Advertisement

Innate Immunity

  • Robert Jack
  • Louis Du Pasquier
Chapter

Abstract

All defence systems have much in common. No matter whether we are thinking in terms of defending a mediaeval castle from greedy neighbours or a multicellular eukaryote from attack by pathogens, the basic story is always the same. The defence system employed will consist of three parts. The first part provides information about whether a dangerous situation is developing. In the case of the castle, sentries will provide this necessary information. In the case of an animal’s innate immune system, soluble extracellular receptor molecules, and cell-associated sensors expressed by macrophages and other innate sentinel cells will detect incipient infections or other deviations from the homeostatic norm.

References

  1. 1.
    Andra J, Herbst R, Leippe M (2003) Amoebapores, archaic effector peptides of protozoan origin, are discharged into phagosomes and kill bacteria by permeabilizing their membranes. Dev Comp Immunol 27(4):291–304CrossRefGoogle Scholar
  2. 2.
    de Koning AP et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384CrossRefGoogle Scholar
  3. 3.
    Leulier F, Lemaitre B (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9(3):165–178CrossRefGoogle Scholar
  4. 4.
    Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374CrossRefGoogle Scholar
  5. 5.
    Parthier C et al (2014) Structure of the Toll-Spatzle complex, a molecular hub in Drosophila development and innate immunity. Proc Natl Acad Sci U S A 111(17):6281–6286CrossRefGoogle Scholar
  6. 6.
    Zhang Z et al (2016) Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748CrossRefGoogle Scholar
  7. 7.
    Liu M, Grigoriev A (2004) Protein domains correlate strongly with exons in multiple eukaryotic genomes--evidence of exon shuffling? Trends Genet 20(9):399–403CrossRefGoogle Scholar
  8. 8.
    Yang X et al (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164(4):805–817CrossRefGoogle Scholar
  9. 9.
    Racimo F et al (2015) Evidence for archaic adaptive introgression in humans. Nat Rev Genet 16(6):359–371CrossRefGoogle Scholar
  10. 10.
    Dannemann M, Andres AM, Kelso J (2016) Introgression of neandertal- and denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am J Hum Genet 98(1):22–33CrossRefGoogle Scholar
  11. 11.
    Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305CrossRefGoogle Scholar
  12. 12.
    de Zoete MR et al (2011) Cleavage and activation of a Toll-like receptor by microbial proteases. Proc Natl Acad Sci U S A 108(12):4968–4973CrossRefGoogle Scholar
  13. 13.
    Boyd AC et al (2012) TLR15 is unique to avian and reptilian lineages and recognizes a yeast-derived agonist. J Immunol 189(10):4930–4938CrossRefGoogle Scholar
  14. 14.
    Willems L, Gillet NA (2015) APOBEC3 interference during replication of viral genomes. Viruses 7(6):2999–3018CrossRefGoogle Scholar
  15. 15.
    Conticello SG et al (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol 22(2):367–377CrossRefGoogle Scholar
  16. 16.
    Kranzusch PJ et al (2015) Ancient origin of cGAS-STING reveals mechanism of universal 2',3' cGAMP signaling. Mol Cell 59(6):891–903CrossRefGoogle Scholar
  17. 17.
    Martin M et al (2018) Analysis of drosophila STING reveals an evolutionarily conserved antimicrobial function. Cell Rep 23(12):3537–3550 e6CrossRefGoogle Scholar
  18. 18.
    Goto A et al (2018) The kinase IKKbeta regulates a STING- and NF-kappaB-dependent antiviral response pathway in drosophila. Immunity 49(2):225–234 e4CrossRefGoogle Scholar
  19. 19.
    Stetson DB et al (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598CrossRefGoogle Scholar
  20. 20.
    Rehwinkel J et al (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140(3):397–408CrossRefGoogle Scholar
  21. 21.
    Schuberth-Wagner C et al (2015) A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2'O-methylated self RNA. Immunity 43(1):41–51CrossRefGoogle Scholar
  22. 22.
    Howe K et al (2016) Structure and evolutionary history of a large family of NLR proteins in the zebrafish. Open Biol 6(4):160009CrossRefGoogle Scholar
  23. 23.
    Sancho D, Reis e Sousa C (2013) Sensing of cell death by myeloid C-type lectin receptors. Curr Opin Immunol 25(1):46–52CrossRefGoogle Scholar
  24. 24.
    Roers A, Hiller B, Hornung V (2016) Recognition of endogenous nucleic acids by the innate immune system. Immunity 44(4):739–754CrossRefGoogle Scholar
  25. 25.
    Daeron M et al (2008) Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol Rev 224:11–43CrossRefGoogle Scholar
  26. 26.
    Carrillo-Bustamante P, Kesmir C, de Boer RJ (2016) The evolution of natural killer cell receptors. Immunogenetics 68(1):3–18CrossRefGoogle Scholar
  27. 27.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273CrossRefGoogle Scholar
  28. 28.
    Ostrop J, Lang R (2017) Contact, collaboration, and conflict: signal integration of Syk-coupled C-type lectin receptors. J Immunol 198(4):1403–1414CrossRefGoogle Scholar
  29. 29.
    Long EO et al (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258CrossRefGoogle Scholar
  30. 30.
    Sebe-Pedros A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nat Rev Genet 18(8):498–512CrossRefGoogle Scholar
  31. 31.
    Monahan-Earley R, Dvorak AM, Aird WC (2013) Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost 11(Suppl 1):46–66CrossRefGoogle Scholar
  32. 32.
    Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57:827–872CrossRefGoogle Scholar
  33. 33.
    Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58(9):701–713CrossRefGoogle Scholar
  34. 34.
    Ricklin D et al (2016) Complement component C3 – The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev 274(1):33–58CrossRefGoogle Scholar
  35. 35.
    Ricklin D, Lambris JD (2016) Therapeutic control of complement activation at the level of the central component C3. Immunobiology 221(6):740–746CrossRefGoogle Scholar
  36. 36.
    Wu F et al (2017) A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey. Cell Discov 3:17033CrossRefGoogle Scholar
  37. 37.
    Carroll MC, Isenman DE (2012) Regulation of humoral immunity by complement. Immunity 37(2):199–207CrossRefGoogle Scholar
  38. 38.
    Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389CrossRefGoogle Scholar
  39. 39.
    Kolev M, Kemper C (2017) Keeping it all going-complement meets metabolism. Front Immunol 8:1CrossRefGoogle Scholar
  40. 40.
    Green DR (2017) Cell death and the immune system: getting to how and why. Immunol Rev 277(1):4–8CrossRefGoogle Scholar
  41. 41.
    Green DR, Fitzgerald P (2016) Just so stories about the evolution of apoptosis. Curr Biol 26(13):R620–R627CrossRefGoogle Scholar

