Advertisement

Source-Sink Relationship of Sugarcane Energy Production at the Sugar Mills

  • Sagheer Ahmad
  • Muhammad Anjum Ali
  • Giovanna M. Aita
  • Muhammad Tahir Khan
  • Imtiaz Ahmed Khan
Chapter

Abstract

Sugarcane (Saccharum officinarum L.) is an important source of sugar, biofuels and bioenergy, helping in meeting requirements of the world from food energy to fuel energy. This chapter covers, in brief, the sugar milling processes from sugarcane crushing to sugar manufacturing, by-products release, biofuels production, and bioelectricity cogeneration. Technological aspects of various forms of bioenergy production including bioethanol, electricity, and biogas, at the sugar industry, are detailed in this chapter. Industrial process and mechanism of molasses fermentation into bioethanol have been described; additionally, the chapter illustrates the approaches for second-generation ethanol production and pretreatment methods for the same. Moreover, the chapter also narrates cogeneration of electricity from sugarcane and cogeneration efficiency enhancement systems like Centrale Thermique de Belle Vue (CTBV) and condensation-extraction steam turbine (CEST). The use of other resources of sugarcane, viz., trash and straw, for obtaining the energy year-round has also been described. Finally, a brief on production of biogas from sugarcane pressmud, bagasse, and vinasse has been presented.

Keywords

Sugarcane bioenergy Ethanol Sugarcane milling Bioelectricity Cogeneration Pretreatment 

