Neuroblastoma pp 139-162 | Cite as

Nuclear Medicine Procedures in Neuroblastoma

  • Arnoldo PiccardoEmail author
  • Rita Castellani
  • Gianluca Bottoni
  • Michela Massollo
  • Giulia Anna Follacchio
  • Egesta Lopci


123Iodine-metaiodobenzylguanidine (123I-MIBG) scintigraphy is currently the tracer of choice for neuroblastoma (NB). It has high diagnostic accuracy and prognostic value for the assessment of patients after chemotherapy. A positive 123I-MIBG scan is also used for the basis of targeted radionuclide therapy with 131I-MIBG. 123I-MIBG scan however has some limitations, which should be taken into account.

With its technical superiorities, positron emission tomography/computed tomography (PET/CT) can be successfully introduced into the diagnostic workup of NB. Different PET tracers have been offered for imaging in patients with NB, and the efficacy of this modality has been compared with that of 123I-MIBG scan. In addition, possible theranostic implication of some of these PET tracers seems to be very promising. This chapter aims to analyze the principal nuclear medicine procedure available and effective in NB. In addition, the prevalent or complementary role of each functional imaging method was also highlighted.


Neuroblastoma Metaiodobenzylguanidine PET/CT Diagnosis 


  1. 1.
    Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Beiske K, Burchill SA, Cheung IY, Hiyama E, Seeger RC, Cohn SL, et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer. 2009;100:1627–37.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer. 2009;100:1471–82.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group project. Radiology. 2011;261:243–57.CrossRefGoogle Scholar
  7. 7.
    Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Canete A, Gerrard M, Rubie H, Castel V, Di Cataldo A, Munzer C, et al. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol. 2009;27:1014–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Garaventa A, Boni L, Lo Piccolo MS, Tonini GP, Gambini C, Mancini A, et al. Localized unresectable neuroblastoma: results of treatment based on clinical prognostic factors. Ann Oncol. 2002;13:956–64.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Lopci E, Piccardo A, Nanni C, Altrinetti V, Garaventa A, Pession A, et al. 18F-DOPA PET/CT in neuroblastoma comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37:e71–8.CrossRefGoogle Scholar
  12. 12.
    Sofka CM, Semelka RC, Kelekis NL, Worawattanakul S, Chung CJ, Gold S, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imaging. 1999;17:193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. Am J Roentgenol. 2002;181:1115–24.CrossRefGoogle Scholar
  14. 14.
    Siegel MJ, Jaju A. MR imaging of neuroblastic masses. Magn Reson Imaging Clin N Am. 2008;16(3):499–513.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hiorns MP, Owens CM. Radiology of neuroblastoma in children. Eur Radiol. 2001;11(10):2071–81.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lebtahi N, Gudinchet F, Nenadov-Beck M, et al. Evaluating bone marrow metastasis of neuroblastoma with iodine-123- MIBG scintigraphy and MRI. J Nucl Med. 1997;38:1389–92.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Tanabe M, Takahashi H, Ohnuma N, Iwai J, Yoshida H. Evaluation of bone marrow metastasis of neuroblastoma and changes after chemotherapy by MRI. Med Pediatr Oncol. 1993;21:54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bleeker G, Tytgat GA, Adam JA, Caron HN, Kremer LC, Hooft L, van Dalen EC. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;29(9):CD009263. Scholar
  19. 19.
    Bleeker G, Tytgat GA, Adam JA, Caron HN, Kremer LC, Hooft L, et al. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;(9):CD009263.
  20. 20.
    Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Castellani MR, Scarale A, Lorenzoni A, Maccauro M, Balaguer Guill J, Luksch R. Treatment with 131I-MIBG (indications, procedures and results). Chapter 19. In: Bombardieri E, editor. Clinical applications of nuclear medicine targeted therapy. Cham: Springer Nature; 2018.Google Scholar
  22. 22.
