The Changing Landscape of Bovine Tuberculosis in Tanzania

  • Bugwesa Z. Katale
  • Hezron E. Nonga
  • Rudovick R. Kazwala


The herd prevalence of BTB in cattle in Tanzania ranges from 0.2 to 13.2%, and M. bovis has also been isolated from a range of wildlife species and from humans. Despite the apparent current low prevalence of M. bovis in cattle in the country, there are known foci of infection and a large variety of M. bovis strains circulating in the population. This large variety of strains is assumed to be the consequence of the extensive and unrestricted traditional pastoral migratory movement of cattle in rural areas and, more recently, the establishment of M. bovis-infected wildlife reservoirs. Hitherto, the control and eradication of BTB infection in Tanzania have been impeded by the complexity of the traditional husbandry practices and the lack of application of the test-and-slaughter policy as the disease is considered to have little impact on livestock economics in Tanzania. However, because of its BTB-positive status, the country is subject to the international restrictions on trade with M. bovis-infected animals and animal products, and this has a negative impact on potential income from this source. In addition, given the zoonotic implications of BTB for people who are exposed to the infection, critical assessment of the situation is required, and the current policies governing the control of the diseases should be reassessed.

In this chapter, we review the current status of BTB in livestock and wildlife, the risk factors that influence the transmission of the infection, the mycobacterial genetic diversity, and the challenges facing the regulatory authorities to control the disease in Tanzania.


Bovine tuberculosis M. bovis Genetic diversity Prevalence Risk factors Tanzania Wildlife Zoonotic tuberculosis 