Abbreviations

5-HMF

5-Hydroxymethylfurfural

AFEX

Ammonia fiber explosion

BIGCC

Biomass integrated gasification combined cycle

BOD

Biological oxygen demand

BPST

Back pressure steam turbines

CBP

Consolidated bioprocessing

CEST

Condensation-extraction steam turbines

COD

Chemical oxygen demand

CTBV

Centrale Thermique de Belle Vue

DOE

Department of Energy

DW

Dry weight

FAO

Food and Agriculture Organization

FFV

Flex-fuel vehicles

GHV

Gross heating value

HRSG

Heat recovery steam generator

ISO

International Sugar Organization

MTBE

Methyl tertiary butyl ether

SHF

Separate hydrolysis and fermentation

SSCF

Simultaneous saccharification and cofermentation

SSF

Simultaneous saccharification and fermentation

USDA

United States Department of Agriculture

References

  1. Abdalla AM, Hassan TH, Mansour ME (2018) Performance of wet and dry bagasse combustion in Assalaya sugar factory. Sudan Innov Ener Res 7:179–184.  https://doi.org/10.4172/2576-1463.1000179CrossRefGoogle Scholar
  2. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang A (2016) Second generation bioethanol production: a critical review. Renew Sust Energy Rev 66:631–653CrossRefGoogle Scholar
  3. Aita G, Kim M (2011) Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. In: Sustainability of the sugar and sugar-ethanol industries. ACS Press, Oaklyn, pp 117–145.  https://doi.org/10.1021/bk-2010-105CrossRefGoogle Scholar
  4. Aita GA, Salvi DA, Walker MS (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour Technol 102(6):4444–4448PubMedCrossRefGoogle Scholar
  5. Alvira P, Tomas-Pejo E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  6. Antaresti YS, Setiyadi HW, Yogi YP (2002) The effect of chemical and biopulping process to bagasse pulp. In Proceeding: Symposium of Malaysian Chemical Engineers (SOMChE) and Regional Symposium on Chemical Engineering (RSCE), Petaling JayaGoogle Scholar
  7. Aranda C, Robledo A, Loera O et al (2006) Fungal invertase expression in solid-state fermentation. Food Technol Biotechnol 44:229–233Google Scholar
  8. Ashokkumar B, Kayalvizhi N, Gunasekaran P (2001) Optamization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 37:331–338CrossRefGoogle Scholar
  9. Baez-Smith C (2006) Anaerobic digestion of vinasse for the production of methane in the sugarcane distillery. In: Proceeding SPRI conference on sugar processing, Aguas de São Pedro, 17–20 Sept 2016, p 268–287Google Scholar
  10. BNDES and CGEE (2008) Sugarcane-based bioethanol: energy for sustainable development, 1st edn. Banco Nacional de Desenvolvimento Econômico e Social and Centro de Gestão e Estudos Estratégicos, Rio de Janeiro, p 304Google Scholar
  11. Bangrak P, Limtong S, Phisalaphong M (2011) Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Braz J Microbiol 41:676–684CrossRefGoogle Scholar
  12. Baral NR, Wituszynski DM, Martin J, Shah A (2017) Sustainability assessment of cellulosic biorefinery stillage utilization methods using energy analysis. Energy 109:13–28CrossRefGoogle Scholar
  13. Barriga A (2003) Energy system II. University of Calgary/OLADE, QuitoGoogle Scholar
  14. Barros S, Berk C (2018) Brazil biofuels annual, Global Agricultural Information Network (GAIN) Report Number. BR18017, USDA Foreign Agricultural Service, Washington, DC. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Sao%20Paulo%20ATO_Brazil_8-10-2018.pdf. Accessed 11 Dec 2018
  15. Behera S, Rama CM, Ramesh CR (2012) Ethanol fermentation of sugarcane molasses by Zymomonas mobilis MTCC 92 immobilized in Luffa cylindrica L sponge discs and Ca-alginate matrices. Braz J Microbiol 43(4):1499–1507.  https://doi.org/10.1590/S1517–83822012000400034CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bezerra TL, Ragauskas AJ (2016) A review of sugarcane bagasse for second generation bioethanol and biopower production. Biofuels Bioprod Biorefin 10:634–647CrossRefGoogle Scholar
  17. Bleoanca I, Bahrim G (2013) Overview on brewing yeast stress factors. Rom Biotech Lett 18(5):8559–8572. https://www.rombio.eu/vol18nr5/1%20Bleoanca.pdfGoogle Scholar
  18. Bommarius AS, Katona A, Cheben SE et al (2008) Cellulose kinetics as a function of cellulose pretreatment. Metab Eng 10:370–381PubMedCrossRefGoogle Scholar
  19. Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100:6537–6542PubMedCrossRefGoogle Scholar
  20. Bozzell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554CrossRefGoogle Scholar
  21. Brown RC (2005) Biomass refineries based on hybrid thermochemical-biological processing: an overview. In: Kamm B, Gruber VR, Kamm M (eds) Biorefineries industrial processes and products, vol 1. Wiley, Weinheim, pp 227–252CrossRefGoogle Scholar
