Molecular Mapping of Grapevine Genes

  • Silvia VezzulliEmail author
  • Agnès Doligez
  • Diana Bellin
Part of the Compendium of Plant Genomes book series (CPG)


In this chapter, we review the history of grapevine genetics and gene mapping. Genetic markers are introduced considering both sequence-based and sequence-independent approaches used for variant discovery. We provide a survey of genotyping tools, from low- to high-throughput platforms. We describe general principles of map building and implementation, highlighting specificities for outbred species such as the grapevine. Then, we review the different approaches applied for QTL identification according to the genetic material, from bi-parental progenies, pedigree-supported segregating populations, to germplasm collection. In particular, our emphasis is on the relevance of such studies for the dissection of a complex trait. We describe the difficult process of identifying genes responsible for QTLs and the few cases of QTL cloning. Many years have passed from the first grapevine marker isolation, the development of genetic and physical maps, until the deciphering of the genome sequence. With such a wealth of detailed information on wild and cultivated grapevines, we discuss how data sharing and multidisciplinary data integration are the current challenges that the scientific community faces to effectively translate knowledge into practice.


Genetic marker Linkage map Trait architecture Genotype–phenotype association Data set integration 



The authors apologize to the scientists that are not cited because of space limitation. They gratefully thank Paola Bettinelli (FEM) for literature management.


  1. Adam-Blondon AF, Alaux M, Pommier C, Cantu D, Cheng ZM, Cramer GR, Davies C, Delrot S, Deluc L, Di Gaspero G, Grimplet J, Fennell A, Londo JP, Kersey P, Mattivi F, Naithani S, Neveu P, Nikolski M, Pezzotti M, Reisch BI, Töpfer R, Vivier MA, Ware D, Quesneville H (2016) Towards an open grapevine information system. Hortic Res 3:16056PubMedPubMedCentralGoogle Scholar
  2. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anhalt UCM, Martínez SC, Rühl E, Forneck A (2011) Dynamic grapevine clones-an AFLP-marker study of the Vitis vinifera cultivar Riesling comprising 86 clones. Tree Genet Genomes 7:739–746CrossRefGoogle Scholar
  4. Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arroyo-García R, Lefort F, De Andrés MT, Ibáñez J, Borrego J, Jouve N, Cabello F, Martínez-Zapater JM (2002) Chloroplast microsatellite polymorphisms in Vitis species. Genome 45:1142–1149PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezoǧlu G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Gorislavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714Google Scholar
  7. Asamizu E, Ichihara H, Nakaya A, Nakamura Y, Hirakawa H, Ishii T, Tamura T, Fukami-Kobayashi K, Nakajima Y, Tabata S (2014) Plant genome database Japan (PGDBj): a portal website for the integration of plant genome-related databases. Plant Cell Physiol 55:1–7CrossRefGoogle Scholar
  8. Azuma A, Ban Y, Sato A, Kono A, Shiraishi M, Yakushiji H, Kobayashi S (2015) MYB diplotypes at the color locus affect the ratios of tri/di-hydroxylated and methylated/non-methylated anthocyanins in grape berry skin. Tree Genet Genomes 11(2):31Google Scholar
  9. Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V, Genna B, Péros JP, This P, Boursiquot JM (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol 13:25PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 198:101–114CrossRefGoogle Scholar
  11. Ban Y, Mitani N, Sato A, Kono A, Hayashi T (2016) Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana× Vitis vinifera). Euphytica 211:295–310CrossRefGoogle Scholar
  12. Baránek M, Raddová J, Krizan B, Pidra M (2009) Genetic changes in grapevine genomes after stress induced by in vitro cultivation, thermotherapy and virus infection, as revealed by AFLP. Genet Mol Biol 32:834–839PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barba P, Lillis J, Stephen Luce R, Travadon R, Osier M, Baumgartner K, Wilcox WF, Reisch BI, Cadle-Davidson L (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377PubMedCrossRefGoogle Scholar
  16. Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor Appl Genet 112:708–716PubMedCrossRefGoogle Scholar
  17. Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine, Vitis vinifera L. subsp. silvestris. Heredity (Edinb) 104:431–437CrossRefGoogle Scholar
  18. Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118:653–669CrossRefGoogle Scholar
  19. Battilana J, Lorenzi S, Moreira FM, Moreno-Sanz P, Failla O, Emanuelli F, Grando MS (2013) Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent ssr haplotype in hermaphrodite plants. Mol Biotechnol 54:1031–1037PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bayo-Canha A, Costantini L, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2019) QTLs related to berry acidity identified in a wine grapevine population grown in warm weather. Plant Mol Biol Rep 37:157–169CrossRefGoogle Scholar
  21. Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A-F, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet 120:163–176PubMedCrossRefPubMedCentralGoogle Scholar
  22. Benjak A, Ercisli S, Vokurka A, Maletić E, Pejić I (2005) Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis J Grapevine Res 44:73–77Google Scholar
  23. Bigard A, Berhe DT, Maoddi E, Sire Y, Boursiquot J-M, Ojeda H, Péros J-P, Doligez A, Romieu C, Torregrosa L (2018) Vitis vinifera L. fruit diversity to breed varieties anticipating climate changes. Front Plant Sci 9:455PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bink MCAM (2005) FlexQTL software: efficient estimation of identity by descent probabilities and QTL mapping in pedigreed populations. In: Abstract book plant and animal genomes XII conference, 15–19 January, San Diego, USAGoogle Scholar
  25. Blaich R, Konradi J, Rühl E, Forneck A (2007) Assessing genetic variation among Pinot noir (Vitis vinifera L.) clones with AFLP markers. Am J Enol Vitic 4:526–529Google Scholar
  26. Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675PubMedCrossRefPubMedCentralGoogle Scholar
  27. Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl EH, Mestre P, Merdinoglu D (2011) Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theor Appl Genet 123:43–53PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis J Grapevine Res 35:35–42Google Scholar
