The Triumph of Individualism: Evolution of Somatically Generated Adaptive Immune Systems

  • Robert Jack
  • Louis Du Pasquier


The receptors of innate immune systems evolve slowly over time. Those that confer some fitness benefit will be naturally selected, and so become the common property of the succeeding generations. In contrast, the receptors of the so-called adaptive immune systems are generated somatically within each individual, by moving evolution from the level of the germline to that of somatic cells. As a result, each individual ends up with a repertoire of adaptive immune receptors that is as distinctive as are their fingerprints. Unlike the fingerprint, however, the repertoire of adaptive immunity in an individual is constantly changing. Adaptive immune systems come in two fundamentally different forms that differ both in the nature and in the source of the pathogen-sensing element. On the one hand are those immune systems that use nucleic acids as the pathogen sensors. In these cases the sensor is only formed after infection, and the key information needed to build it is derived from the pathogen. On the other hand are those “anticipatory” systems that use proteins as pathogen sensors. Here the sensors have been formed prior to infection with the pathogen, and the information used to form the sensors is entirely host derived.


  1. 1.
    Wang E, Hunter CP (2017) SID-1 functions in multiple roles to support parental RNAi in Caenorhabditis elegans. Genetics 207(2):547–557PubMedPubMedCentralGoogle Scholar
  2. 2.
    Tassetto M, Kunitomi M, Andino R (2017) Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169(2):314–325 e13CrossRefGoogle Scholar
  3. 3.
    Benitez AA et al (2015) Engineered mammalian RNAi can elicit antiviral protection that negates the requirement for the interferon response. Cell Rep 13(7):1456–1466CrossRefGoogle Scholar
  4. 4.
    Schoggins JW et al (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481–485CrossRefGoogle Scholar
  5. 5.
    Adema CM (2015) Fibrinogen-related proteins (FREPs) in mollusks. Results Probl Cell Differ 57:111–129CrossRefGoogle Scholar
  6. 6.
    Pancer Z et al (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430(6996):174–180CrossRefGoogle Scholar
  7. 7.
    Holland SJ et al (2018) Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proc Natl Acad Sci U S A 115(14):E3211–E3220CrossRefGoogle Scholar
  8. 8.
    Han BW et al (2008) Antigen recognition by variable lymphocyte receptors. Science 321(5897):1834–1837CrossRefGoogle Scholar
  9. 9.
    Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A 100(11):6569–6574CrossRefGoogle Scholar
  10. 10.
    Kapitonov VV, Koonin EV (2015) Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 10:20CrossRefGoogle Scholar
  11. 11.
    Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol 3(6):e181CrossRefGoogle Scholar
  12. 12.
    Watson CT, Breden F (2012) The immunoglobulin heavy chain locus: genetic variation, missing data, and implications for human disease. Genes Immun 13(5):363–373CrossRefGoogle Scholar
  13. 13.
    Barclay AN (1999) Ig-like domains: evolution from simple interaction molecules to sophisticated antigen recognition. Proc Natl Acad Sci U S A 96(26):14672–14674CrossRefGoogle Scholar
  14. 14.
    Wardemann H et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301(5638):1374–1377CrossRefGoogle Scholar
  15. 15.
    Rowland SL et al (2010) BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol 185(8):4570–4581CrossRefGoogle Scholar
  16. 16.
    Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7(2):45–49CrossRefGoogle Scholar
  17. 17.
    Lomvardas S et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413CrossRefGoogle Scholar
  18. 18.
    Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11(1):47–59CrossRefGoogle Scholar
  19. 19.
    Suurvali J et al (2014) The proto-MHC of placozoans, a region specialized in cellular stress and ubiquitination/proteasome pathways. J Immunol 193(6):2891–2901CrossRefGoogle Scholar
  20. 20.
    Danchin EG, Pontarotti P (2004) Towards the reconstruction of the bilaterian ancestral pre-MHC region. Trends Genet 20(12):587–591CrossRefGoogle Scholar
  21. 21.
    Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15(3):351–362CrossRefGoogle Scholar
  22. 22.
    Kaufman J (2018) Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol 36:383–409CrossRefGoogle Scholar