  22. Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386.  https://doi.org/10.1016/j.biortech.2012.08.051CrossRefPubMedGoogle Scholar
  23. Bussamra BC, Freitas S, Da Costa A (2015) Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresour Technol 187:173–181PubMedCrossRefGoogle Scholar
  24. Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89(1):2–10CrossRefGoogle Scholar
  25. Canilha L, Chandel AK, Milessi S, Antunes FAF, Freitas L, Das Gracas AF, Da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:989572.  https://doi.org/10.1155/2012/989572CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cao S, Aita G (2013) Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse. Bioresour Technol 131:357–364PubMedCrossRefGoogle Scholar
  27. Carmo MJ, Gubulin JC (1997) Ethanol-water adsorption on commercial 3A zeolites: kinetic and thermodynamic data. Braz J Chem Eng 14(3).  https://doi.org/10.1590/S0104-66321997000300004
  28. Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98:2824–2828PubMedCrossRefGoogle Scholar
  29. Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18(4):295–331PubMedCrossRefGoogle Scholar
  30. Charles M, Shuichi F (2003) Electricity from bagasse in Zimbabwe. Biomass Bioenergy 25:197–207CrossRefGoogle Scholar
  31. Cheng K, Zhang J, Ping W, Ge J, Zhou Y, Ling H, Xu M (2008) Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Appl Biochem Biotechnol 151:43–50PubMedCrossRefGoogle Scholar
  32. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239PubMedCrossRefGoogle Scholar
  33. Colombo G, Ocampo-Duque W, Rinaldi F (2014) Challenges in bioenergy production from sugarcane mills in developing countries: a case study. Energies 7:5874–5898.  https://doi.org/10.3390/en7095874CrossRefGoogle Scholar
  34. Daud S, Salleh SS, Salleh MN, Kasim FH, Saad SA (2007) Analysis of chemical composition in sugarcane bagasse and rice straw for their suitability using in paper production. In: Proceedings of 1st international conference on sustainable materials engineering (ICoSM), Penang, 9–11 June 2007, p 291–292Google Scholar
  35. De Rosa J, Salvadori M (2007) Advantages and challenges of cogeneration. Frost and Sullivan Market Insight. http://www.frost.com/prod/servlet/market-insight-print.pag?docid=110279425. Accessed 22 Nov 2018
  36. de Souza SNM, Santos RF, Fracaro GPM (2011) Potential for the production of biogas in alcohol and sugarcane plants for use in urban buses in the Brazil. In: Proceeding World Renewable Energy Congress (Bioenergy Technol), Linkoping, 8–13 May 2011, p 418–424Google Scholar
  37. Deepchand K (2005) Sugarcane bagasse energy cogeneration: lessons from Mauritius. Paper presented to the parliamentarian forum on energy legislation and sustainable development, Cape Town, 5–7 October 2005Google Scholar
  38. Deng F, Aita G (2018) Detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by soluble polyelectrolyte floccculants. Ind Crop Prod 112:681–690CrossRefGoogle Scholar
  39. Deng F, Cheong D, Aita G (2018) Optimization of activated carbon detoxification of dilute ammonia pretreated energy cane bagasse enzymatic hydrolysate by response surface methodology. Ind Crop Prod 115:166–173CrossRefGoogle Scholar
  40. Deshmukh R, Jacobson A, Chamberlin C, Kammen D (2013) Thermal gasification or direct combustion: comparison of advanced cogeneration systems in the sugarcane industry. Biomass Bioenergy 55:163–174CrossRefGoogle Scholar
  41. Dias MOS, Junqueira TL, Cavalett O et al (2013) Cogeneration in integrated first and second generation ethanol from sugarcane. Chem Eng Res Des 91:1411–1417CrossRefGoogle Scholar
  42. Díaz JC, Gil-Chávez ID, Giraldo L, Moreno-Piraján JC (2010) Separation of ethanol-water mixture using type-A zeolite molecular sieve. J Chem 7:483–495Google Scholar
  43. Dwivedi P, Alavalapati J, Lal P (2009) Cellulosic ethanol production in the United States: conversion technologies, current produciton status, economics, and emerging developments. Energy Sustain Dev 13:174–182CrossRefGoogle Scholar
  44. Ensinas AV, Nebra SA, Lozano MA, Serra L (2006) Analysis of cogeneration systems in sugar cane factories: alternatives of steam and combined cycle power plants. In: Proceedings of the ECOS, Aghia Pelagia, 12–14 July 2006, p 1177–1184Google Scholar
  45. Eshore S, Mondal C, Das A (2017) Production of biogas from treated sugarcane bagasse. Int J Eng Sci Technol 6:224–227.  https://doi.org/10.5958/2277-1581.2017.00025.0CrossRefGoogle Scholar