  29. Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of additional microsatellite DNA markers for grape. Am J Enol Vitic 50:243–246Google Scholar
  30. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16:84–87PubMedCrossRefPubMedCentralGoogle Scholar
  32. Buonassisi D, Colombo M, Migliaro D, Dolzani C, Peressotti E, Mizzotti C, Velasco R, Masiero S, Perazzolli M, Vezzulli S (2017) Breeding for grapevine downy mildew resistance: a review of “omics” approaches. Euphytica 213:103CrossRefGoogle Scholar
  33. Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585CrossRefGoogle Scholar
  34. Cabezas JA, Ibáñez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carreño I, Jermakow AM, Carreño J, Ruiz-García L, Thomas MR, Martinez-Zapater JM (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cadle-Davidson L, Gadoury D, Fresnedo-Ramírez J, Yang S, Barba P, Sun Q, Demmings EM, Seem R, Schaub M, Nowogrodzki A, Kasinathan H, Ledbetter C, Reisch BI (2016) Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci. Phytopathology 106:1159–1169CrossRefGoogle Scholar
  36. Camus-Kulandaivelu L, Veyrieras J-B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2005) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172:2449–2463CrossRefGoogle Scholar
  37. Carreño I, Cabezas JA, Martínez-Mora C, Arroyo-García R, Cenis JL, Martínez-Zapater JM, Carreño J, Ruiz-García L (2015) Quantitative genetic analysis of berry firmness in table grape (Vitis vinifera L.). Tree Genet Genomes 11:818CrossRefGoogle Scholar
  38. Carrier G, Huang YF, Le Cunff L, Fournier-Level A, Vialet S, Souquet JM, Cheynier V, Terrier N, This P (2013) Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. Plant Physiol Biochem 72:87–95PubMedCrossRefPubMedCentralGoogle Scholar
  39. Cartwright DA, Troggio M, Velasco R, Gutin A (2007) Genetic mapping in the presence of genotyping errors. Genetics 176:2521–2527PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cervera MT, Cabezas JA, Sancha JC, Martínez De Toda F, Martínez-Zapater JM (1998) Application of AFLPS to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain). Theor Appl Genet 97:51–59CrossRefGoogle Scholar
  41. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:1–14CrossRefGoogle Scholar
  43. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR, Delledonne M, Luo C, Ecker JR, Cantu D, Rank DR, Schatz MC (2016) Phased diploid genome assembly with single molecule real-time sequencing. Nat Methods 13:1050PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chitwood DH, Ranjan A, Martinez CC, Headland LR, Thiem T, Kumar R, Covington MF, Hatcher T, Naylor DT, Zimmerman S, Downs N, Raymundo N, Buckler ES, Maloof JN, Aradhya M, Prins B, Li L, Myles S, Sinha NR (2014) A modern ampelography: a genetic basis for leaf shape and venation patterning in grape. Plant Physiol 164:259–272PubMedCrossRefPubMedCentralGoogle Scholar
  45. Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585PubMedCrossRefPubMedCentralGoogle Scholar
  47. Clark MD, Teh SL, Burkness E, Moreira L, Watson G, Yin L, Hutchison WD, Luby JJ (2018) Quantitative trait loci identified for foliar phylloxera resistance in a hybrid grape population. Aust J Grape Wine Res 24:292–300CrossRefGoogle Scholar
  48. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRefGoogle Scholar
  49. Correa J, Mamani M, Muñoz-Espinoza C, González-Agüero M, Defilippi BG, Campos-Vargas R, Pinto M, Hinrichsen P (2016) New stable QTLs for berry firmness in table grapes. Am J Enol Vitic 67:212–217CrossRefGoogle Scholar
  50. Correa J, Ravest G, Laborie D, Mamani M, Torres E, Muñoz C, Pinto M, Hinrichsen P (2015) Quantitative trait loci for the response to gibberellic acid of berry size and seed mass in table grape (Vitis vinifera L.). Aust J Grape Wine Res 21:496–507CrossRefGoogle Scholar
  51. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biol 8:38PubMedPubMedCentralCrossRefGoogle Scholar
  52. Costantini L, Malacarne G, Lorenzi S, Troggio M, Mattivi F, Moser C, Grando MS (2015) New candidate genes for the fine regulation of the colour of grapes. J Exp Bot 66:4427–4440PubMedPubMedCentralCrossRefGoogle Scholar
  53. Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci 113:8963–8968PubMedPubMedCentralCrossRefGoogle Scholar
  54. Cretazzo E, Meneghetti S, De Andrés MT, Gaforio L, Frare E, Cifre J (2010) Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assess the clonal selection of grapevine: The case study of Manto Negro, Callet and Moll, autochthonous cultivars of Majorca. Ann Appl Biol 157:213–227CrossRefGoogle Scholar
  55. Dalbó MA, Ye GN, Weeden NG, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular-based genetic map. Genome 43:333–340PubMedPubMedCentralCrossRefGoogle Scholar
  56. Danan S, Veyrieras J-B, Lefebvre V (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16PubMedPubMedCentralCrossRefGoogle Scholar
  57. Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351PubMedPubMedCentralCrossRefGoogle Scholar
  58. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: Multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704PubMedCrossRefPubMedCentralGoogle Scholar
  59. De Lorenzis G, Chipashvili R, Failla O, Maghradze D (2015) Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources. BMC Plant Biol 15:1–14Google Scholar
  60. de Oliveira Collet SA, Collet MA, de Machado M, Maria de Fátima PS (2005) Differential gene expression for isozymes in somatic mutants of Vitis vinifera L. (Vitaceae). Biochem Syst Ecol 33:691–703CrossRefGoogle Scholar
  61. Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedCrossRefPubMedCentralGoogle Scholar
  62. Delame M, Prado E, Blanc S, Guillaume R, Schneider C, Mestre P, Rustenholz C, Merdinoglu D (2018) Variation of recombination rate along the genome in Vitis vinifera × Vitis rotundifolia interspecific hybrids. In: Abstract book GBG 2018—Bordeaux, France 15–20 July, p 64Google Scholar
  63. Delfino P, Zenoni S, Tornielli G, Crespan M, Gardiman M, Mirella G, Bellin D (2018) An integrated meta-QTL and transcriptomic data mining approach to select candidates controlling veraison time in grapevine. In: Abstract book GBG 2018—Bordeaux, France 15–20 July, p 53Google Scholar
  64. Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Peros JP, Ruiz M, This P (2011) SNiPlay: A web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinform 12:1–14CrossRefGoogle Scholar