    Pfluger T, Piccardo A. Neuroblastoma: MIBG imaging and new tracers. Semin Nucl Med. 2017;47(2):143–57.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Piccardo A, Lopci E, Conte M, Foppiani L, Garaventa A, Cabria M, et al. PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:29–39.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21:349–53.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sharp SE, Parisi MT, Gelfand MJ, Yanik GA, Shulkin BL. Functional-metabolic imaging of neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:6–20.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Shulkin BL, Shapiro B, Francis IR, et al. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11:851–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schmidt M, Simon T, Hero B, et al. The prognostic impact of functional imaging with (123)ImIBG in patients with stage 4 neuroblastoma. 1 year of age on a high-risk treatment protocol: results of the German neuroblastoma trial NB97. Eur J Cancer. 2008;44:1552–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Boubaker A, Bischof DA. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:388–402.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kushner BH, Yeh SD, Kramer K, et al. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to dose-intensive induction chemotherapy. J Clin Oncol. 2003;21:1082–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Matthay KK, Edeline V, Lumbroso J, et al. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol. 2003;21:2486–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Ady N, Zucker JM, Asselain B, et al. A new 123I-MIBG whole body scan scoring method: application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer. 1995;31A:256–61.PubMedCrossRefGoogle Scholar
  33. 33.
    Lonergan GJ, Schwab CM, Suarez ES, Carlson CL. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002;22:911–34.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bonnin F, Lumbroso J, Tenenbaum F, Hartmann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35:803–10.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Geatti O, Shapiro B, Shulkin B, et al. Gastrointestinal iodine-131-metaiodobenzylguanidine activity. Am J Physiol Imaging. 1988;3:188–91.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Granata C, Carlini C, Conte M, et al. False positive MIBG scan due to accessory spleen. Med Pediatr Oncol. 2001;37:138–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Paltiel HJ, Gelfand MJ, Elgazzar AH, et al. Neural crest tumors: I-123 MIBG imaging in children. Radiology. 1994;190:117–21.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Okuyama C, Sakane N, Yoshida T, et al. (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med. 2002;3:1234–40.Google Scholar
  40. 40.
    Okuyama C, Ushijima Y, Kubota T, et al. 123I-metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med. 2003;44:1421–5.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Piccardo A, Lopci E. Potential role of 18F-DOPA PET in neuroblastoma. Clin Transl Imag. 2016;4:79–86.CrossRefGoogle Scholar
  42. 42.
    Moyes JSE, Babich JW, Carter R, Meller ST, Agrawal M, McElwain TJ. Quantitative study of radioiodinated metaiodobenzylguanidine uptake in children with neuroblastoma: correlation with tumor histopathology. J Nucl Med. 1989;30:474–80.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lebtahi Hadj-Djilani N, Lebtahi NE, Bischof Delaloye A, Laurini R, Beck D. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22:322–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Geatti O, Shapiro B, Sisson JC, Hutchinson RJ, Mallette S, Eyre P, et al. Iodine-131 metaiodobenzylguanidine scintigraphy for the location of neuroblastoma: preliminary experience in ten cases. J Nucl Med. 1985;26:736–42.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, De Bernardi B. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35:153–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med. 2011;41:345–53.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37:1464–8.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Černý I, Prášek J, Kašpárková H. Superiority of SPECT/CT over planar 123ImIBG images in neuroblastoma patients with impact on Curie and SIOPEN score values. Nuklearmedizin. 2016;55:151–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gelfand MJ, Elgazzar AH, Kriss VM, et al. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35:1753–7.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Hugosson C, Nyman R, Jorulf H, et al. Imaging of abdominal neuroblastoma in children. Acta Radiol. 1999;40:534–42.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yanik GA, Parisi MT, Shulkin BL, Naranjo A, Kreissman SG, London WB, et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children’s oncology group. J Nucl Med. 2013;54:541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ladenstein R, Lambert B, Pötschger U, Castellani MR, Lewington V, Bar-Sever Z, et al. Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations: the SIOPEN/HR-NBL1 and COG-A3973 trials. Eur J Nucl Med Mol Imaging. 2018;45:292.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk Neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341:1165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Pearson AD, Pinkerton CR, Lewis IJ, Imeson J, Ellershaw C, Machin D. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9:247–56.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Zage PE, Kletzel M, Murray K, Marcus R, Castleberry R, Zhang Y, et al. Outcomes of the POG 9340/9341/9342trials for children with high-risk neuroblastoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:747–53.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    London WB, Castel V, Monclair T, Ambros PF, Pearson AD, Cohn SL, et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project. J Clin Oncol. 2011;29:3286–92.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kushner BH, Kramer K, Modak S, Cheung NK. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol. 2009;27:1041–6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Piccardo A, Puntoni M, Lopci E, Conte M, Foppiani L, Sorrentino S, et al. Prognostic value of 18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol Imaging. 2014;41:1046–56.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    LaBrosse EH, Comoy E, Bohuon C, Zucker JM, Schweisguth O. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst. 1976;57:633–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Brodeur GM. Neuroblastoma and other peripheral neuroectodermal tumors. In: Fernbach DJ, Vietti TJ, editors. Clinical pediatric oncology. 4th ed. St. Louis, MO: CV Mosby; 1991. p. 337.Google Scholar
  62. 62.
    Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY, et al. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49:573–86.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Timmers AJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of phaeochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Fiebrich H, Brouwers AH, Kerstens MN, Pijl ME, Kema IP, de Jong JR, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with 123I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumours causing catecholamine excess. J Clin Endocrinol Metab. 2009;94:3922–30.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Treglia G, Castaldi P, Villani MF, Perotti G, de Waure C, Filice A, et al. Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2012;39:569–80.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V, et al. Comparison of (18)F-dopa PET/CT and (123)I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39:57–61.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Piccardo A, Lopci E, Conte M, Cabria M, Cistaro A, Garaventa A, Villavecchia G. al. Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG. Clin Nucl Med. 2014;39(1):e80–3.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lu MY, Liu YL, Chang HH, et al. Characterization of Neuroblastic Tumors Using 18F-FDOPA PET. J Nucl Med. 2013;54:42–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Piccardo A, Morana G, Massollo M, Pescetto M, Conte M, Garaventa A. Brain metastasis from neuroblastoma depicted by (18)F-DOPA PET/CT. Nucl Med Mol Imaging. 2015;49(3):241–2.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lewington V, Bar Sever Z, Lynch T, Giammarile F, McEwan A, Shulkin B, et al. Development of a semi-quantitative I-123 mIBG reporting method in high risk neuroblastoma. J Nucl Med. 2009;36:334.CrossRefGoogle Scholar
  71. 71.
    Piccardo A, Lopci E, Foppiani L, Morana G. Conte M (18)F-DOPA PET/CT for assessment of response to induction chemotherapy in a child with high-risk neuroblastoma. Pediatr Radiol. 2014;44:355–61.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lopci E, D’Ambrosio D, Nanni C, Chiti A, Pession A, Marengo M, et al. Feasibility of carbidopa premedication in pediatric patients: a pilot study. Cancer Biother Radiopharm. 2012;27:729–33.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    ICRP. Radiation dose to patients from radiopharmaceuticals - addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP. 2008;38(1-2)Google Scholar
  74. 74.
    ICRP. Radiation Dose to Patients from Radiopharmaceuticals (Addendum to ICRP Publication 53). ICRP Publication 80. Ann ICRP. 1998;28(3)Google Scholar
  75. 75.
    Huang YY, Tzen KY, Liu YL, Chiu CH, Tsai CL, Wen HP, et al. Impact of residual 18F-fluoride in 18F-FDOPA for the diagnosis of neuroblastoma. Ann Nucl Med. 2015;29:489–98.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31:129–34.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–58.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lebtahi Hadj-Djilani N, Lebtahi NE, Delaloye AB, Laurini R, Beck D, et al. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22:322–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Giammarile F, Lumbroso J, Ricard M, Aubert B, Hartmann O, Schlumberger M, et al. Radioiodinated metaiodobenzylguanidine in neuroblastoma: influence of high dose on tumour site detection. Eur J Nucl Med. 1995;22:1180–3.