  46. Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM, Montaño-Leyva B (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. Bioresources 11(2):5452–5481CrossRefGoogle Scholar
  47. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136CrossRefGoogle Scholar
  48. Faria KCP (2011) Master thesis, UENF-LAMAV, Campos dos Goytaczes-RJ, BrazilGoogle Scholar
  49. Farzad S, Mandegari M, Gorgens J (2016) A critical review on biomass gasification, co-gasification and their environmental assessments. Biofuel Res J 12:483–495CrossRefGoogle Scholar
  50. Fatma S, Hameed A, Noman M, Ahmed T, Shahid M, Tariq M, Sohail I, Tabassum R (2018) Lignocellulosic biomass: a sustainable bioenergy source for the future. Protein Pept Lett 25:1–16CrossRefGoogle Scholar
  51. Ferreira V, de Oliveira FM, da Silva MS, Pereira JN (2010) Simultaneous saccharification and fermentation process of different cellulosic substrates using a recombinant Saccharomyces cerevisiae harboring the B-glucosidase gene. Electron J Biotechnol 13:2CrossRefGoogle Scholar
  52. Food and Agriculture Organization Statistics (2017) Crop production: Sugarcane. http://www.fao.org/faostat/. Accessed 12 Jul 2018
  53. Galvao ACF, Poppe MK, Rocha BB, Durieux L, Nogueira LAH, Macedo IC (2016) Second generation sugarcane bioenergy and biochemicals: advanced low-carbon fuels for transport and industry. Center for Strategic Studies and Management (CGEE), Brasília, p 103Google Scholar
  54. Gasmalla MAA, Yang R, Nikoo M, Man S (2012) Production of ethanol from sudanese sugar cane molasses and evaluation of its quality. J Food Process Technol 3:163.  https://doi.org/10.4172/2157-7110.1000163CrossRefGoogle Scholar
  55. Gould JM (1985) Studies on the mechanism of alkaline peroxide delignification of agricultural residues. Biotech Bioenergy 27:225–231.  https://doi.org/10.1002/bit.260270303CrossRefGoogle Scholar
  56. Guan Y, Luo S, Liu S, Xiao B, Cai L (2009) Steam catalytic gasification of municipal solid waste for producing tar-free fuel gas. Int J Hydrog Energy 34(23):9341–9346.  https://doi.org/10.1016/j.ijhydene.2009.09.050CrossRefGoogle Scholar
  57. Guilherme AA, Dantas PVF, Santos ES, Fernandes FA, Macedo GR (2015) Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz J Chem Eng 32:23–33.  https://doi.org/10.1590/0104-6632.20150321s00003146CrossRefGoogle Scholar
  58. Hadiyarto A, Sumardiono S, Budiyono B, Fofana FF, Fauzi I (2017) The effect of solid-state anaerobic digestion (SS-AD) and liquid anaerobic digestion (L-AD) method in biogas production of rice husk. Waste Technol 1(1):1–5.  https://doi.org/10.12777/wastech.5.2.2017.1-15CrossRefGoogle Scholar
  59. Haelssig JB, Tremblay AY, Thibault J (2012) A new hybrid membrane separation process for enhanced ethanol recovery: process description and numerical studies. Chem Eng Sci 68:492–505CrossRefGoogle Scholar
  60. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund M (2007) Towards industrial pentose-fermenting yeast strains. Appl Environ Microbiol 74:5031–5037Google Scholar
  61. Hamelinck C, Hooijdonk G, Faaij A (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  62. Hassuani SJ, Leal MRLV, Macedo IC (eds) (2005) Biomass power generation: sugar cane bagasse and trash, 1st edn. PNUD – CTC, Piracicaba, p 216Google Scholar
  63. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294CrossRefGoogle Scholar
  64. Hayes D (2016) Second generation fuels: why are they taking so long? In: Lund P, Byrne J, Berndes G, Vasalos I (eds) Advances in bioenergy: the sustainability challenge, 1st edn. Wiley, Chichester, p 163Google Scholar
  65. Hayes DJ, Hayes MHB (2009) The role that lignocellulosic feedstocks and various biorefining technologies can play in meeting Ireland’s biofuels targets. Biofuels Bioprod Biorefin 3:500–520CrossRefGoogle Scholar
  66. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18.  https://doi.org/10.1016/j.biortech.2008.05.027CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hietala J, Vuori A, Johnsson P, Pollari I, Reutemann W, Kieczka H (2016) Formic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken, pp 1–22CrossRefGoogle Scholar
  68. Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62:1–21CrossRefGoogle Scholar
  69. Humbirt D, Aden A (2008) Biochemical production of ethanol from corn stover: 2008 state of technology model. Technical report No.: NREL/TP-510-46214. National Renewable Energy Laboratory, GoldenGoogle Scholar
  70. International Energy Agency (2015) World energy outlook 2015. IEA. Organisation for Economic Co-operation and Development, Paris, p 718. https://www.iea.org/publicationsCrossRefGoogle Scholar
