The Impact of Changes in Time to Maturity on the Risk of Geometric Options

  • Ewa DziawgoEmail author
Conference paper
Part of the Eurasian Studies in Business and Economics book series (EBES, volume 11/1)


Asian geometric options are path-dependent exotic options whose pay-off function is based on the geometric average price of the underlying instrument in the past (in a fixed period, leading up to the expiration date). This paper presents the issues connected with the geometric option: the instrument’s structure, types options, pay-off function, the pricing model, the effect of time to maturity and the price of underlying instrument on the option price and the value coefficients: delta, gamma, vega, theta, rho. These coefficients are the sensitivity measures. The sensitivity measures are important in managing the options risk. They indicate the influence the change in the option price for a change in the value of a risk factor. The objective of this paper is to present the effect of time to maturity on the price and the values of the risk measures (coefficients: delta, gamma, vega, theta, rho). The empirical illustrations included in the paper are presented based on a simulation of valuations of currency geometric call options (on the EUR/USD).


Financial instruments Risk management Measures of risk 


  1. Dziawgo, E. (2003). Modele kontraktów opcyjnych [Models of the options]. Torun: UMK.Google Scholar
  2. Dziawgo, E. (2010). Wprowadzenie do strategii opcyjnych [Introduction to options strategy]. Torun: UMK.Google Scholar
  3. Dziawgo, E. (2013). Miary wrażliwości opcji jednoczynnikowych [Sensitivity measures of one-factor exotic options]. Warsaw: CeDeWu.Google Scholar
  4. Garman, M. B., & Kohlhagen, S. W. (1983). Foreign currency options value. Journal of International Money and Finance, 2(3), 231–237.CrossRefGoogle Scholar
  5. Hull, J. C. (2005). Options, futures and other derivatives. New Jersey: Pearson Prentice Hall.Google Scholar
  6. Musiela, M., & Rutkowski, M. (1997). Martingale methods in financial modelling. Berlin: Springer.CrossRefGoogle Scholar
  7. Nelken, I. (2000). Pricing, hedging and trading exotic options. New York: McGraw-Hill.Google Scholar
  8. Ong, M. (1996). Exotic options: The market and their taxonomy. In I. Nelken (Ed.), The handbook of exotic options (pp. 3–44). Chicago, IL: IRWIN Professional Publishing.Google Scholar
  9. Vorst, T. (1992). Prices and hedge ratios of average exchange rate options. International Review of Financial Analysis, 1(3), 179–193.CrossRefGoogle Scholar
  10. Wilmott, P. (1998). Derivatives. Chichester: Wiley.Google Scholar
  11. Zhang, P. G. (2001). Exotic options: A guide to second generation options. Singapore: World Scientific.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Administration and Social SciencesKazimierz Wielki UniversityBydgoszczPoland

Personalised recommendations