  1. Ameni G, Erkihun A (2007) Bovine tuberculosis on small-scale dairy farms in Adama Town, Central Ethiopia, and farmer awareness of the disease. Rev Sci Tech 26(3):711–719CrossRefGoogle Scholar
  2. Ameni G, Amenu K, Tibbo M (2002) Prevalence and risk factor assessment in cattle and cattle owners in Wuchale-Jida District, Central Ethiopia. Int J Appl Res Vet Med 1(1):17–26Google Scholar
  3. Asiimwe BB, Bagyenzi GB, Ssengooba W et al (2013) Species and genotypic diversity of non-tuberculous mycobacteria isolated from children investigated for pulmonary tuberculosis in rural Uganda. BMC Infect Dis 13:88CrossRefGoogle Scholar
  4. Berg S, Garcia-Pelayo MC, Muller B et al (2011) African 2, a clonal complex of Mycobacterium bovis epidemiologically important in East Africa. J Bacteriol 193:670–678CrossRefGoogle Scholar
  5. Brosch R, Gordon S, Marmiesse M et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99:3684–3689CrossRefGoogle Scholar
  6. Cadmus S, Agada C, Onoja I et al (2010) Risk factors associated with bovine tuberculosis in some selected herds in Nigeria. Trop Anim Health Prod 42(4):547–549CrossRefGoogle Scholar
  7. Cleaveland S, Mlengeya T, Kazwala RR et al (2005) Tuberculosis in Tanzanian wildlife. J Wildl Dis 41:446–453CrossRefGoogle Scholar
  8. Cleaveland S, Shaw DJ, Mfinanga SG et al (2007) Mycobacterium bovis in rural Tanzania: risk factors for infection in human and cattle populations. Tuberculosis 87:30–43CrossRefGoogle Scholar
  9. Cosivi O, Grange J, Daborn C et al (1998) Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 4:59–70CrossRefGoogle Scholar
  10. de Garine-Wichatitsky M, Fritz H, Chaminuka P et al (2013) Consequences of animals crossing the edges of transfrontier parks. In: Andersson JA, de Garine-Wichatitsky M, Cumming DHM et al (eds) Transfrontier conservation areas: people living on the edge. Earthscan, London, pp 137–162Google Scholar
  11. de Lisle GW, Mackintosh CG, Bengis RG (2001) Mycobacterium bovis in free-living and captive wildlife, including farmed deer. Rev Sci Tech 20:86–111CrossRefGoogle Scholar
  12. Durnez L, Sadiki H, Katakweba A et al (2009) The prevalence of Mycobacterium bovis infection and atypical mycobacterioses in cattle in and around Morogoro, Tanzania. Trop Anim Health Prod 41(8):1653–1659CrossRefGoogle Scholar
  13. Fitzgerald SD, Kaneene JB (2013) Wildlife reservoirs of bovine tuberculosis worldwide: hosts, pathology, surveillance, and control. Vet Pathol 50(3):488–499CrossRefGoogle Scholar
  14. Garnier T, Eiglmeier K, Camus J-C et al (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882CrossRefGoogle Scholar
  15. Han XY, Tarrand JJ, Infante R et al (2005) Clinical significance and epidemiologic analyses of Mycobacterium avium and Mycobacterium intracellulare among patients without AIDS. J Clin Microbiol 43:4407–4412CrossRefGoogle Scholar
  16. Hoefsloot W, van Ingen J, Andrejak C et al (2013) The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 42(6):1604–1613CrossRefGoogle Scholar
  17. Kaneene JB, Bruning-Fann CS, Granger LM et al (2002) Environmental and farm management factors associated with tuberculosis on cattle farms in northeastern Michigan. J Am Vet Med Assoc 221(6):837–842CrossRefGoogle Scholar
  18. Katale BZ, Mbugi EV, Kendal S et al (2012) Bovine tuberculosis at the human-livestock-wildlife interface: is it a public health problem in Tanzania? A review. Onderstepoort J Vet Res 79(2):463. CrossRefPubMedGoogle Scholar
  19. Katale BZ, Mbugi EV, Karimuribo ED et al (2013) Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Vet Res 9:267CrossRefGoogle Scholar
  20. Katale BZ, Mbugi EV, Botha L et al (2014) Species diversity of non-tuberculous mycobacteria isolated from humans, livestock and wildlife in the Serengeti ecosystem, Tanzania. BMC Infect Dis 14:616CrossRefGoogle Scholar
  21. Katale BZ, Mbugi EV, Siame K et al (2015) Isolation and potential for transmission of Mycobacterium bovis at human-livestock-wildlife interface of the Serengeti ecosystem, northern Tanzania. Transbound Emerg Dis 64(3):815–825. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kazwala RR (1996) Molecular epidemiology of bovine tuberculosis in Tanzania. PhD thesis, University of Edinburgh, EdinburghGoogle Scholar
  23. Kazwala RR, Daborn CJ, Kusiluka LJ et al (1998) Isolation of Mycobacterium species from raw milk of pastoral cattle of the Southern Highlands of Tanzania. Trop Anim Health Prod 30:233–239CrossRefGoogle Scholar
  24. Kazwala RR, Kambarage DM, Daborn CJ et al (2001) Risk factors associated with the occurrence of bovine tuberculosis in cattle in the Southern Highlands of Tanzania. Vet Res Commun 25:609–614CrossRefGoogle Scholar
