Fungal Diseases of Honey Bees: Current Status and Future Perspective

  • Dipti Kashyap
  • Harshita Pandey
  • Kamal Jaiswal
  • Suman Mishra
Part of the Fungal Biology book series (FUNGBIO)


Fungi are multicellular, eukaryotic, heterotrophic organisms which were once considered to be the ancient member of the plant kingdom but became opportunistic pathogens in animals, depending on the latter’s immune status. The microsporidia, a fungal-related parasite, is a highly specialized, obligate, intracellular pathogen of insects. The major effect of microsporidiosis, the infection caused by the microsporidia, is on pollinators, and, among the pollinators, chiefly on the honey bee population. Bees, unfortunately, are reported to be undergoing speedy decline because of survival needs and opportunistic misuse, and also due to being subjected to the assault of several parasites, parasitoids, and predators. Microsporidia is one of the important entomopathogens considered to impede the captive rearing of insects. However, studies on microsporidian association with honey bees and their immune system are scarce in India and the world over. Apart from microsporidian impact as the major cause of bee depopulation, there are incidences of other fungal pathogens, such as stonebrood and chalkbrood diseases of bees, that are affecting bees’ health. Hence, for optimum commercial and ecological benefit, extensive work needs to be undertaken for their preservation. Bunch rearing of honey bees in flourished and healthy fruit and crop gardens is the most effective way to conserve them, and is also a measure to keep them free from parasites and diseases. This literature review briefly provides information about the importance of honey bees, their role in the ecosystem, and the impact of microsporidian disease, one of the most significant and less often studied diseases, on the honey bee population worldwide.


Entomopathogens Fungi Microsporidia Microsporidiosis Obligate Parasite Pollinators 



The authors (DK and HP) wish to thank Babasaheb Bhimrao Ambedkar University and the University Grants Commission for the financial support in the form of a Non-NET Research Fellowship.


  1. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM (2009) How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann Bot 103:1579–1588PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alaux C, Folschweiller M, McDonnell C, Beslay D, Cousin M, Dussaubat C, Brunet JL, Le Conte Y (2011) Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J Invertebr Pathol 106:380–385PubMedCrossRefGoogle Scholar
  3. Alberoni D, Baffoni L, Gaggia F, Ryan P, Murphy K, Ross RP, Biavati B, Stanton C, Di Gioia D (2015) Administration of lactobacilli and bifidobacteria on Apis mellifera L. beehives to increase health of the bee super-organism. In: Microbial diversity 2015, the challenge of complexity. Perugia, pp 107–108Google Scholar
  4. Anderson DL, Giacon H (1992) Reduced pollen collection by honey bee (Hymenoptera: Apidae). Colonies infected with Nosema apis and Sacbrood virus. J Econ Entomol 85:47–51CrossRefGoogle Scholar
  5. Antunez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290PubMedCrossRefGoogle Scholar
  6. Bailey L (1963) Infectious diseases of the honey-bee. Land Books Ltd, London, p 176Google Scholar
  7. Bailey L (1972) The preservation of infective microsporidian spores. J Invertebr Pathol 20:252–254CrossRefGoogle Scholar
  8. Bailey L (1981) Honey bee pathology. Academic Press, London, p 124Google Scholar
  9. Bailey L, Ball BV (1991) Microspora and Protozoa. In: Bailey L, Ball BV (eds) Honey bee pathology. Academic Press, London, pp 64–77CrossRefGoogle Scholar