  65. Divilov K, Barba P, Cadle L, Bruce D (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143PubMedPubMedCentralCrossRefGoogle Scholar
  66. Di Gaspero G, Cipriani G, Adam-Blondon AF, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. Theor Appl Genet 114:1249–1263PubMedCrossRefPubMedCentralGoogle Scholar
  67. Di Gaspero G, Cipriani G, Marrazzo MT, Andreetta D, Prado Castro MJ, Peterlunger E, Testolin R (2005) Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Mol Breed 15:11–20CrossRefGoogle Scholar
  68. Di Gaspero G, Copetti D, Coleman C, Castellarin SD, Eibach R, Kozma P, Lacombe T, Gambetta G, Zvyagin A, Cindrić P, Kovács L, Morgante M, Testolin R (2012) Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theor Appl Genet 124:277–286Google Scholar
  69. Di Gaspero G, Foria S (2015) Molecular grapevine breeding techniques. In: Reynolds A (ed) Grapevine breeding programs for the wine industry. Woodhead Publishing, p 23–37Google Scholar
  70. Di Genova A, Almeida A, Muñoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7PubMedPubMedCentralCrossRefGoogle Scholar
  71. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006a) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382PubMedPubMedCentralCrossRefGoogle Scholar
  72. Doligez A, Audiot E, Baumes R, This P (2006b) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125CrossRefGoogle Scholar
  73. Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grape (Vitis vinifera L.). Tree Genet Genomes 6:413–422CrossRefGoogle Scholar
  74. Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, François P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Péros JP, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217PubMedPubMedCentralCrossRefGoogle Scholar
  75. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795PubMedPubMedCentralCrossRefGoogle Scholar
  76. Donald TM, Pellerone F, Adam-Blondon A-F, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. TAG Theor Appl Genet 104:610–618PubMedCrossRefPubMedCentralGoogle Scholar
  77. Duchêne E, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoglu D (2009) A grapevine (Vitis vinifera L.) deoxy-d-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theor Appl Genet 118:541–552PubMedCrossRefPubMedCentralGoogle Scholar
  78. Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124:623–635PubMedCrossRefPubMedCentralGoogle Scholar
  79. Edwards D, Forster JW, Cogan NOI, Batley J, Chagné D (2007) Single Nucleotide Polymorphism Discovery. In: New York NY (ed) Association mapping in plants. Springer, New York, pp 53–76CrossRefGoogle Scholar
  80. Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124Google Scholar
  81. Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot JM, This P, Grando MS (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241PubMedPubMedCentralCrossRefGoogle Scholar
  82. Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:1–17CrossRefGoogle Scholar
  83. Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breed 33:235–241PubMedCrossRefPubMedCentralGoogle Scholar
  84. Endelman JB, Plomion C (2014) LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624PubMedCrossRefPubMedCentralGoogle Scholar
  85. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664PubMedCrossRefPubMedCentralGoogle Scholar
  86. Fechter I, Hausmann L, Zyprian E, Daum M, Holtgräwe D, Weisshaar B, Töpfer R (2014) QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. Theor Appl Genet 127:1857–1872PubMedPubMedCentralCrossRefGoogle Scholar
  87. Fernandez L, Le Cunff L, Tello J, Lacombe T, Boursiquot JM, Fournier-Level A, Bravo G, Lalet S, Torregrosa L, This P, Martinez-Zapater JM (2014) Haplotype diversity of VvTFL1A gene and association with cluster traits in grapevine (V. vinifera). BMC Plant Biol 14:209Google Scholar
  88. Fernandez L, Doligez A, Lopez G, Thomas MR, Bouquet A, Torregrosa L (2006) Somatic chimerism, genetic inheritance, and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L.). Genome 49:721–728CrossRefGoogle Scholar
  89. Fernández MP, Núñez Y, Ponz F, Hernáiz S, Gallego FJ, Ibáñez J (2008) Characterization of sequence polymorphisms from microsatellite flanking regions in Vitis spp. Mol Breed 22:455–465CrossRefGoogle Scholar
  90. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515PubMedPubMedCentralCrossRefGoogle Scholar
  91. Flutre T, Bacilieri R, Berger G, Bertrand Y, Boursiquot J-M, Fodor A, Lacombe T, Laucou V, Launay A, Le Cunff L, Romieu C, This P, Péros J-P, Doligez A (2018) VITIRAMA: a program to characterise disease susceptibility in French ampelographic collections. Abstract book GBG 2018—Bordeaux, 15–20 July, p 55Google Scholar
  92. Foria S, Magris G, Morgante M, Di Gaspero G (2018) The genetic background modulates the intensity of Rpv3-dependent downy mildew resistance in grapevine. Plant Breed 137:220–228CrossRefGoogle Scholar
  93. Fossati T, Labra M, Castiglione S, Failla O, Scienza A, Sala F (2001) The use of AFLP and SSR molecular markers to decipher homonyms and synonyms in grapevine cultivars: The case of the varietal group known as “Schiave”. Theor Appl Genet 102:200–205CrossRefGoogle Scholar
  94. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139PubMedPubMedCentralCrossRefGoogle Scholar
  95. Fournier-Level A, Hugueney P, Verries C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol 11:179PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217PubMedCrossRefPubMedCentralGoogle Scholar
  97. Garris A, Clark L, Owens C, McKay S, Luby J, Mathiason K, Fennell A (2009) Mapping of photoperiod-induced growth cessation in the wild grape Vitis riparia. J Am Soc Hortic Sci 134:261–272CrossRefGoogle Scholar
  98. Ghaffari S, Hasnaoui N, Zinelabidine LH, Ferchichi A, Martínez-Zapater JM, Ibáñez J (2014) Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genet Genomes 10:1103–1112CrossRefGoogle Scholar
  99. Gismondi A, Di G, Martini F, Sarti L, Crespan M, Martínez-labarga C, Rickards O, Canini A (2016) Grapevine carpological remains revealed the existence of a Neolithic domesticated Vitis vinifera L. specimen containing ancient DNA partially preserved in modern ecotypes. J Archaeol Sci 69:75–84CrossRefGoogle Scholar
  100. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473PubMedPubMedCentralGoogle Scholar
  101. Granier C, Vile D (2014) Phenotyping and beyond: modelling the relationships between traits. Curr Opin Plant Biol 18:96–102PubMedCrossRefPubMedCentralGoogle Scholar