Further Reading

  1. Cornejo E, Dchlaermann P, Mukherjee S (2017) How to rewire the host cell: a home improvement guide for intracellular bacteria. J Cell Biol 216:3931–3948CrossRefGoogle Scholar
  2. Green DR (2017) Cell death and the immune system: getting to how and why. Immunol Rev 277:4–8CrossRefGoogle Scholar
  3. Green DR, Fitzgerald P (2016) Just so stories about the evolution of apoptosis. Curr Biol 26:R620–R627CrossRefGoogle Scholar
  4. Janeway C (2017) Immunobiology, 9th ednGoogle Scholar
  5. Leulier F, Lemaitre B (2008) Toll-like receptors – taking an evolutionary approach. Nat Rev Genet 9(3):165–178CrossRefGoogle Scholar
  6. Litman GW, Dishaw L (eds) (2013) Changing views of the evolution of immunity. Front Immunol 4Google Scholar
  7. Loker ES (2012) Macroevolutionary immunology: a role for immunity in the diversification of animal life. Front Immunol 3:1–20CrossRefGoogle Scholar
  8. Ricklin D et al (2016) Complement component C3 – the “Swiss Army Knife” of innate immunity and host defense. Immunol Rev 274(1):33–58CrossRefGoogle Scholar
  9. Roers A, Hiller B, Hornung V (2016) Recognition of endogenous nucleic acids by the innate immune system. Immunity 44:739–754CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Robert Jack
    • 1
  • Louis Du Pasquier
    • 2
  1. 1.Department of ImmunologyUniversity of GreifswaldGreifswaldGermany
  2. 2.Department of Environmental Sciences, ZoologyUniversity of BaselBasel StadtSwitzerland

Personalised recommendations