  10. Balbiani G (1882) Sur les microsporidies ou psorospermies des Articulés. C R Acad Sci 95:1168–1171Google Scholar
  11. Baracchi D, Francese S, Turillazzi S (2011) Beyond the antipredatory defence: honey bee venom function as a component of social immunity. Toxicon 1058(6–7):550–557CrossRefGoogle Scholar
  12. Barcandritsos N, Granato A, Budge G, Papanastasiou I, Roinioti E, Caldon M, Falco C, Gallina A, Mutinelli F (2010) Sudden deaths and colony population decline in Greek honey bee colonies. J Invertebr Pathol 105:335–340CrossRefGoogle Scholar
  13. Berrilli F, D’Alfonso R, Giangaspero A, Marangi M, Brandonisio O, Kaboré Y, Glé C, Cianfanelli C, Lauro R, Di Cave D (2012a) Giardia duodenalis genotypes and Cryptosporidium species in humans and domestic animals in Côte d’Ivoire: occurrence and evidence for environmental contamination. Trans R Soc Trop Med Hyg 106:191–195PubMedCrossRefGoogle Scholar
  14. Berrilli F, Di Cave D, Cavallero S, D’Amelio S (2012b) Interactions between parasites and microbial communities in the human gut. Front Cell Infect Microbiol 2:141. Scholar
  15. Bogdanov S, Kilchenmann V, Seiler K, Pfefferli H, Frey TH et al (2004) Residues of para-dichlorobenzene in honey and beeswax. J Apic Res 43:14–16CrossRefGoogle Scholar
  16. Botias C, Martín-Hernández R, Barrios L, Meana A, Higes M (2013) Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet Res 44:25PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bromenshenk JJ (2010) Colony collapse disorder (CCD) is alive and well. Bee Cult 138:51Google Scholar
  18. Burnside CE (1930) Fungus diseases of the honey bee. Technical Bulletin 149, U.S. Department of AgricultureGoogle Scholar
  19. Cali A, Takvorian PM (1999) Developmental morphology and life cycles of the Microsporidia. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis. ASM Press, Washington, D.C., pp 85–128CrossRefGoogle Scholar
  20. Campbell C, Frankenhuyzen K, Smith S (2010) Incubation period, spore egestion and horizontal transmission of Nosema fumiferanae (Mirsporidia: Nosematidae) in spruce budworm (Choristoneura sp., Lepidoptera: Tortricidae): the role of temperature and dose. J Invertebr Pathol 94:204–210CrossRefGoogle Scholar
  21. Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS (2014) Effects of host age on susceptibility to infection and immune gene expression in honey bee queens (Apis mellifera) inoculated with Nosema ceranae. Apidologie 45:451–463CrossRefGoogle Scholar
  22. Chen Y, Evans JD, Smith IB, Pettis JS (2008) Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J Invertebr Pathol 97:186–188PubMedCrossRefGoogle Scholar
  23. Chen Y, Evans JD, Murphy C, Gutell R, Zuker M, Gundensen-Rindal D, Pettis JS (2009a) Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. J Eukaryot Microbiol 56(2):142–147PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen Y, Evans JD, Zhou L, Boncristiani H, Kimura K, Xiao TG, Litkowski AM, Pettis JS (2009b) Asymmetrical coexistence of Nosema ceranae and Nosema apis in honeybees. J Invertebr Pathol 101:204–209PubMedCrossRefGoogle Scholar
  25. Costa C, Lodesani M, Maistrello L (2010) Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie 41:141–150CrossRefGoogle Scholar
  26. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287PubMedCrossRefGoogle Scholar
  27. Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond B Biol Sci 364:129–142PubMedCrossRefGoogle Scholar
  28. Crnivec IGO (2016) Microsporidian Nosema spp. As a model gastrointestinal microorganism of carniolan honey bee (Apis mellifera Carnica, Pollman, 1879): aspects of spore counting. Acta Agric Slovenica 5:143–147Google Scholar