  71. International Sugar Organization (2009) Cogeneration opportunities in the world sugar industry. In: Bulletin MECAS Studies—International Sugar Organization 5(9). http://www.isosugar.org
  72. Jambo SA, Abdulla A, Azhar SHM, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769.  https://doi.org/10.1016/j.rser.2016.07.064CrossRefGoogle Scholar
  73. Janke L, Leite A, Nikolausz M, Schmidt T, Liebetrau J, Nelles M, Stinner W (2015) Biogas production from sugarcane waste: assessment on kinetic challenges for process designing. Int J Mol Sci 16:20685–20703.  https://doi.org/10.3390/ijms160920685CrossRefPubMedPubMedCentralGoogle Scholar
  74. Jӧnsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRefGoogle Scholar
  75. Kamate CS, Gangavati BP (2009) Cogeneration in sugar industries: technology options and performance parameters-a review. Cogen Distrib Gener J 24:6–33.  https://doi.org/10.1080/15453660909595148CrossRefGoogle Scholar
  76. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28CrossRefGoogle Scholar
  77. Kennes D, Abubackar HN, Diaz M, Veiga M, Kennes C (2016) Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol 91:304–317CrossRefGoogle Scholar
  78. Khan MT, Seema N, Khan IA, Yasmine S (2017a) Applications and potential of sugarcane as an energy crop. In: Gorawala P, Mandhatri S (eds) Agricultural research updates, vol 16. Nova Science Publishers, New York, pp 1–24Google Scholar
  79. Khan MT, Seema N, Khan IA, Yasmine S (2017b) The green fuels: evaluation, perspectives, and potential of sugarcane as an energy source. Environ Res J 10(4)Google Scholar
  80. Khandekar DC, Palai T, Agarwal A, Bhattacharya PK (2014) Kinetics of sucrose conversion to fructo-oligosaccharides using enzyme (invertase) under free condition. Bioprocess Biosyst Eng 37(12):2529–2537.  https://doi.org/10.1007/s00449-014-1230-5CrossRefPubMedGoogle Scholar
  81. Khatiwada D, Seabra J, Silveira S, Walter A (2012) Power generation from sugarcane: biomass-a complementary option to hydroelectricity in Nepal and Brazil. Energy 48:241–254CrossRefGoogle Scholar
  82. Khatiwada D, Leduc S, Silveira S, McCallum I (2016) Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renew Energy 85:371–386CrossRefGoogle Scholar
  83. Kim S, Dale BE (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29:426–439CrossRefGoogle Scholar
  84. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47.  https://doi.org/10.1016/S0960-8524(03)00097-XCrossRefPubMedGoogle Scholar
  85. Köchermann J, Schneider J, Matthischke S, Rönsch S (2015) Sorptive H2S removal by impregnated activated carbons for the production of SNG. Fuel Process Technol 138:37–41.  https://doi.org/10.1016/j.fuproc.2015.05.004CrossRefGoogle Scholar
  86. Koppram R, Nielsen F, Albers E, Lambert A, Wannstrom S, Welin L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6:2PubMedPubMedCentralCrossRefGoogle Scholar
  87. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627PubMedCrossRefGoogle Scholar
  88. Kumar A, Jones D, Hanna M (2009) Thermochemical biomass gasification: a review of the current status of the technology. Energies 2:556–581CrossRefGoogle Scholar
  89. Kummamuro B (2016) WBA global bioenergy statistics. World Bioenergy Association, StockholmGoogle Scholar
  90. Lawford HG, Rousseau JD (1991) Fuel ethanol from hardwood hemicellulose hydrolysate by genetically engineered Escherichia coli B carrying genes from Zymomonas mobilis. Biotechnol Lett 13:191–196CrossRefGoogle Scholar
  91. Le Berre C, Serp P, Kalck P, Torrence GP (2014) Acetic acid. Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken, pp 1–34CrossRefGoogle Scholar
  92. Leal MRLV, Galdos MV, Scarpare FV, Seabra JE, Walter A (2013) Sugarcane straw availability, quality, recovery and energy use: a review. Biomass Bioenergy 53:11–19CrossRefGoogle Scholar
  93. Linde D, Macias I, Fernández-Arrojo L, Plou FJ, Jiménez A, Fernández-Lobato M (2009) Molecular and biochemical characterization of a beta-fructofuranosidase from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 75:1065–1073PubMedCrossRefGoogle Scholar
  94. Lois-Correa J, Flores-Vela A, Ortega-Grimaldo D, Berman-Delgado J (2010) Experimental evaluation of sugar cane bagasse storage in bales system. J Appl Res Technol 8:365–377Google Scholar
  95. López González LM, Vervaeren H, Reyes IP, Dumoulin A, Romero OR, Dewulf J (2013) Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud. Bioresour Technol 131:250–257PubMedCrossRefGoogle Scholar