  102. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophlla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedPubMedCentralGoogle Scholar
  103. Grzeskowiak L, Costantini L, Lorenzi S, Grando MS (2013) Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theor Appl Genet 126:2763–2776PubMedPubMedCentralCrossRefGoogle Scholar
  104. Guo Y, Xue R, Lin H, Su K, Zhao Y, Zhendong L, Ma H, Shi G, Niu Z, Li K, Guo X (2015) Genetic analysis and QTL mapping for fruit skin anthocyanidin in grape (Vitis vinifera). Pak J Bot 47:1765–1771Google Scholar
  105. Guo DL, Zhao HL, Li Q, Zhang GH, Jiang JF, Liu CH, Yu YH (2019) Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Hortic Res 6:11PubMedPubMedCentralCrossRefGoogle Scholar
  106. Herzog K, Wind R, Töpfer R, Herzog K, Wind R, Töpfer R (2015) Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea. Sensors 15:12498–12512PubMedCrossRefPubMedCentralGoogle Scholar
  107. Hoffmann S, Di Gaspero G, Kovács L, Howard S, Kiss E, Galbács Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438PubMedCrossRefPubMedCentralGoogle Scholar
  108. Holland JB (2015) MAGIC maize: a new resource for plant genetics. Genome Biol 16:163PubMedPubMedCentralCrossRefGoogle Scholar
  109. Houel C, Chatbanyong R, Doligez A, Rienth M, Foria S, Luchaire N, Roux C, Adivèze A, Lopez G, Farnos M, Pellegrino A, This P, Romieu C, Torregrosa L (2015) Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biol 15:205PubMedPubMedCentralCrossRefGoogle Scholar
  110. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866PubMedPubMedCentralCrossRefGoogle Scholar
  111. Huang Y, Bertrand Y, Guiraud J, Vialet S, Launay A, Cheynier V, Terrier N, This P (2013) Plant science expression QTL mapping in grapevine—revisiting the genetic determinism of grape skin colour. Plant Sci 207:18–24PubMedPubMedCentralCrossRefGoogle Scholar
  112. Huang Y, Vialet S, Guiraud J, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N (2014) VvMYBrep, a negative regulator of proanthocyanidin accumulation in grape berry, identified through expression quantitative locus mapping. New Phytol 201:795–809PubMedPubMedCentralCrossRefGoogle Scholar
  113. Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol 12:30PubMedPubMedCentralCrossRefGoogle Scholar
  114. Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the post domestication spread of maize. Proc Natl Acad Sci 109:1913–1921CrossRefGoogle Scholar
  115. Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine. PLoS ONE 10:1–31CrossRefGoogle Scholar
  116. Iakovidis M, Teixeira PJPL, Exposito-Alonso M, Cowper MG, Law TF, Liu Q, Vu MC, Dang TM, Corwin JA, Weigel D, Dangl JL, Grant SR (2016) Effector-triggered immune response in Arabidopsis thaliana is a quantitative trait. Genetics 204:337–353PubMedPubMedCentralCrossRefGoogle Scholar
  117. Imazio S, Maghradze D, de Lorenzis G, Bacilieri R, Laucou V, This P, Scienza A, Failla O (2013) From the cradle of grapevine domestication: Molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genet Genomes 9:641–658CrossRefGoogle Scholar
  118. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedPubMedCentralCrossRefGoogle Scholar
  119. Jansen J, De Jong AG, Van Oijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102:1113–1122CrossRefGoogle Scholar
  120. Jonas E, De Koning D (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504PubMedCrossRefGoogle Scholar
  121. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Van De Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390CrossRefGoogle Scholar
  122. Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371PubMedCrossRefGoogle Scholar
  123. Kayesh E, Zhang YY, Liu GS, Bilkish N, Sun X, Leng XP, Fang JG (2013) Development of highly polymorphic EST-SSR markers and segregation in F1 hybrid population of Vitis vinifera L. Genet Mol Res 12:3871–3878PubMedCrossRefGoogle Scholar
  124. Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genom 10:276CrossRefGoogle Scholar
  125. Kicherer A, Herzog K, Bendel N, Klück HC, Backhaus A, Wieland M, Rose JC, Klingbeil L, Läbe T, Hohl C, Petry W, Kuhlmann H, Seiffert U, Töpfer R (2017a) Phenoliner: a new field phenotyping platform for grapevine research. Sensors 17:1625CrossRefGoogle Scholar
  126. Kicherer A, Herzog K, Pflanz M, Wieland M, Rüger P, Kecke S, Kuhlmann H, Töpfer R (2015) An automated field phenotyping pipeline for application in grapevine research. Sensors 15:4823–4836CrossRefGoogle Scholar
  127. Kicherer A, Klodt M, Sharifzadeh S, Cremers D, Töpfer R, Herzog K (2017b) Automatic image-based determination of pruning mass as a determinant for yield potential in grapevine management and breeding. Aust J Grape Wine Res 23:120–124CrossRefGoogle Scholar
  128. Kim C, Seol Y, Lee D-J, Lee J-H, Lee T, Park D (2014) RiceQTLPro: an integrated database for quantitative trait loci marker mapping in rice plant. Bioinformation 10:664–666PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedPubMedCentralCrossRefGoogle Scholar
  130. Kono A, Ban Y, Mitani N, Fujii H, Sato S, Suzaki K, Azuma A, Onoue N, Sato A (2018) Development of SSR markers linked to QTL reducing leaf hair density and grapevine downy mildew resistance in Vitis vinifera. Mol Breed 38:138CrossRefGoogle Scholar
  131. Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M (2012) A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet 44:1066–1071PubMedPubMedCentralCrossRefGoogle Scholar
  132. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175CrossRefGoogle Scholar
  133. Krivanek AF, Riaz S, Walker MA (2006) Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet 112:1125–1131PubMedCrossRefPubMedCentralGoogle Scholar
  134. Labra M, Imazio S, Grassi F, Rossoni M, Sala F (2004) Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breed 123:180–185CrossRefGoogle Scholar
  135. Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Péros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414PubMedCrossRefPubMedCentralGoogle Scholar
  136. Lander ES, Green P, Abrahamson J, Barlow H, Daly M, Lincoln S, Newsbury L (1987) MAPMAKER: An interactive computer program for constructing genetic maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefPubMedCentralGoogle Scholar
  137. Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF, Bérard A, Chauveau A, De Andrés MT, Hausmann L, Ibáñez J, Le Paslier MC, Maghradze D, Martinez-Zapater J, Maul E, Ponnaiah M, Töpfer R, Péros JP, Boursiquot JM (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10 K genome-wide SNPs. PLoS ONE 13:1–27CrossRefGoogle Scholar