  29. Czekonska K (2000) The influence of Nosema apis on young honeybee queens and transmission of the disease from queens to workers. Apidologie 31:701–706CrossRefGoogle Scholar
  30. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449PubMedCrossRefGoogle Scholar
  31. Delaplane KS, Mayer DF (2000) Crop pollination by bees. CABI Publishing, New YorkCrossRefGoogle Scholar
  32. Dussaubat C, Maisonnasse A, Alaux C et al (2010) Nosema spp. infection alters pheromone production in honey bees (Apis mellifera). J Chem Ecol 36:522–525PubMedCrossRefGoogle Scholar
  33. Dussaubat C, Brunet JL et al (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One 7(5):e37017. Scholar
  34. Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S et al (2013) Flight behaviour and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J Invertebr Pathol 113:42–51PubMedCrossRefGoogle Scholar
  35. Dworecka-Kaszak B, Parazytol W (2008) Animals as a potential source of human fungal infections. Wiad Parazytol 54(2):101–108PubMedGoogle Scholar
  36. Evison SEF, Roberts KE, Laurenson L, Pietravalle S, Hui J et al (2012) Pervasiveness of parasites in pollinators. PLoS One 7(1):e30641. Scholar
  37. Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217PubMedCrossRefGoogle Scholar
  38. Fowler JL, Reeves EL (1975) In vivo propagation of a microsporidian pathogenic to insects. J Invertebr Pathol 25:349–353PubMedCrossRefGoogle Scholar
  39. Freeman MA, Sommerville C (2011) Original observations of Desmozoon lepeophtherii, a microsporidian hyperparasite infecting the salmon louse Lepeophtheirus salmonis, and its subsequent detection by other researchers. Parasit Vectors 4:231PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fries I (1988) Comb replacement and Nosema disease (Nosema apis) in honey bee colonies. Apidologie 19(4):343–354CrossRefGoogle Scholar
  41. Fries I (1989) Observation on the development and transmission of Nosema apis Z. in the ventriculus of the honey bee. J Apic Res 28:107–117CrossRefGoogle Scholar
  42. Fries I (1993) Nosema apis a parasite in the honey bee colony. Bee World 74(1)):5–19CrossRefGoogle Scholar
  43. Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79PubMedCrossRefGoogle Scholar
  44. Fries I, Ekbohm G, Villumstad E (1984) Nosema apis, sampling techniques and honey yield. J Apic Res 23:102–105CrossRefGoogle Scholar
  45. Fries I, Granados RR, Morse RA (1992) Intracellular germination of spores Nosema apis Z. Apidologie 23:61–71CrossRefGoogle Scholar
  46. Fries I, Feng F, Silva AD, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365CrossRefGoogle Scholar
  47. Furgala B (1962a) The effect of the intensity of Nosema inoculums on queen supersedure in the honey bee, Apis mellifera Linnaeus. J Invectebr Pathol 4:429–432Google Scholar
  48. Furgala B (1962b) Residual fumagillin activity in sugar syrup stored by wintering honeybee colonies. J Apic Res 1:35–37CrossRefGoogle Scholar
  49. Gisder S, Moeckel N, Linde A et al (2011) A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee pathogenic microsporidia. Environ Microbiol 13:404–413PubMedCrossRefGoogle Scholar
  50. Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8:e58165PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gregorc A, Fijan N, Poklukar J (1992) The effect of Apis mellifera carnica Pol m. worker bee source for populating mating nuclei on degree of infection by Nosemaapis Zander. Apidologie 21:241–244CrossRefGoogle Scholar
  52. Gregory PG, Evans JD, Rinderer T, de Guzman L (2005) Conditional immune-gene suppression of honeybees parasitized by Varroa mites. J Insect Sci 5(1):7. Scholar