  96. López González LM, Reyes IP, Dewulf J, Budde J, Heiermann M, Vervaeren H (2014) Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresour Technol 169:284–290PubMedCrossRefGoogle Scholar
  97. Lynd LR, Elamder RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57–58(1):741–761CrossRefGoogle Scholar
  98. Macedo IC, Leal MRLV, Hassuani SJ (2001) Sugar cane residues for power generation in the sugar/ ethanol mills in Brazil. Energy Sustain Dev 5(1):77–82CrossRefGoogle Scholar
  99. Machado G, Leon S, Santos F, Lourega R, Dullius J, Mollmann ME, Eichler P (2016) Literature review on furfural production from lignocellulosic biomass. Nat Resour J 7(03):115Google Scholar
  100. Marek M, Bialobrzewski I, Zielinski M, Dębowski M, Krzemieniewski M (2014) Optimizing low-temperature biogas production from biomass by anaerobic digestion. Renew Energy 69:219–225CrossRefGoogle Scholar
  101. Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83CrossRefGoogle Scholar
  102. Maryana R, Ma’rifatun D, Wheni AI, Satriyo KW, Rizal WA (2014) Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia 47:250–254CrossRefGoogle Scholar
  103. McMillan JD (1997) Bioethanol production: status and prospects. Renew Energy 10:295–302CrossRefGoogle Scholar
  104. Modenbach AA, Nokes S (2014) Effects of sodium hydroxide pretreatment on structural components of biomass. Am Soc Agric Biol Eng 57:1187–1198Google Scholar
  105. Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. J Renew Sustain Ener 15(9):4255–4273CrossRefGoogle Scholar
  106. Mohapatra S, Mishra C, Behera S, Thatoi H (2017) Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass: a review. Renew Sust Energ Rev 78:1007–1032CrossRefGoogle Scholar
  107. Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M (2015) A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 35(3):342–354PubMedCrossRefGoogle Scholar
  108. Morias PB, Rosa CA, Linardi VR, Carazza F, Nonato EA (2007) Production of fuel alcohol by saccharomyces starins from tropical habitats. Biotechnol Lett 18:1351–1356CrossRefGoogle Scholar
  109. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993PubMedCrossRefGoogle Scholar
  110. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  111. Naidua D, Hlangothib S, John M (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41CrossRefGoogle Scholar
  112. National Academic Press (2000) Biobased industrial products: priorities for research and commercialization, Washington, DC, p 162.  https://doi.org/10.17226/5295
  113. Neves PV, Pitarelo AP, Ramos LP (2016) Production of cellulosic ethanol from sugarcane bagasse by steam explosion: effect of extractives content, acid catalysis and different fermentation technologies. Bioresour Technol 208:184–194PubMedCrossRefPubMedCentralGoogle Scholar
  114. Nigam JN (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cell. J Biotechnol 80:189–193PubMedCrossRefPubMedCentralGoogle Scholar
  115. O’Sullivan A, Sheffrin S (2003) Economics: principle and tools, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  116. Oladi S, Aita G (2017) Optimization of liquid ammonia pretreatment variables for maximum enzymatic hydrolysis yield of energy cane bagasse. Ind Crop Prod 103:122–132CrossRefGoogle Scholar
  117. Oladi S, Aita G (2018) Interactive effect of enzymes and surfactant on the cellulose digestibility of un-washed and washed dilute ammonia pretreated energy cane bagasse. Biomass Bioenergy 109:221–230CrossRefGoogle Scholar
  118. Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour Technol 156:303–306.  https://doi.org/10.1016/j.biortech.2014.01.055CrossRefPubMedGoogle Scholar
  119. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24CrossRefGoogle Scholar
  120. Patil HJ, AntonyRaj MA, Shankar BB, Shetty MK, Kumar BP (2014) Anaerobic co-digestion of water hyacinth and sheep waste. Energy Procedia 52:572–578CrossRefGoogle Scholar
  121. Pellegrini LF, de Oliveira JS, Burbano JC (2013) Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills. Energy 35:1172–1180CrossRefGoogle Scholar
  122. Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1:27CrossRefGoogle Scholar
  123. Purohit P, Michaelowa A (2007) CDM potential of bagasse cogeneration in India. Energy Policy 35:4779–4798CrossRefGoogle Scholar
  124. Qiu Z, Aita G, Mahalaxmi S (2014) Optimization by response surface methodology of processing conditions for the ionic liquid pretreatment of energy cane bagasse. J Chem Technol Biotechnol 89(5):682–689CrossRefGoogle Scholar