  138. Le Paslier M-C, Choisne N, Bacilieri R, Bounon R, Boursiquot J-MB, Brunel D, Di Gaspero G, Hausmann L, Lacombe T, Laucou V LA, Martinez-Zapater J, Morgante M, Raj P, PonnaiahM Q, Scalabrin S, Torres-Perez R (2013). The GrapeReSeq 18 k Vitis genotyping chip. In: IX international symposium on grapevine physiology and biotechnology. International society for horticultural science, Abstract Book, p 123Google Scholar
  139. Li M, Liu X, Bradbury P, Yu J, Zhang Y-M, Todhunter RJ, Buckler ES, Zhang Z (2014) Enrichment of statistical power for genome-wide association studies. BMC Biol 12:73PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lijavetzky D, Cabezas J, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom 8:424CrossRefGoogle Scholar
  141. Lin H, Leng H, Guo Y, Kondo S, Zhao Y, Shi G, Guo X (2019) QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. ×  V. amurensis Rupr.) crossing. Sci Hortic 244:200–207CrossRefGoogle Scholar
  142. Lodhi MA, Ye G-N, Weeden NF, Reisch BI, Daly MJ (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794PubMedCrossRefPubMedCentralGoogle Scholar
  143. Lowe KM, Riaz S, Walker MA (2009) Variation in recombination rates across Vitis species. Tree Genet Genomes 5:71–80CrossRefGoogle Scholar
  144. Malacarne G, Costantini L, Coller E, Battilana J, Velasco R, Vrhovsek U, Grando MS, Moser C (2015) Regulation of flavonol content and composition in (Syrah × Pinot Noir) mature grapes: Integration of transcriptional profiling and metabolic quantitative trait locus analyses. J Exp Bot 66:4441–4453PubMedPubMedCentralCrossRefGoogle Scholar
  145. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom 2012:728398Google Scholar
  146. Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S (2009) Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet 118:1261–1278PubMedPubMedCentralCrossRefGoogle Scholar
  147. Marrano A, Birolo G, Prazzoli ML, Lorenzi S, Valle G, Grando MS (2017) SNP-discovery by RAD-sequencing in a germplasm collection of wild and cultivated grapevines (V. vinifera L.). PLoS ONE 12:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  148. Marrano A, Micheletti D, Lorenzi S, Neale D, Grando MS (2018) Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. Hortic Res 5:34PubMedPubMedCentralCrossRefGoogle Scholar
  149. Martinez AK, Soriano JM, Tuberosa R, Koumproglou R, Jahrmann T, Salvi S (2016) Yield QTLome distribution correlates with gene density in maize. Plant Sci 242:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  150. Maul E, Sudharma KN, Kecke S, Marx G, Müller C, Audeguin L, Boselli M, Boursiquot JM, Bucchetti B, Cabello F, Carraro R, Crespan M, De Andrés MT, Eiras Dias J, Ekhvaia J, Gaforio L, Gardiman M, Grando S, Gyropoulos D, Jandurova O, Kiss E, Kontic J, Kozma P, Lacombe T, Laucou V, Legrand D, Maghradze D, Marinoni D, Maletic E, Moreira F, Muñoz-Organero G, Nakhutsrishvili G, Pejic I, Peterlunger E, Pitsoli D, Pospisilova D, Preiner D, Raimondi S, Regner F, Savin G, Savvides S, Schneider A, Sereno C, Simon S, Staraz M, Zulini L, Bacilieri R, This P (2012) The European vitis database (—a technical innovation through an online uploading and interactive modification system E. Vitis J Grapevine Res 51:79–85Google Scholar
  151. Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58:499–507Google Scholar
  152. Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, de los Ángeles Miccono M, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57PubMedPubMedCentralCrossRefGoogle Scholar
  153. Mercati F, De Lorenzis G, Brancadoro L, Lupini A, Abenavoli MR, Barbagallo MG, Di Lorenzo R, Scienza A, Sunseri F (2016) High-throughput 18 K SNP array to assess genetic variability of the main grapevine cultivars from Sicily. Tree Genet Genomes 12:59CrossRefGoogle Scholar
  154. Merdinoglu D, Wiedeman-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451–456Google Scholar
  155. Michelmore R (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33:393–427PubMedCrossRefPubMedCentralGoogle Scholar
  156. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefPubMedCentralGoogle Scholar
  157. Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH, Schwaninger HR, Bustamante CD, Buckler ES, Zhong G-Y, Brown PJ, Myles S (2017) Patterns of genomic and phenomic diversity in wine and table grapes. Hortic Res 4:17035PubMedPubMedCentralCrossRefGoogle Scholar
  158. Migliaro D, Crespan M, Muñoz-Organero G, Velasco R, Moser C, Vezzulli S (2014) Structural dynamics at the berry colour locus in Vitis vinifera L. somatic variants. Aust J Grape Wine Res 20:485–495CrossRefGoogle Scholar
  159. Migliaro D, De Nardi B, Vezzulli S, Crespan M (2017) An upgraded core set of 11 SSR markers for grapevine cultivar identification: the case of berry color mutants. Am J Enol Vitic 68:496–498CrossRefGoogle Scholar
  160. Miller AJ, Matasci N, Schwaninger H, Aradhya MK, Prins B, Zhong GY, Simon C, Buckler ES, Myles S (2013) Vitis phylogenomics: hybridization intensities from a SNP array outperform genotype calls. PLoS ONE 8:e78680PubMedPubMedCentralCrossRefGoogle Scholar
  161. Minio A, Lin J, Gaut BS, Cantu D (2017) How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front Plant Sci 8:826PubMedPubMedCentralCrossRefGoogle Scholar
  162. Minio A, Massonnet M, Figueroa-Balderas R, Castro A, Cantu D (2019) Diploid genome assembly of the wine grape carménère. G3 Genes Genomes Genet. Scholar
  163. Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, Velasco R, Kozma P, Grando MS (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet Genomes 7:153–167CrossRefGoogle Scholar
  164. Moroldo M, Paillard S, Marconi R, Fabrice L, Canaguier A, Cruaud C, De Berardinis V, Guichard C, Brunaud V, Le Clainche I, Scalabrin S, Testolin R, Di Gaspero G, Morgante M, Adam-Blondon AF (2008) A physical map of the heterozygous grapevine “Cabernet Sauvignon” allows mapping candidate genes for disease resistance. BMC Plant Biol 8:1–14CrossRefGoogle Scholar
  165. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535PubMedCrossRefPubMedCentralGoogle Scholar
  166. Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus Vitis. PLoS ONE 5:e8219PubMedPubMedCentralCrossRefGoogle Scholar