  53. Hamidyzzaman MM, Guzman-Novoa E, Goodwin PH (2010) A multiplex PCR assay to diagnose and quantify Nosema infection in honey bees (Apis mellifera). J Invertebr Pathol 105(2):151–155CrossRefGoogle Scholar
  54. Hassanein MH (1951) Studies on the effect of infection with Nosema apis on the physiology of the queen honey-bee. J Cell Sci 92:225–231Google Scholar
  55. Hedtke K, Jensen PM, Jensen AB, Genersch E (2011) Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J Invertebr Pathol 108:167–173PubMedCrossRefGoogle Scholar
  56. Higes M, Martín R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honey bees in Europe. J Invertebr Pathol 92:93–95PubMedCrossRefGoogle Scholar
  57. Higes M, Garcίa-Palencίa P, Martίn-Hernάndez R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 94:211–217PubMedCrossRefGoogle Scholar
  58. Higes M, Martin-Hernandez R, Botias C, Garrido-Bailon E, Gonzalez-Porto AV, Barrios L, del Nozal MJ, Berna JL, Jimenez JJ, Garcia-Palencia P, Meana A (2008a) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669PubMedCrossRefGoogle Scholar
  59. Higes M, Martin-Hernandez R, Garrido-Bailon E et al (2008b) Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees. J Invertebr Pathol 97:76–78PubMedCrossRefGoogle Scholar
  60. Higes M, Martin-Hernandez R, Garcia-Palencia P et al (2009) Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environ Microb Rep 1:495–498CrossRefGoogle Scholar
  61. Holt HL, Aronstein KA, Grozinger CM (2013) Chronic parasitization by Nosema microsporidia causes global expression changes in core nutritional, metabolic and behavioral pathways in honey bee workers (Apis mellifera). BMC Genomics 14:799PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huang WF, Solter LF (2013) Comparative development and tissue tropism of Nosema apis and Nosema ceranae. J Invertebr Pathol 113:35–41PubMedCrossRefGoogle Scholar
  63. Huang WF, Jiang JH, Chen YW, Wang CH (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37CrossRefGoogle Scholar
  64. Huang Q, Kryger P, Le Conte Y, Moritz RFA (2012) Survival and immune response of drones of a nosemosis tolerant honey bee strain towards N. ceranae infections. J Invertebr Pathol 109:297–302PubMedCrossRefGoogle Scholar
  65. Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266PubMedCrossRefGoogle Scholar
  66. Kashyap D, Mishra S, Jaiswal K (2018) Anultra structure of microsporidia in honey bees (Apis mellifera) by microscopic techniques. Int J Res Appl Sci Eng Technol 6:1982–1987CrossRefGoogle Scholar
  67. Kralj J, Fuchs S (2009) Nosema sp influences flight behaviour of infected honey bee (Apis mellifera) foragers. Apidologie 41:21–28CrossRefGoogle Scholar
  68. Kshirsagar KK (1978) Disorders of bees in India. Indian Bee J 45:39Google Scholar
  69. Kshirsagar KK (1982) Current incidence of honey bee diseases and parasites in India. Bee World 63:162–164CrossRefGoogle Scholar
  70. Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O et al (2015) Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One 10(10):e0140174. Scholar
  71. Lebert (1856–1857) Über die gegenwärtig herrschende Krankheit des Insektesder Seide. In: Jahresbericht über die Wirksamkeit des Vereinszur Beförderung des Seidenbaues für die Provinz Brandenburg, pp 16–74 (reprinted in Berliner EntomologischeZeitschrift 1858; 2: 149–86)Google Scholar
  72. Leoncini I, Le Conte Y, Costagliola G, Plettner E, Toth AL, Wang MW, Huang Z, Becard JM, Crauser D, Slessor KN, Robinson GE (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. PNAS 101:17559–17564PubMedCrossRefGoogle Scholar