  125. Ranjan R, Thust S, Gounaris CE, Woo M, Floudas CA, Von Keitz M, Valentas KJ, Wei J, Tsapatsis M (2009) Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolyzates for improved ethanol yield and value-added product recovery. Microporous Mesoporous Mater 122:143–148CrossRefGoogle Scholar
  126. Rao PJM (1999) An overview of the co-products industries in India. In: Proceedings of the XXIII International Society of Sugar Cane Technologists, 22–26 Feb 1999, New DelhiGoogle Scholar
  127. Rastogi M, Shrivastava S (2017) Recent advances in second geenration bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340CrossRefGoogle Scholar
  128. Rein P (2004) Feasibility study on the production of fuel alcohol from Louisiana Molasses. Sugar Bull 82(12):13–17Google Scholar
  129. Rezende CA, de Lima MA, Maziero P, Ribeiro deAzevedo E, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54–71.  https://doi.org/10.1186/1754-6834-4-54CrossRefPubMedPubMedCentralGoogle Scholar
  130. Rodrigues M, Walter A, Faaij A (2003) Co-firing natural gas in biomass integrated gasification/ combined cycle system. Energy 28:1115–1131CrossRefGoogle Scholar
  131. Rosatella AA, Simeonov SP, Frade RF, Afonso CA (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793CrossRefGoogle Scholar
  132. Rosillo-Calle F, De Groot P, Hemstock SL, Woods J (2015) The biomass assessment handbook: energy for a sustainable environment, 2nd edn. Routledge/Taylor & Francis Group, New YorkGoogle Scholar
  133. Rouf MA, Bajpai PK, Jotshi CK (2010) Optimization of biogas generation from press mud in batch reactor. Bangladesh J Sci Ind Res 45:371–376CrossRefGoogle Scholar
  134. Rudolph A, Baudel H, Zacchi G, Hahn-Hagerdal B, Liden G (2007) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790CrossRefGoogle Scholar
  135. Salomon KR, Lora EES, Rocha MH, Almazán OO (2011) Cost calculations for biogas from vinasse biodigestion and its energy utilization. Sugar Ind 136(4):217–223Google Scholar
  136. Sam KK (2012) Ethyl alcohol or ethanol production from molasses by fermentation. http://www.inclusive-science-engineering.com/ethyl-alcohol-or-ethanol-production-from-molasses-by-fermentation. Accessed 4 June 2018
  137. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295PubMedCrossRefGoogle Scholar
  138. Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, process and technologies. Eng Life Sci 16:307–329CrossRefGoogle Scholar
  139. Sathish S, Vivekanandan S (2015) Experimental investigation on biogas production using industrial waste (press mud) to generate renewable energy. Int J Innov Res Sci Eng Technol 4:388–392Google Scholar
  140. Seabra JEA, Macedo IC (2011) Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy 39:421–428.  https://doi.org/10.1016/j.enpol.2010.10.019CrossRefGoogle Scholar
  141. Seabra JEA, Macedo IC, Leal MRLV (2014) Greenhouse gases emissions related to sugarcane ethanol. In: Luis Augusto Barbosa Cortez (Coord) sugarcane bioethanol-R&D for productivity and sustainability, Editora Edgard Blücher, São Paulo.  https://doi.org/10.5151/BlucherOA-Sugarcane-SUGARCANEBIOETHANOL_29. p 291–300Google Scholar
  142. Shaibani N, Ghazvini S, Andalibi MR, Yaghmaei S (2011) Ethanol production from sugarcane bagasse by means of enzymes produced by solid state fermentation method. Int J Chem Mol Eng 5(11):966–969Google Scholar
  143. Sheehan GJ, Greenfield PF (1980) Utilization, treatment and disposal of distillery waste water. Water Res 14(3):257–277CrossRefGoogle Scholar
  144. Sivers MV, Zacchi G, Olsson L, Hahn-Hugerdal B (1994) Cost analysis of ethanol production from willow using recombinant E. coli. Biotechnol Prog 10:555–560CrossRefGoogle Scholar
  145. Stenberg K, Tenborg C, Galbe M, Zacchi G (1998) Optimization of steam pretreatment of SO2- impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol 71:299–308CrossRefGoogle Scholar
  146. Stephen JD, Mabee W, Saddler WE, Saddler JN (2012) Will second generation ethanol be able to compete with first generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176CrossRefGoogle Scholar
  147. Sumardiono S, Riyanta AB, Matin HH, Kusworo TD, Jos B (2017) Increasing biogas production from sugar cane baggase by anaerobic co-digestion with animal manure. In: Iskandar I, Ismadji S, Agustina TE, Yani I, Komariah LN, Hasyim S (eds) Proceedings MATEC Web of Conferences: Sriwijaya International Conference on Engineering, Science and Technology (SICEST), Bangka Island, Nov 9–10, 2016, vol. 101.  https://doi.org/10.1051/matecconf/201710102014CrossRefGoogle Scholar
  148. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11.  https://doi.org/10.1016/S0960-8524(01)00212-7CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sun JX, Sun XF, Sun RC, Su YQ (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204CrossRefGoogle Scholar