  167. Myles S, Mahanil S, Harriman J, Gardner KM, Franklin JL, Reisch BI, Ramming DW, Owens CL, Li L, Buckler ES, Cadle-Davidson L (2015) Genetic mapping in grapevine using SNP microarray intensity values. Mol Breed 35:88CrossRefGoogle Scholar
  168. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell Online 21:2194–2202CrossRefGoogle Scholar
  169. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung CW, Ren L, Spooner W, Wei X, Avraham S, Ware D, Stein L, McCouch S (2009) Gramene QTL database: development, content and applications. Database 2009Google Scholar
  170. Nicolas SD, Péros JP, Lacombe T, Launay A, Le Paslier MC, Bérard A, Mangin B, Valière S, Martins F, Le Cunff L, Laucou V, Bacilieri R, Dereeper A, Chatelet P, This P, Doligez A (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74PubMedPubMedCentralCrossRefGoogle Scholar
  171. Nicolè S, Barcaccia G, Erickson DL, Kress JW, Lucchin M (2013) The coding region of the UFGT gene is a source of diagnostic SNP markers that allow single-locus DNA genotyping for the assessment of cultivar identity and ancestry in grapevine (Vitis vinifera L.). BMC Res Notes 6:502PubMedPubMedCentralCrossRefGoogle Scholar
  172. Nijveen H, Ligterink W, Keurentjes JJB, Loudet O, Long J, Sterken MG, Prins P, Hilhorst HW, de Ridder D, Kammenga JE, Snoek BL (2017) AraQTL—workbench and archive for systems genetics in Arabidopsis thaliana. Plant J 89:1225–1235PubMedCrossRefPubMedCentralGoogle Scholar
  173. Ochssner I, Hausmann L, Toepfer R (2016) Rpv14, a new genetic source for Plasmopara viticola resistance conferred by Vitis cinerea. Vitis J Grapevine Res 55:79–81Google Scholar
  174. Oerke E-C, Herzog K, Toepfer R (2016) Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. J Exp Bot 67:5529–5543PubMedCrossRefPubMedCentralGoogle Scholar
  175. Ortiz JM, Martín JP, Borrego J, Chávez J, Rodríguez I, Muñoz G, Cabello F (2004) Molecular and morphological characterization of a Vitis gene bank for the establishment of a base collection. Genet Resour Crop Evol 51:403–409Google Scholar
  176. Owens CL (2003) SNP detection and genotyping in Vitis. Acta Hortic 603:139–140Google Scholar
  177. Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:170Google Scholar
  178. Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210CrossRefGoogle Scholar
  179. Peressotti E, Dolzani C, Poles L, Banchi E, Stefanini M, Salamini F, Velasco R, Vezzulli S, Riaz S, Walker MA, Reisch BI, Van De Weg WE, Bink MCAM (2015) A first pedigree-based analysis (PBA) approach for the dissection of disease resistance traits in grapevine hybrids. Acta Hortic 1082:113–122CrossRefGoogle Scholar
  180. Pindo M, Vezzulli S, Coppola G, Cartwright DA, Zharkikh A, Velasco R, Troggio M (2008) SNP high-throughput screening in grapevine using the SNPlex genotyping system. BMC Plant Biol 8:1–6CrossRefGoogle Scholar
  181. Polesani M, Desario F, Ferrarini A, Zamboni A, Pezzotti M, Kortekamp A, Polverari A (2008) cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genom 9:142CrossRefGoogle Scholar
  182. Pollefeys P, Bousquet J (2003) Molecular genetic diversity of the French–American grapevine hybrids cultivated in North America. Genome 46:1037–1048PubMedCrossRefPubMedCentralGoogle Scholar
  183. Qu X, Lu J, Lamikanra O, Science V, Florida A (1996) Genetic diversity in muscadine and american bunch grapes based on randomly amplified polymorphic DNA (RAPD) analysis. J Am Soc Hortic Sci 121:1020–1023CrossRefGoogle Scholar
  184. Razi M, Darvishzadeh R, Amiri ME, Doulati-Banehd H, Martínez-Gómez P (2019) Molecular characterization of a diverse Iranian table grapevine germplasm using REMAP markers: population structure, linkage disequilibrium and association mapping of berry yield and quality traits. Biologia 74:173–185CrossRefGoogle Scholar
  185. Rex F, Fechter I, Hausmann L, Töpfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘börner’ (V. riparia Gm183 × V. cinerea Arnold). Theor Appl Genet 127:1667–1677PubMedCrossRefPubMedCentralGoogle Scholar
  186. Reyna N, Sneller CH (2001) Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci 41:1317CrossRefGoogle Scholar
  187. Riahi L, Zoghlami N, Dereeper A, Laucou V, Mliki A, This P (2013) Single nucleotide polymorphism and haplotype diversity of the gene NAC4 in grapevine. Ind Crop Prod 43:718–724CrossRefGoogle Scholar
  188. Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073PubMedCrossRefPubMedCentralGoogle Scholar
  189. Richter R, Gabriel D, Rist F, Topfer R, Zyprian E (2019) Identification of co-located QTLs and genomic regions affecting grapevine cluster architecture. Theor Appl Genet 132:1159–1177PubMedCrossRefPubMedCentralGoogle Scholar
  190. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654PubMedPubMedCentralGoogle Scholar
  191. Ritter E, Salamini F (1996) The calculation of recombination frequencies in crosses of allogamous plant species with applications to linkage mapping. Genet Res 67:55–65CrossRefGoogle Scholar
  192. Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, Schmidt SA, Borneman AR (2018) Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genet 14:e1007807PubMedPubMedCentralCrossRefGoogle Scholar
  193. Ronin Y, Mester D, Minkov D, Belotserkovski R, Jackson BN, Schnable PS, Aluru S, Korol A (2012) Two-phase analysis in consensus genetic mapping. G3 Genes Genom Genet 2:537–549Google Scholar
  194. Rose J, Kicherer A, Wieland M, Klingbeil L, Töpfer R, Kuhlmann H (2016) Towards automated large-scale 3D phenotyping of vineyards under field conditions. Sensors 16:2136CrossRefGoogle Scholar
  195. Royo C, Torres-Pérez R, Mauri N, Diestro N, Cabezas JA, Marchal C, Lacombe T, Ibáñez J, Tornel M, Carreño J, Martínez-Zapater JM, Carbonell-Bejerano P (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-Box Gene VviAGL11. Plant Physiol 177:1234–1253PubMedPubMedCentralCrossRefGoogle Scholar
  196. Said JI, Knapka JA, Song M (2015a) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1615–1625CrossRefGoogle Scholar
  197. Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J (2015b) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 290:1003–1025PubMedCrossRefPubMedCentralGoogle Scholar
  198. Salmaso M, Faes G, Segala C, Stefanini M, Salakhutdinov L, Zyprian E, Toepfer R, Grando MS, Velasco R (2004) Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol Breed 14:385–395CrossRefGoogle Scholar
  199. Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R (2008) A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet 116:1129–1143PubMedCrossRefPubMedCentralGoogle Scholar
