African wildlife: a multi-species host–pathogen system. Epidemiol Infect 135:529–540CrossRefGoogle Scholar
  49. Rodwell TC, Moore M, Moser KS et al (2008) Tuberculosis from Mycobacterium bovis in binational communities, United States. Emerg Infect Dis 14:909–916CrossRefGoogle Scholar
  50. Roger F (2012) Control of zoonotic diseases in Africa and Asia. The contribution of research to One Health. Perspect Policy Brief 18:4Google Scholar
  51. Roth F, Zinsstag J, Orkhon D et al (2003) Human health benefits from livestock vaccination for brucellosis: case study. Bull World Health Organ 81:867–876PubMedGoogle Scholar
  52. Siembieda JL, Kock RA, McCracken TA et al (2011) The role of wildlife in transboundary animal diseases. Anim Health Res Rev 12:95–111CrossRefGoogle Scholar
  53. Smith NH, Kremer K, Inwald J et al (2006) Ecotypes of the Mycobacterium tuberculosis complex. J Theor Biol 239(2):220–225CrossRefGoogle Scholar
  54. Stone MJ, Brown TJ, Drobniewski FA (2012) Human Mycobacterium bovis infections in London and Southeast England. J Clin Microbiol 50:164–168CrossRefGoogle Scholar
  55. Stop TB Partnership (2015) Global plan to end TB 2016–2020 – the paradigm shift. http://www.stoptb.org/assets/documents/global/plan/GlobalPlanToEndTB_TheParadigmShift_2016-2020_StopTBPartnership.pdf. Accessed 29 May 2016
  56. Sunder S, Lanotte P, Godreuil S et al (2009) Human-to-human transmission of tuberculosis caused by Mycobacterium bovis in 11 immunocompetent patients. J Clin Microbiol 47:1249–1251CrossRefGoogle Scholar
  57. Thoen CO, LoBue PA (2007) Mycobacterium bovis tuberculosis: forgotten, but not gone. Lancet 369:1236–1238CrossRefGoogle Scholar
  58. Thoen CO, LoBue PA, Enarson DA et al (2009) Tuberculosis: a re-emerging disease in animals and humans. Vet Ital 45(1):135–181PubMedGoogle Scholar
  59. Thoen CO, LoBue P, de Kantor I (2010) Why has zoonotic tuberculosis not received much attention? Int J Tuberc Lung Dis 14(9):1073–1074PubMedGoogle Scholar
  60. Thoen CO, Kaplan B, Thoen TC et al (2016) Zoonotic tuberculosis: a comprehensive One Health approach. Medicina (B Aires) 76:159–165Google Scholar
  61. Torres-Gonzalez P, Soberanis-Ramos O, Martinez-Gamboa A et al (2013) Prevalence of latent and active tuberculosis among dairy farm workers exposed to cattle infected by Mycobacterium bovis. PLoS Negl Trop Dis 7(4):e2177CrossRefGoogle Scholar
  62. UN (2015) Sustainable development goals. http://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed 30 May 2016
  63. UNDP/HDRO (2013) United Nations Development Programme, pp 144–147Google Scholar
  64. WHO (2015a) WHO estimates of the global burden of foodborne diseases. Geneva: WHO, Foodborne diseases burden epidemiology reference group 2007–2015. http://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/. Accessed 24 Aug 2016
  65. WHO (2015b) WHO end TB strategy. http://who.int/tb/post2015_TBstrategy.pdf?ua=1. Accessed 6 Nov 2015
  66. WHO (2015c) End TB strategy (WHO/HTM/TB/2015.19). http://who.int/tb/post2015_TBstrategy.pdf?ua=1. Accessed 6 Nov 2015
  67. WHO (2016a) World Health Organization global tuberculosis report. http://www.who.int/tb/; http://www.who.int/tb/publications/global_report/en/. Accessed 17 Oct 2016
  68. WHO (2016b) Strategic and Technical Advisory Group for Tuberculosis (STAG-TB) Report of the 16th Meeting of the Strategic and Technical Advisory Group for Tuberculosis (STAG-TB), 13–15 June, 2016. WHO Headquarters, Geneva, pp 21–22. http://www.who.int/tb/advisory_bodies/stag_tb_report_2016.pdf?ua=1. Accessed 26 Jan 2017
  69. WHO (2017) Roadmap for zoonotic tuberculosis. http://apps.who.int/iris/bitstream/10665/259229/1/9789241513043-eng.pdf. Accessed 20 Mar 2018
  70. WHO-FAO (1994) Zoonotic tuberculosis (Mycobacterium bovis): memorandum from a WHO meeting (with the participation of FAO). Bull World Health Organ 72:851–857Google Scholar
  71. Zinsstag J, Schelling E, Wyss K et al (2005) Potential of cooperation between human and animal health to strengthen health systems. Lancet 366:2142–2145CrossRefGoogle Scholar
  72. Zinsstag J, Dürr S, Penny MA et al (2009) Transmission dynamics and economics of rabies control in dogs and humans in an African city. Proc Natl Acad Sci U S A 106(35):14996–15001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. I. B. Cadmus
    • 1
  • P. I. Fujiwara
    • 2
  • J. A. Shere
    • 3
  • B. Kaplan
    • 4
  • C. O. Thoen
  1. 1.University of IbadanIbadanNigeria
  2. 2.International Union Against Tuberculosis and Lung Disease (IUATLD)ParisFrance
  3. 3.United States Department of AgricultureWashington, DCUSA
  4. 4.One Health InitiativeSarasotaUSA

Personalised recommendations