  150. Sundaranayagi S, Sirajunnisa A, Ramasamy V (2017) Production of biogas by anaerobic digestion of press mud using iron, cobalt and nickel. Indian J Sci Res 14(1):374–377Google Scholar
  151. Sutton D, Kelleher BP, Ross JRH (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173CrossRefGoogle Scholar
  152. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708PubMedCrossRefGoogle Scholar
  153. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753PubMedCrossRefGoogle Scholar
  154. Talha Z, Ding W, Mehryar E, Hassan M, Bi J (2016) Alkaline pretreatment of sugarcane bagasse and filter mud codigested to improve biomethane production. Biomed Res Int:10.  https://doi.org/10.1155/2016/8650597CrossRefGoogle Scholar
  155. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663PubMedCrossRefPubMedCentralGoogle Scholar
  156. Toasa J (2009) Colombia: a new ethanol producer on the rise? USDA Economic Research Service, Washington, DC. http://www.ers.usda.gov. Accessed 10 Nov 2018
  157. Torres da Silva G, Chiarello LM, Lima EM, Ramos LP (2016) Sono-assisted alkaline pretreated of sugarcane bagasse for cellulosic ethanol production. Catal Today 269:21–28CrossRefGoogle Scholar
  158. UNDP (2009) Preliminary assessment of bioenergy production in the Caribbean. United Nations Development Programme, Barbados and the OECSGoogle Scholar
  159. United States Department of Agriculture (2006) The economic feasibility of ethanol production from sugar in the United States. https://www.usda.gov/oce/reports/energy/EthanolSugarFeasibilityReport3.pdf. Accessed 20 Nov 2018
  160. Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9(5):585–594PubMedPubMedCentralCrossRefGoogle Scholar
  161. Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588CrossRefGoogle Scholar
  162. Veana F, Martínez-Hernández JL, Aguilar CN, Rodríguez-Herrera R, Michelena G (2014) Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz J Microbiol 45:373–377PubMedPubMedCentralCrossRefGoogle Scholar
  163. Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28(19):1515–1525PubMedCrossRefGoogle Scholar
  164. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584CrossRefGoogle Scholar
  165. Walter A, Dolzan P (2009) Country report: Brazil, IEA bioenergy task 40, sustainable bio-energy trade securing supply and demand. UNICAMP, Campinas, p 66Google Scholar
  166. Watson J, Zhang Y, Si B, Chen WT, de Souza R (2018) Gasification of biowaste: a critical review and outlooks. Renew Sust Energ Rev 83:1–17CrossRefGoogle Scholar
  167. White JE (2009) Investigation into the hydrothermal treatment of sugarcane bagasse under near and super critical conditions. Doctoral Dissertation, Louisiana State University. https://digitalcommons.lsu.edu/gradschool_dissertations/1164
  168. Wilawan W, Pholchan P, Aggarangsi P (2014) Biogas production from co-digestion of Pennisetum pururem cv. Pakchong 1 grass and layer chicken manure using completely stirred tank. Energy Procedia 52:216–222CrossRefGoogle Scholar
  169. Wu W, Kawamoto K, Kuramochi H (2006) Hydrogen-rich synthesis gas production from waste wood via gasification and reforming technology for fuel cell application. J Mater Cycles Waste Manage 8(1):70–77.  https://doi.org/10.1007/s10163-005-0138-1CrossRefGoogle Scholar
  170. Yang ST, Liu X, Zhang Y (2007) Metabolic engineering – applications, methods and challenges. In: Yang ST (ed) Bioprocessing for value added products from renewable resources. Elsevier Publishers, Amsterdam, pp 73–118CrossRefGoogle Scholar
  171. Yin H, Lee T, Choi J, Yip ACK (2016) On the zeolitic imidazolate framework-8 (ZIF-8) membrane for hydrogen separation from simulated biomass-derived syngas. Microporous Mesoporous Mater 233:70–77.  https://doi.org/10.1016/j.micromeso.2015.10.033CrossRefGoogle Scholar
  172. Zhang AP, Liu CF, Sun RC, Xie J (2013) Extraction, purification, and characterization of lignin fractions from sugarcane bagasse. BioResources 8:1604–1614Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sagheer Ahmad
    • 1
  • Muhammad Anjum Ali
    • 1
  • Giovanna M. Aita
    • 2
  • Muhammad Tahir Khan
    • 3
  • Imtiaz Ahmed Khan
    • 3
  1. 1.Plant Sciences Division (PSD)Pakistan Agricultural Research Council (PARC)IslamabadPakistan
  2. 2.Audubon Sugar Institute, Louisiana State University AgCenterSt. GabrielUSA
  3. 3.Sugarcane Biotechnology Group, Nuclear Institute of AgricultureTandojamPakistan

Personalised recommendations