  25. Kazwala RR, Kusiluka LJM, Sinclair K et al (2006) The molecular epidemiology of Mycobacterium bovis infections in Tanzania. Vet Microbiol 112:201–210CrossRefGoogle Scholar
  26. Makondo EZ (2013) Mycobacterial infection in the livestock and wildlife interface of Katavi Rukwa ecosystem, Tanzania. International congress on bacteriology and infectious diseases, OMICS Group, Baltimore, USA, November 20–22Google Scholar
  27. Makondo ZE, Kazwala RR, Mwakapuja RS et al (2014) Nontuberculous mycobacterial infections in Katavi Rukwa ecosystems. J Agr Sci Tech B 4:215–223Google Scholar
  28. Markham AEG (1952) Bovine tuberculosis in the Southern Highlands Province of Tanganyika. PhD thesis, University of LondonGoogle Scholar
  29. Mdegela RH, Kusiluka LJM, Kapaga AM et al (2004) Prevalence and determinants of mastitis and milk-borne zoonoses in smallholder dairy farming sector in Kibaha and Morogoro districts in eastern Tanzania. Vet J Series B 51:123–128CrossRefGoogle Scholar
  30. Mfinanga SGM, Morkve O, Kazwala RR et al (2004) Mycobacterial adenitis: role of Mycobacterium bovis, non-tuberculous mycobacteria, HIV infection, and risk factors in Arusha, Tanzania. East Afr Med J 81:171–178CrossRefGoogle Scholar
  31. Morrison WI, Bourne FJ, Cox DR et al (2004) Potential use of vaccination in cattle or badgers to control bovine tuberculosis. Dev Biol (Basel) 119:351–359Google Scholar
  32. Munyeme M, Muma JB, Skjerve E et al (2008) Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia. Prev Vet Med 3(4):317–328CrossRefGoogle Scholar
  33. Mwakapuja RS, Makondo ZE, Malakalinga J et al (2013a) Prevalence and significant geospatial clusters of bovine tuberculosis infection at livestock–wildlife interface ecosystem in eastern Tanzania. Trop Anim Health Prod 44(8).–11252
  34. Mwakapuja RS, Makondo ZE, Malakalinga J et al (2013b) Molecular characterization of Mycobacterium bovis isolates from pastoral livestock at Mikumi-Selous ecosystem in the eastern Tanzania. Tubercle 93:668–674CrossRefGoogle Scholar
  35. Mwikuma G, Kwenda G, Hang’ombe BM et al (2015) Molecular identification of non-tuberculous mycobacteria isolated from clinical specimens in Zambia. Ann Clin Microbiol Antimicrob 14(1). CrossRefGoogle Scholar
  36. Nishiuchi Y, Maekura R, Kitada S et al (2007) The recovery of Mycobacterium avium-intracellulare complex (MAC) from the residential bathrooms of patients with pulmonary MAC. Clin Infect Dis 45:347–351CrossRefGoogle Scholar
  37. Nugent G (2011) Maintenance, spillover and spillback transmission of bovine tuberculosis in multi-host wildlife complexes: a New Zealand case study. Vet Microbiol 151:34–42CrossRefGoogle Scholar
  38. Palmer MV, Thacker TC, Waters RW et al (2012) Mycobacterium bovis: a model pathogen at the interface of livestock, wildlife, and humans. Vet Med Int 236205, pp 17Google Scholar
  39. Pusic I, Milićević V, Savić S et al (2009) A preliminary trial to evaluate the gamma interferon assay for the detection of tuberculosis in cattle under local conditions in Serbia. Lucrări Stiinłifice Medicină Veterinară 42:125–130Google Scholar
  40. Renwick A, White P, Bengis R (2007) Bovine tuberculosis in southern African wildlife: a multi-species host-pathogen system. A review. Epidemiol Infect 135:529–540CrossRefGoogle Scholar
  41. Shirima GM, Kazwala RR, Kambarage DM (2003) Prevalence of bovine tuberculosis in cattle in different farming systems in Tanzania. Prev Vet Med 57:167–172CrossRefGoogle Scholar
  42. Shojaei H, Heidarieh P, Hashemi A et al (2011) Species identification of neglected nontuberculous mycobacteria in a developing country. Jpn J Infect Dis 64(4):265–271PubMedGoogle Scholar
  43. Smith NH, Berg S, Dale J et al (2011) European 1: a globally important clonal complex of Mycobacterium bovis. Infec Genet Evol 11:1340–1351CrossRefGoogle Scholar
  44. Theon CO, Steele JH, Kaneene JB (2006) Zoonotic tuberculosis: Mycobacterium bovis and other pathogenic mycobacteria, 2nd edn. Blackwell, Chichester, p 338Google Scholar
  45. Waters WR, Palmer MV, Thacker TC et al (2006) Immune responses to defined antigens of Mycobacterium bovis in cattle experimentally infected with Mycobacterium kansasii. Clin Vaccine Immunol 13(6):611–619CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bugwesa Z. Katale
    • 1
  • Hezron E. Nonga
    • 2
  • Rudovick R. Kazwala
    • 2
  1. 1.Tanzania Wildlife Research Institute (TAWIRI)ArushaTanzania
  2. 2.Department of Veterinary Medicine and Public HealthSokoine University of Agriculture (SUA)MorogoroTanzania

Personalised recommendations