Advertisement

Nonlinear Computational Homogenization

  • Julien YvonnetEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 258)

Abstract

The homogenization of nonlinear heterogeneous materials is by an order of magnitude tougher than the homogenization of linear ones. The main reason is that in the linear case, the general form of the homogenized (or effective) behavior of heterogeneous materials is a priori known, and it suffices to determine a set of effective moduli by considering a finite number of macroscopic loading modes. In contrast, in the nonlinear case, the general form of the homogenized behavior of heterogeneous materials is unknown and the determination of the homogenized behavior requires solving nonlinear partial differential equations with random or periodic coefficients and entails considering, in principle, an infinite number of macroscopic loading modes. Then, the superposition principle, which was used as a basis in the previous chapters to construct the homogenized behavior no more applies. The central problem is to define the constitutive relationship to be used at the macroscale at each integration point of the structure, given an RVE and a description of the nonlinear behavior of each phase. The development of nonlinear computational homogenization methods has been an active topic of research since the end of the 90’s and many issues still remain at the time this book is written.

References

  1. 1.
    Yvonnet J, Gonzalez D, He Q-C (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198:2723–2737CrossRefGoogle Scholar
  2. 2.
    Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192CrossRefGoogle Scholar
  3. 3.
    Feyel F (1999) Multiscale FE\(^2\) elastoviscoplastic analysis of composite structure. Comput Mater Sci 16(1–4):433–454Google Scholar
  4. 4.
    Feyel F, Chaboche J-L (2000) FE\(^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330CrossRefGoogle Scholar
  5. 5.
    Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244CrossRefGoogle Scholar
  6. 6.
    Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analysis of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464CrossRefGoogle Scholar
  7. 7.
    Ghosh S, Lee K, Raghavan P (2001) A multilevel computational model for multi-scale damage analysis in composite and porous media. Int J Solids Struct 38:2335–2385CrossRefGoogle Scholar
  8. 8.
    Yvonnet J, He Q-C (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223:341–368MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRefGoogle Scholar
  10. 10.
    Covezzi F, de Miranda S, Fritzen F, Marfia S, Sacco E (2018) Comparison of reduced order homogenization techniques: prbmor, nutfa and mxtfa. Meccanica 53(6):1291–1312CrossRefGoogle Scholar
  11. 11.
    Leuschner M, Fritzen F (2017) Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mech Mater 104:121–138CrossRefGoogle Scholar
  12. 12.
    Kodjo J, Yvonnet J, Karkri M, Sab K (2018) Multiscale modeling of the thermomechanical behavior in heterogeneous media embedding phase change materials particles. J Comput Phys (2018). AcceptedGoogle Scholar
  13. 13.
    Aadmi M, Karkri M (2014) El Hammouti M (2014) Heat transfer characteristics of thermal energy storage of a composite phase change materials: numerical and experimental investigations. Energy 72:381–392CrossRefGoogle Scholar
  14. 14.
    Joulin A, Younsi Z, Zalewski L, Lassue S, Rousse DR, Cavrot J-P (2011) Experimental and numerical investigation of a phase change material: thermal energy storage and release. Appl Energy 88(7):2454–2462CrossRefGoogle Scholar
  15. 15.
    Viswanath R, Jaluria Y (1993) A comparison of different solution methodologies for melting and solidification problems in enclosures. Numer Heat Transf, Part B: Fundam 24(1):77–105CrossRefGoogle Scholar
  16. 16.
    Ding Y, Gear JA, Tran KN (2008) A finite element modeling of thermal conductivity of fabrics embedded with phase change material. In: Proceedings of the 8th biennial engineering mathematics and applications conference, EMAC-2007, ANZIAM J. vol 49, pp C439–C456Google Scholar
  17. 17.
    Ozdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dvorak GJ (1992) Transformation field analysis of inelastic composite materials. Proc R Soc A 437:311–327MathSciNetCrossRefGoogle Scholar
  19. 19.
    Suquet P (1997) Effective properties for nonlinear composites. CISM Lect Notes 377:197–264MathSciNetzbMATHGoogle Scholar
  20. 20.
    Roussette S, Michel JC, Suquet P (2009) Non uniform transformation field analysis of elastic-viscoplastic composites. Compos Sci Technol 69:22–27CrossRefGoogle Scholar
  21. 21.
    Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schmidt E (1907) Zur theorie der linearen und nichtlinearen integralgleichungen. i teil: Etwicklung willkurlicher funktion nach systemen vorgeschriebener. Math Ann 63:433–476MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lumley JL (1967) The structure of inhomogeneous turbulent flows. In: Yaglom AM, Tataski VI (eds) Atmospheric turbulence and radio wave propagation. Nauka, Moscow, pp 166–178Google Scholar
  24. 24.
    Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH (2002) Proper orthogonal decomposition and its applications - part i: theory. J Sound Vib 3:527–544CrossRefGoogle Scholar
  25. 25.
    Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng 160:3–24 (2007)Google Scholar
  26. 26.
    Soize C, Farhat C (2017) A nonparametric probabilistic approach for quantifying uncertainties in low-dimensional and high-dimensional nonlinear models. Comput Methods Appl Mech Eng 109(6):837–888MathSciNetGoogle Scholar