  200. Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti MC, Castelletti S, Tuberosa R (2011) Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol 11:4PubMedPubMedCentralCrossRefGoogle Scholar
  201. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski J-A, Tingey SV, Miao G-H, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci 104:11376–11381PubMedCrossRefPubMedCentralGoogle Scholar
  202. Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185PubMedCrossRefPubMedCentralGoogle Scholar
  203. Sapkota S, Chen LL, Yang S, Hyma KE, Cadle-Davidson L, Hwang CF (2019) Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’. Theor Appl Genet 132:137–147PubMedCrossRefPubMedCentralGoogle Scholar
  204. Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78PubMedPubMedCentralCrossRefGoogle Scholar
  205. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: A new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176PubMedCrossRefGoogle Scholar
  206. Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830PubMedPubMedCentralCrossRefGoogle Scholar
  207. Sensi E, Vignani R, Rohde W, Biricolti S (1996) Characterization of genetic biodiversity with Vitis vinifera L. Sangiovese and Colorino genotypes by AFLP and ISTR DNA marker technology. Vitis 35:183–188Google Scholar
  208. Smita S, Lenka SK, Katiyar A, Jaiswal P, Preece J, Bansal KC (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database 2011:1–9CrossRefGoogle Scholar
  209. Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR (2018a) SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS ONE 13:1–27PubMedPubMedCentralCrossRefGoogle Scholar
  210. Smith HM, Clarke CW, Smith BP, Carmody BM, Thomas MR, Clingeleffer PR, Powell KS (2018b) Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biol 18:360PubMedPubMedCentralCrossRefGoogle Scholar
  211. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744CrossRefGoogle Scholar
  212. Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T (2013) High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet 126:2563–2574PubMedCrossRefGoogle Scholar
  213. Subden RE, Krizus A, Lougheed SC, Carey K (1987) Isozyme characterization of Vitis species and some cultivars. Am J Enol Vitic 38:76–181Google Scholar
  214. Sunseri F, Lupini A, Mauceri A, De Lorenzis G, Araniti F, Brancadoro L, Dattola A, Gullo G, Zappia R, Mercati F (2018) Single nucleotide polymorphism profiles reveal an admixture genetic structure of grapevine germplasm from Calabria, Italy, uncovering its key role for the diversification of cultivars in the Mediterranean Basin. Aust J Grape Wine Res 24:345–359CrossRefGoogle Scholar
  215. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203PubMedCrossRefPubMedCentralGoogle Scholar
  216. Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138PubMedPubMedCentralCrossRefGoogle Scholar
  217. Tecle IY, Menda N, Buels RM, Van Der Knaap E, Mueller LA (2010) solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinform 11:525CrossRefGoogle Scholar
  218. Teh SL, Fresnedo-ramírez J, Clark MD, Gadoury DM, Sun Q, Cadle-davidson L, Luby JJ (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  219. Tello-Ruiz MK, Stein J, Wei S, Preece J, Olson A, Naithani S, Amarasinghe V, Dharmawardhana P, Jiao Y, Mulvaney J, Kumari S, Chougule K, Elser J, Wang B, Thomason J, Bolser DM, Kerhornou A, Walts B, Fonseca NA, Huerta L, Keays M, Tang YA, Parkinson H, Fabregat A, McKay S, Weiser J, D’Eustachio P, Stein L, Petryszak R, Kersey PJ, Jaiswal P, Ware D (2016) Gramene 2016: comparative plant genomics and pathway resources. Nucleic Acids Res 44:1133–1140CrossRefGoogle Scholar
  220. Tello J, Aguirrezábal R, Hernáiz S, Larreina B, Montemayor MI, Vaquero E, Ibáñez J (2015a) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Aust J Grape Wine Res 21:277–289CrossRefGoogle Scholar
  221. Tello J, Montemayor MI, Forneck A, Ibáñez J (2018) A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant Methods 14:1–17CrossRefGoogle Scholar
  222. Tello J, Torres-Pérez R, Grimplet J, Carbonell-Bejerano P, Martínez-Zapater JM, Ibáñez J (2015b) Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biol 15:253PubMedPubMedCentralCrossRefGoogle Scholar
  223. This P, Cuisset C, Boursiquot JM (1997) Development of stable RAPD markers for the identification of grapevine rootstocks and the analysis of genetic relationships. Am J Enol Vitic 48:492–501Google Scholar
  224. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhães R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458PubMedCrossRefGoogle Scholar
  225. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730PubMedPubMedCentralCrossRefGoogle Scholar
  226. Thomas MR, Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet 86:985–990PubMedCrossRefGoogle Scholar
  227. Thongjuea S, Ruanjaichon V, Bruskiewich R, Vanavichit A (2009) RiceGeneThresher: A web-based application for mining genes underlying QTL in rice genome. Nucleic Acids Res 37:996–1000CrossRefGoogle Scholar
  228. Töpfer R, Hausmann L, Eibach R (2011) Molecular breeding. In: Adam-Blondon A-F, Martínez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. CRC Press, Boca Raton, pp 160–185CrossRefGoogle Scholar
  229. Troggio M, Malacarne G, Coppola G, Segala C, Cartwright D, Massimo P, Stefanini M, Mank R, Moroldo M, Morgante M, Grando SM, Velasco R (2007) A dense single-nucleotide polymorphism based genetic linkage map of grapevine (Vitis vinifera L.) anchoring pinot noir bacterial artificial chromosome contigs. Genet Soc Am 176:2637–2650Google Scholar
  230. Troggio M, Malacarne G, Vezzulli S, Faes G, Salmaso M, Velasco R (2008) Comparison of different methods for SNP detection in grapevine. Vitis J Grapevine Res 47:21–30Google Scholar
  231. van Heerden CJ, Burger P, Vermeulen A, Prins R (2014) Detection of downy and powdery mildew resistance QTL in a ‘Regent’ × ‘RedGlobe’ population. Euphytica 200:281–295CrossRefGoogle Scholar
  232. Van Ooijen J (2006) JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental population. Kyazma BVGoogle Scholar
  233. Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18:233–242PubMedCrossRefGoogle Scholar
  234. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedPubMedCentralCrossRefGoogle Scholar