  73. Li X, Fayer R (2006) Infectivity of microsporidian spores exposed to temperature extremes and chemical disinfectants. J Eukaryot Microbiol 53(S1):S77–S79PubMedCrossRefGoogle Scholar
  74. Liu TP (1990) Ultrastructural changes in the secretion granules of the hypopharyngeal glands of the honeybee infected by Nosema apis and after treatment with fumagillin. Tissue Cell 22:523–531PubMedCrossRefGoogle Scholar
  75. Lom J, Vavra J (1961) Niektore Wyniki Baden Nad Ultrastruktura Spor Posozyta Ryb Plistophora hyphessobrycornis (Microsporidia). Wiad Parazytol 7:828–832PubMedGoogle Scholar
  76. Loskotova J, Peroutka M, Vesely V (1980) Nosema disease of honeybee queens (Apis mellifica). Apidologie 11:153–161CrossRefGoogle Scholar
  77. Maassen A (1906) Die Aspergillusmykose der Bienen. Mitteilungen aus der Kaiserlichen. Biol Anst Land Forstwirtsch 2:30–31Google Scholar
  78. Martin-Hernandez R, Meana A, García-Palencia P, Marin P, Botias C, GarridoBailon E, Barrios L, Higes M (2009) Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75(8):2554–2557PubMedPubMedCentralCrossRefGoogle Scholar
  79. Martin-Hernandez R, Botias C, Barrios L et al (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109:605–612PubMedCrossRefGoogle Scholar
  80. Matheson A (1993) World bee health report. Bee World 74:176–212CrossRefGoogle Scholar
  81. Maurizio A (1934) Uber die Kaltbrut (Pericystis-Mykose) der Bienen. Archiv Bienenkunde 15:165–193Google Scholar
  82. Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 1:85–88Google Scholar
  83. Mayack C, Naug D (2010) Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. J Insect Physiol 56(11):1572–1575PubMedCrossRefGoogle Scholar
  84. McGregor SE (1976) Insect pollination of cultivated crop-plants. U.S.D.A.. Agriculture Handbook no. 496, Washington, D.C., pp 93–98Google Scholar
  85. Menapace DM, Wilson WT (1979) Feeding oxytetracyclines as Terramycin does not aggravate chalkbrood infections. Apidologie 10:167–174CrossRefGoogle Scholar
  86. Michener CD (2000) The bees of the world. Johns Hopkins University Press, BaltimoreGoogle Scholar
  87. Milbrath MO, van Tran T, Huang WF, Solter LF, Tarpy DR, Lawrence F, Huang ZY (2015) Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J Invertebr Pathol 125:9–15. Scholar
  88. Nageli KV (1857) Über die neue Krankheit der Seidenraupe und verwandte Organismen. Bot Ztg 15:760–761Google Scholar
  89. Nelson DL, Gochnauer TA (1982) Field and laboratory studies on chalkbrood disease of honey bees. Am Bee J 122:29–34Google Scholar
  90. Paldi N et al (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. App Environ Microbiol 76:5960–5964CrossRefGoogle Scholar
  91. Papini R, Mancianti F, Canovai R, Cosci F, Rocchigiani G, Benelli G, Canale A (2017) Prevalence of the microsporidian Nosema ceranae in honeybee (Apis mellifera) apiaries in Central Italy. Saudi J Biol Sci 24:979–982PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pasteur L (1870) Etudes sur la maladie des vers a Soie. Gauthier–Villars. Imprimeur–Libraire, Paris, p 322Google Scholar
  93. Paxton RJ (2010) Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J Apic Res 49:80–84CrossRefGoogle Scholar
  94. Pickard RS, Elshemy AAM (1989) Seasonal variation in the infection of honeybee colonies with Nosema apis Zander. J Apic Res 28:93–100CrossRefGoogle Scholar
  95. Poddubnaya LG, Tokarev YS, Issi IV (2006) A new microsporidium Paratuzetia kupermani gen. et sp. N. (microsporidia), a hyperparasite of the procercoid of the cestode Khawia armeniaca Chol. 1915 (Cestoda, Caryophyllidea). Protistology 4(3):269–277Google Scholar