  27. 27.
    Peherstorfer B, Willcox K (2015) Dynamic data-driven reduced-order models. Comput Methods Appl Mech Eng 291:21–41MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kirchdoerfer T, Ortiz M (2016) Data-driven computational mechanics. Comput Methods Appl Mech Eng 304:81–101MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kirchdoerfer T, Ortiz M (2017) Data driven computing with noisy material data sets. Comput Methods Appl Mech Eng 326:622–641MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ibañez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2018) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Comput Methods Eng 25(1):47–57MathSciNetCrossRefGoogle Scholar
  32. 32.
    Nguyen LTK, Keip M-A (2018) A data-driven approach to nonlinear elasticity. Comput Struct 194:97–115CrossRefGoogle Scholar
  33. 33.
    Versino D, Tonda A, Bronkhorst CA (2017) Data driven modeling of plastic deformation. Comput Methods Appl Mech Eng 318:981–1004CrossRefGoogle Scholar
  34. 34.
    Yvonnet J, Monteiro E, He Q-C (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225CrossRefGoogle Scholar
  35. 35.
    Clément A, Soize C, Yvonnet J (2012) Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. Int J Numer Methods Eng 91(8):799–824CrossRefGoogle Scholar
  36. 36.
    Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372CrossRefGoogle Scholar
  38. 38.
    Ponte-Castañeda P, Willis JR (1995) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43(12):1919–1951MathSciNetCrossRefGoogle Scholar
  39. 39.
    Fritzen F, Kunc O (2017) Two-stage data-driven homogenization for nonlinear solids using a reduced order model. Eur J Mech A/SolidsGoogle Scholar
  40. 40.
    Hitchkock FL (1927) The expression of a tensor or a polyadic as a sum of pruducts. J Math Phys 6:164–189CrossRefGoogle Scholar
  41. 41.
    Harshman A (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics, vol 16Google Scholar
  42. 42.
    Carol JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35:283–319CrossRefGoogle Scholar
  43. 43.
    Kiers HAL (2000) Toward a standardized notation and terminology in multiway analysis. J Chemom 14CrossRefGoogle Scholar
  44. 44.
    De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21:1253–1278MathSciNetCrossRefGoogle Scholar
  45. 45.
    Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31:279–311MathSciNetCrossRefGoogle Scholar
  46. 46.
    Le BA, Yvonnet J, He Q-C (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061–1084MathSciNetCrossRefGoogle Scholar
  47. 47.
    Carter S, Culik SJ, Bowman JM (1997) Vibrational self-consistent field method for manymode systems: a new approach and application to the vibrations of CO adsorbed on Cu(100). J Chem Phys 107:10458CrossRefGoogle Scholar
  48. 48.
    Carter S, Handy NC (2002) On the representation of potential energy surfaces of polyatomic molecules in normal coordinates. Chem Phys Lett 352:1–7CrossRefGoogle Scholar
  49. 49.
    Sobol IM (1993) Sensitivity analysis for non-linear mathematical models. Math Model Comput 1:407–414zbMATHGoogle Scholar
  50. 50.
    Rabitz H, Alis OF (1999) General foundations of high-dimensional model representations. J Math Chem 25:197–233MathSciNetCrossRefGoogle Scholar
  51. 51.
    Scarselli F, Tsoi AC (1998) Universal approximation using feedforward neural networks: a survey of some existing methods and some new results. Neural Netw 11(1):15–37CrossRefGoogle Scholar
  52. 52.
    Manzhos S, Carrington T (2006) A random-sampling high dimensional model representation neural network for building potential energy surfaces. J Chem Phys 125:084109CrossRefGoogle Scholar
  53. 53.
    Malshe M, Pukrittayakamee A, Hagan LM, Sukkapatnam S, Komanduri R (2009) Accurate prediction of higher-level electronic structure energies for large databases susing neural networks, Hartree-Fock energies, and small subsets of the database. J Chem Phys 131:124127CrossRefGoogle Scholar
  54. 54.
    Sumpter BG, Getino C, Noid DW (1994) Theory and applications of neural computing in chemical science. Annu Rev Phys Chem 45:439CrossRefGoogle Scholar
  55. 55.
    Yu DS (2013) Approximation by neural networks with sigmoidal functions. Acta Math Sin 29(10):2013–2026MathSciNetCrossRefGoogle Scholar
  56. 56.
    Manzhos S, Carrington T (2006) Using neural networks to represent potential surfaces as sums of products. J Chem Phys 125:194105CrossRefGoogle Scholar
  57. 57.
    Manzhos S, Carrington T (2007) Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. J Chem Phys 127:014103CrossRefGoogle Scholar
  58. 58.
    Manzhos S, Carrington T (2008) Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface. J Chem Phys 129:224104CrossRefGoogle Scholar
  59. 59.
    Cybenko G (1989) Approximations by superpositions of sigmoidal functions. Math Control, Signals, Syst 2(4):303–314MathSciNetCrossRefGoogle Scholar
  60. 60.
    Manzhos S, Yamashita K (2010) A model for the dissociative adsorption of N\(_2\)O on Cu(100) using a continuous potential energy surface. Surf Sci 604:554–560CrossRefGoogle Scholar
  61. 61.
    Manzhos S, Yamashita K, Carrington T (2009) Fitting sparse multidimensional data with low-dimensional terms. Comput Phys Commun 180:2002–2012 (2009)CrossRefGoogle Scholar
  62. 62.
    Lu X, Giovanis D, Yvonnet J, Papadopoulos V, Detrez F, Bai J (2019) A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput Mech. Accepted,  https://doi.org/10.1007/s00466-018-1643-0

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MSME LaboratoryUniversité Paris-Est Marne-la-ValléeMarne-la-Vallée Cedex2France

Personalised recommendations