  235. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematté L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaremella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326PubMedPubMedCentralCrossRefGoogle Scholar
  236. Venuti S, Copetti D, Foria S, Falginella L, Hoffmann S, Bellin D, Cindrić P, Kozma P, Scalabrin S, Morgante M, Testolin R, Di Gaspero G (2013) Historical Introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS ONE 8:e61228PubMedPubMedCentralCrossRefGoogle Scholar
  237. Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49CrossRefGoogle Scholar
  238. Vezzulli S, Malacarne G, Masuero D, Vecchione A, Dolzani C, Goremykin V, Haile Mehari Z, Banchi E, Velasco R, Stefanini M, Vrhovsek U, Zulini L, Franceschi P, Moser C (2019) The Rpv3-3 haplotype and stilbenoid induction mediate downy mildew resistance in a grapevine interspecific population. Front Plant Sci 10:234Google Scholar
  239. Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, This P, Walker MA, Troggio M, Velasco R (2008a) A SNP transferability survey within the genus Vitis. BMC Plant Biol 8:128PubMedPubMedCentralCrossRefGoogle Scholar
  240. Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Zharkikh A, Stefanini M, Grando MS, Viola R, Adam-Blondon AF, Thomas M, This P, Velasco R (2008b) A reference integrated map for cultivated grapevine (Vitis vinifera L.) from three crosses, based on 283 SSR and 501 SNP-based markers. Theor Appl Genet 117:499–511PubMedCrossRefGoogle Scholar
  241. Viana AP, Riaz S, Walker MA (2013) Genetic dissection of agronomic traits within a segregating population of breeding table grapes. Genet Mol Res 12:951–964PubMedCrossRefGoogle Scholar
  242. Vidal JR, Moreno S, Masa A, Ortiz JM (1998) Study ofthe genetic homogeneity of Albarino (Vitis vinifera L.) growing in Galicia (Spain) using isozyme and RAPD markers. Vitis 37:145–146Google Scholar
  243. Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  244. Walker AR, Lee E, Robinson SP (2006) Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Mol Biol 62:623–635PubMedCrossRefGoogle Scholar
  245. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785PubMedCrossRefGoogle Scholar
  246. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, Mccouch SR (2002) Update, a tool for grass genomics. Plant Physiol 130:1606–1613PubMedPubMedCentralCrossRefGoogle Scholar
  247. Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374CrossRefGoogle Scholar
  248. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedPubMedCentralCrossRefGoogle Scholar
  249. Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438–448PubMedCrossRefPubMedCentralGoogle Scholar
  250. Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212PubMedPubMedCentralCrossRefGoogle Scholar
  251. Xu H, Wilson DJ, Arulsekar S, Bakalinsky AT (1995) Sequence-specific polymerase chain-reaction markers derived from randomly amplified polymorphic DNA markers for fingerprinting grape (Vitis) rootstocks. J Am Soc Hortic Sci 120:714–720CrossRefGoogle Scholar
  252. Xu K, Riaz S, Roncoroni NC, Jin Y, Hu R, Zhou R, Walker MA (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Genet 116:305–311PubMedCrossRefPubMedCentralGoogle Scholar
  253. Xu Y (2010) Molecular breeding tools: markers and maps. In: Molecular plant breeding. CABI, Wallingford, pp 21–58Google Scholar
  254. Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL, Mansfield AK, Luby JJ, Londo JP, Reisch BI, Cadle-Davidson LE, Fennell AY (2016a) Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS ONE 11:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  255. Yang S, Fresnedo-Ramírez J, Wang M, Cote L, Schweitzer P, Barba P, Takacs EM, Clark M, Luby J, Manns DC, Sacks G, Mansfield AK, Londo J, Fennell A, Gadoury D, Reisch B, Cadle-Davidson L, Sun Q (2016b) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. Hortic Res 3:16002PubMedPubMedCentralCrossRefGoogle Scholar
  256. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefPubMedCentralGoogle Scholar
  257. Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. Publication 0 534 858 Al. European Patent Office, MunichGoogle Scholar
  258. Zamir D (2013) Where have all the crop phenotypes gone? PLoS Biol 11:1–4CrossRefGoogle Scholar
  259. Zeng H, Luo L, Zhang W, Zhou J, Li Z, Liu H, Zhu T, Feng X, Zhong Y (2007) PlantQTL-GE: A database system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information. Nucleic Acids Res 35:879–882CrossRefGoogle Scholar
  260. Zhang H, Fan X, Zhang Y, Jiang J, Liu C (2017) Identification of favorable SNP alleles and candidate genes for seedlessness in Vitis vinifera L. using genome-wide association mapping. Euphytica 213:1–13CrossRefGoogle Scholar
  261. Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R, Zyprian EM (2009) A framework map from grapevine V3125 (Vitis vinifera “Schiava grossa” × ’Riesling’) × rootstock cultivar “Börner” (Vitis riparia ×  Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051PubMedCrossRefPubMedCentralGoogle Scholar
  262. Zhang L, Marguerit E, Rossdeutsch L, Ollat N, Gambetta GA (2016) The influence of grapevine rootstocks on scion growth and drought resistance. Theor Exp Plant Physiol 28:143–157CrossRefGoogle Scholar
  263. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360PubMedPubMedCentralCrossRefGoogle Scholar
  264. Zhao YH, Guo YS, Lin H, Liu ZD, Ma HF, Guo XW, Li K, Yang XX, Niu ZZ, Shi GG (2015) Quantitative trait locus analysis of grape weight and soluble solid content. Genet Mol Res 14:9872–9881CrossRefGoogle Scholar
  265. Zhao YH, Su K, Guo YH, Ma HF, Guo XW (2016) Molecular genetic map construction and QTL analysis of fruit maturation period in grapevine. Genet Mol Res 15:1–10Google Scholar
  266. Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Töpfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594CrossRefGoogle Scholar
  267. Zyprian E, Šimon S, Schwander F, Töpfer R (2015) Efficiency of single nucleotide polymorphisms to improve a genetic map of complex pedigree grapevines. Vitis J Grapevine Res 54:29–32Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Silvia Vezzulli
    • 1
    Email author
  • Agnès Doligez
    • 2
    • 3
  • Diana Bellin
    • 4
  1. 1.Research and Innovation CentreFondazione Edmund MachSan Michele all’AdigeItaly
  2. 2.UMR AGAPUniversity of Montpellier-CIRAD-INRA-Montpellier SupAgroMontpellierFrance
  3. 3.UMT Geno-Vigne®IFV-INRA-Montpellier SupAgroMontpellierFrance
  4. 4.Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly

Personalised recommendations