  96. Porrini MP, Audisio CM, Sabate DC et al (2010) Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitol Res 107:381–388PubMedCrossRefGoogle Scholar
  97. Porrini M, Fernández N, Garrido P, Gende L, Medici S et al (2011) In vivo evaluation of antiparasitic activity of plant extracts on Nosema ceranae (Microsporidia). Apidologie 42(6):700–707CrossRefGoogle Scholar
  98. Ptaszyńska AA, Borsuk G, Mułenko W, Demetraki-Paleolog J (2014) Differentiation of Nosema apis and Nosema ceranae spores under Scanning Electron Microscopy (SEM). J Apic Res 53(5):537–544CrossRefGoogle Scholar
  99. Quatrefages A (1860) Etudes sur les maladies actuelles du vers à soie. Mém Acad Sci Inst Imper France:1–640Google Scholar
  100. Rana BS, Katna S (2011) Incidence of Nosema disease in Apis mellifera L. of the North India. Insect Environ 17:143–144Google Scholar
  101. Ratnieks FLW, Carreck NL (2010) Clarity on honey bee collapse? Science 327:152–153PubMedCrossRefGoogle Scholar
  102. Retschnig G, Williams GR, Schneeberger A, Neumann P (2017) Cold ambient temperature promotes Nosema spp. intensity in honey bees (Apis mellifera). Insects 8(1):E20. Scholar
  103. Richard FJ, Tarpy DR, Grozinger CM (2007) Effects of insemination quantity on honey bee queen physiology. PLoS One 2:e980PubMedPubMedCentralCrossRefGoogle Scholar
  104. Roubik DW (2002) The value of bees to the coffee harvest. Nature 417:708. Scholar
  105. Sánchez Collado JG, Higes M, Barrio L, Martín-Hernández R (2014) Flow cytometry analysis of Nosema species to assess spore viability and longevity. Parasitol Res 113:1695–1701PubMedCrossRefGoogle Scholar
  106. Schmid-Hempel R, Schmid-Hempel P (1998) Colony performance and immune-competence of a social insect, Bombus terristris, in poor and variable environment. Funct Ecol 12:22–30CrossRefGoogle Scholar
  107. Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63(11):3016–3022. Scholar
  108. Singh Y (1975) Nosema in Indian honey bees. Indian Bee J 36:16Google Scholar
  109. Singh M, Kane GJ, Mackinlay L, Quaki I, Yap EH, Ho BC, Ho LC, Lim KC (1982) Detection of antibodies to Nosema cuniculi (Protozoa: Microscoporidia) in human and animal sera by the indirect fluorescent antibody technique. Southeast Asian J Trop Med Public Health 13:110–113PubMedGoogle Scholar
  110. Smart MD, Sheppard WS (2012) Nosema ceranae in age cohorts of the western honey bee (Apis mellifera). J Invertebr Pathol 109:148–151PubMedCrossRefGoogle Scholar
  111. Smith ML (2012) The honey bee parasite Nosema ceranae: transmissible via food exchange? PLoS One 7(8):e43319. Scholar
  112. Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357PubMedCrossRefGoogle Scholar
  113. Sokolova YY, Lange CE, Mariottini Y, Fuxa JR (2009) Morphology and taxonomy of the microsporidium Liebermannia covasacrae n. sp.from the grasshopper Covasacris pallidinota (Orthoptera, Acrididae). J Invertebr Pathol 101:34–42PubMedCrossRefGoogle Scholar
  114. Sokolova YY, Lange CE, Fuxa JR (2006) Development, ultrastructure, natural occurrence, and molecular characterization of Liebermannia patagonica n. g., n. sp., a microsporidian parasite of the grasshopper Tristira magellanica (Orthoptera: Tristiridae). J Invertebr Pathol 91(3):168–182PubMedCrossRefGoogle Scholar
  115. Spiltoir CF (1955) Life cycle of Ascosphaera apis. Am J Bot 42:501–518CrossRefGoogle Scholar
  116. Sprague V (1982) Microspora. In: Parker SP (ed) Synopsis and classification of living organisms. McGraw-Hill, New York, pp 589–594Google Scholar
  117. Sprague V, Vavra J (1977) Systematics of the microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology. Plenum, New YorkGoogle Scholar