  23. 23.
    Nathan JA et al (2013) Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 152(5):1184–1194CrossRefGoogle Scholar
  24. 24.
    Eisen HN et al (2012) Promiscuous binding of extracellular peptides to cell surface class I MHC protein. Proc Natl Acad Sci U S A 109(12):4580–4585CrossRefGoogle Scholar
  25. 25.
    Klein L et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391CrossRefGoogle Scholar
  26. 26.
    Ye P, Kirschner DE (2002) Reevaluation of T cell receptor excision circles as a measure of human recent thymic emigrants. J Immunol 168(10):4968–4979CrossRefGoogle Scholar
  27. 27.
    Venkatesh B et al (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482):174–179CrossRefGoogle Scholar
  28. 28.
    Wilson M et al (1992) What limits affinity maturation of antibodies in Xenopus--the rate of somatic mutation or the ability to select mutants? EMBO J 11(12):4337–4347CrossRefGoogle Scholar
  29. 29.
    Hwang JK, Alt FW, Yeap LS (2015) Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiol Spectr 3(1):MDNA3-0037-2014PubMedGoogle Scholar
  30. 30.
    Berek C, Milstein C (1987) Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 96:23–41CrossRefGoogle Scholar
  31. 31.
    Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27(2):190–202CrossRefGoogle Scholar
  32. 32.
    Vinuesa CG et al (2016) Follicular helper T cells. Annu Rev Immunol 34:335–368CrossRefGoogle Scholar
  33. 33.
    Crotty S (2015) A brief history of T cell help to B cells. Nat Rev Immunol 15(3):185–189CrossRefGoogle Scholar
  34. 34.
    Zhu C et al (2012) Origin of immunoglobulin isotype switching. Curr Biol 22(10):872–880CrossRefGoogle Scholar
  35. 35.
    Manz RA, Thiel A, Radbruch A (1997) Lifetime of plasma cells in the bone marrow. Nature 388(6638):133–134CrossRefGoogle Scholar
  36. 36.
    Matsuda F et al (1998) The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 188(11):2151–2162CrossRefGoogle Scholar
  37. 37.
    Star B et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477(7363):207–210CrossRefGoogle Scholar
  38. 38.
    Tokunaga Y et al (2017) Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: implication for the robust innate defense mechanisms of teleosts. Sci Rep 7(1):7536CrossRefGoogle Scholar
  39. 39.
    Holland SJ et al (2014) Selection of the lamprey VLRC antigen receptor repertoire. Proc Natl Acad Sci U S A 111(41):14834–14839CrossRefGoogle Scholar
  40. 40.
    Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15(9):371–377CrossRefGoogle Scholar
  41. 41.
    Hartenstein V (2006) Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22:677–712CrossRefGoogle Scholar
  42. 42.
    Adams B et al (1992) Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 6(9):1589–1607CrossRefGoogle Scholar
  43. 43.
    Hirano M et al (2013) Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501(7467):435–438CrossRefGoogle Scholar
  44. 44.
    Calderon L, Boehm T (2012) Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell 149(1):159–172CrossRefGoogle Scholar
  45. 45.
    Neuberger MS et al (2003) Immunity through DNA deamination. Trends Biochem Sci 28(6):305–312CrossRefGoogle Scholar
  46. 46.
    Ott JA et al (2018) Somatic hypermutation of T cell receptor alpha chain contributes to selection in nurse shark thymus. elife 7Google Scholar
  47. 47.
    Du Pasquier L (2004) Speculations on the origin of the vertebrate immune system. Immunol Lett 92(1-2):3–9CrossRefGoogle Scholar
  48. 48.
    Lee SS et al (2000) Rearrangement of immunoglobulin genes in shark germ cells. J Exp Med 191(10):1637–1648CrossRefGoogle Scholar

Further Reading

  1. Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD (2018) Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol 36:19–42CrossRefGoogle Scholar
  2. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59CrossRefGoogle Scholar
  3. Janeway C (2017) Immunobiology, 9th edn. Taylor and Francis, New YorkGoogle Scholar
  4. Kaufman J (2018) Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol 36:383–409CrossRefGoogle Scholar
  5. Klein L et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert Jack
    • 1
  • Louis Du Pasquier
    • 2
  1. 1.Department of ImmunologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Department of Environmental Sciences, ZoologyUniversity of BaselBasel StadtSwitzerland

Personalised recommendations