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123IMIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F] fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27:5343–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52:519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Colavolpe C, Guedj E, Cammilleri S, Taïeb D, Mundler O, Coze C. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2008;51:828–31.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Mc Dowell H, Losty P, Barnes N, Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG negative. Pediatr Blood Cancer. 2009;52:552.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Schwarz KB, Driver I, Lewis IJ, Taylor RE. Positive MIBG scanning at the time of relapse in neuroblastoma which was MIBG negative at diagnosis. Br J Radiol. 1997;70:90–2.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;219:3397–405.CrossRefGoogle Scholar
  87. 87.
    Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45:1172–88.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC, et al. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Adams S, Baum RP, Hertel A, Schumm-Dräger PM, Usadel KH, Hör G. Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun. 1998;19:641–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112:2447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Krieger-Hinck N, Gustke H, Valentiner U, Mikecz P, Buchert R, Mester J, et al. Visualisation of neuroblastoma growth in a Scid mouse model using [18F]FDG and [18F]FLT-PET. Anticancer Res. 2006;26:3467–72.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Wagner LM, Danks MK. New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem. 2009;107:46–57.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20:716–31.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    O’Dorisio MS, Chen F, O’Dorisio TM, Wray D, Qualman SJ. Characterization of somatostatin receptors on human neuroblastoma tumors. Cell Growth Differ. 1994;5:1–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Albers AR, O’Dorisio MS, Balster DA, Caprara M, Gosh P, Chen F, et al. Somatostatin receptor gene expression in neuroblastoma. Regul Pept. 2000;88:61–73.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Kropp J, Hofmann M, Bihl H. Comparison of MIBG and pentetreotide scintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors a prognostic factor? Anticancer Res. 1997;17:1583–8.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Shalaby-Rana E, Majd M, Andrich MP, Movassaghi N. In-111 pentetreotide scintigraphy in patients with neuroblastoma. Comparison with I-131 MIBG, N-MYC oncogene amplification, and patient outcome. Clin Nucl Med. 1997;22:315–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Storch D, Béhé M, Walter MA, Chen J, Powell P, Mikolajczak R, et al. Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In- DOTA0,Tyr3, Thr8]octreotide and [111In-DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J Nucl Med. 2005;46:1561–9.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Kroiss A, Putzer D, Uprimny C, Decristoforo C, Gabriel M, Santner W, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTATyr3-octreotide positron emission tomography and 123I metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38:865–73.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52(7):1041–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Shulkin BL, Wieland DM, Baro ME, Ungar DR, Mitchell DS, Dole MG, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Franzius C, Hermann K, Weckesser M, Kopka K, Juergens KU, Vormoor J, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47:1635–42.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur. 2015;18:102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lopci E, Chiti A, Castellani MR, Pepe G, Antunovic L, Fanti S, et al. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 14 T. 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging. 2011;38:S28–40.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters Yttrium-86 and Iodine-124. Q J Nucl Med Mol Imaging. 2008;52:159–65.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arnoldo Piccardo
    • 1
    Email author
  • Rita Castellani
    • 2
  • Gianluca Bottoni
    • 1
  • Michela Massollo
    • 1
  • Giulia Anna Follacchio
    • 3
  • Egesta Lopci
    • 4
  1. 1.Department of Nuclear MedicineEnte Ospedaliero Ospedali GallieraGenoaItaly
  2. 2.Nuclear Medicine UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
  3. 3.Nuclear Medicine Unit, Policlinico Umberto ISapienza University of RomeRomeItaly
  4. 4.Department of Nuclear MedicineHumanitas Clinical and Research Center RozzanoMilanItaly

Personalised recommendations