  118. Stanimirovic Z, Stevanovic J, Bajic V, Radovic I (2007) Evaluation of genotoxic effects of fumagillin by cytogenetic tests in vivo. Mutat Res 628:1–10PubMedCrossRefGoogle Scholar
  119. Suwannapong G, Maksong S, Seanbualuang P, Benbow ME (2010) Experimental infection of red dwarf honeybee, Apis florea, with Nosema ceranae. J Asia Pac Entomol 13(4):361–364CrossRefGoogle Scholar
  120. Tlak GI, Vugrek O, Pinter LJ, Petrinec Z (2009) “Nozevit patties” treatment of honeybees (Apis mellifera) for the control of Nosema ceranae disease. Am Bee J 149:1053–1056Google Scholar
  121. Traver BE, Fell RD (2012) Low natural levels of Nosema ceranae in Apis mellifera queens. J Invertebr Pathol 110:408–410PubMedCrossRefGoogle Scholar
  122. VanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e648CrossRefGoogle Scholar
  123. Vavilova VY, Konopatskaia I, Luzyanin SL, Woyciechowski M, Blinov AG (2017) Parasites of the genus Nosema, Crithidia and Lotmaria in the honeybee and bumblebee populations: a case study in India. Vavilov J Genet Breed 21:943–951CrossRefGoogle Scholar
  124. Vavra J, Larsson JIR (1999) Structure of the microsporidia. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis, vol 553. ASM Press, Washington, D.C., pp 7–84CrossRefGoogle Scholar
  125. Vavra J, Lukes J (2013) Microsporidia and ‘the art of living together’. Adv Parasitol 82:253–319PubMedCrossRefGoogle Scholar
  126. Wang DI, Moeller FE (1969) Histological comparisons of the development of hypopharyngeal glands in healthy and nosema-infected worker honey bees. J Invertebr Pathol 14:135–142CrossRefGoogle Scholar
  127. Wang DI, Moeller FE (1970) The division of labor and queen attendance behaviour of nosema-infected worker honey bees. J Econ Entomol 63:1539–1541CrossRefGoogle Scholar
  128. Wang DI, Moeller FE (1971) Ultrastructural changes in hypopharyngeal glands of worker honey bees infected by Nosema apis. J Invertebr Pathol 17:308–312CrossRefGoogle Scholar
  129. Weber R, Bryan RT, Owen RL, Wilcox CM, Gorelkin L, Visvesvara GS, The Enteric Opportunistic Infections Working Group (1992) Improved light-microscopical detection of microsporidia spores in stool and duodenal aspirates. N Engl J Med 326:161–166PubMedCrossRefGoogle Scholar
  130. Weiss LM, Vossbrinck C (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia. In: Wittner M (ed) The microsporidia and microsporidiosis. ASM Press, Washington, D.C., pp 129–171CrossRefGoogle Scholar
  131. Williams GR, Sampson MA, Shutler D, Rogers REL (2008) Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera). J Invertebr Pathol 99:342–344PubMedCrossRefGoogle Scholar
  132. Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Ann Rev Entomol 54:405–423CrossRefGoogle Scholar
  133. Yoshiyama M, Kimura K (2010) Characterization of antimicrobial peptide genes from Japanese honeybee Apis cerana japonica (Hymenoptera: Apidae). Appl Entomol Zool 45(4):609–614. Scholar
  134. Yucel B, Gogaroglu M (2005) The impact of Nosema apis Z. infestation of honey bee (Apis mellifera L.) colonies after using different treatment methods and their effects on the population levels of workers and honey production on consecutive years. Pak J Biol Sci 8:1142–1145CrossRefGoogle Scholar
  135. Zander E (1909) Tierische Parasiten als Krankheitserreger bei der Biene. Leipziger Bienenztg 24:147–150, 164–166Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dipti Kashyap
    • 1
  • Harshita Pandey
    • 1
  • Kamal Jaiswal
    • 1
  • Suman Mishra
    • 1
  1. 1.Department of Zoology, School of Life SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations