Advertisement

When Scales Cannot Be Separated: Direct Solving of Heterogeneous Structures with an Advanced Multiscale Method

  • Julien YvonnetEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 258)

Abstract

In previous chapters, the assumption of scale separation was adopted. When this assumption does not hold, e.g., when the size of heterogeneities are not much smaller than local dimensions of the structures, classical homogenization methods fail to describe the local fields and up to a certain precision even the global response. More precisely, lack of scale separation occurs when the wavelength associated with the strain and stress fields at the microscale is of the same order of magnitude as the wavelength of the prescribed loads or the characteristic dimensions of the structure [1].

References

  1. 1.
    Yvonnet J, Bonnet G (2014) A consistent nonlocal scheme based on filters for the homogenization of heterogeneous linear materials with non-separated scales. Int J Solids Struct 51:196–209CrossRefGoogle Scholar
  2. 2.
    Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244CrossRefGoogle Scholar
  3. 3.
    Forest S, Sab K (1998) Cosserat overall modelling of heterogeneous materials. Mech Res Commun 25(4):449–454CrossRefGoogle Scholar
  4. 4.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with gradient enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRefGoogle Scholar
  5. 5.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550CrossRefGoogle Scholar
  6. 6.
    Yuan X, Tomita Y (2008) A micromechanical approach of nonlocal modeling for media with periodic microstructures. Mech Res Commun 35:126133CrossRefGoogle Scholar
  7. 7.
    Bouyge F, Jasiuk I, Ostoja-Starzewski M (2011) A micromechanically based couple-stres model of an elastic two-phase composite. Int J Solids Struct 38:1721–1735CrossRefGoogle Scholar
  8. 8.
    Tran T-H, Monchiet V, Bonnet G (2012) A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media. Int J Solids Struct 49:783–792CrossRefGoogle Scholar
  9. 9.
    Tognevi A, Guerich M, Yvonnet J (2016) A multi-scale modeling method for heterogeneous structures without scale separation using a filter-based homogenization scheme. Int J Numer Methods Eng 108(1–5):3–25MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hui T, Oskay C (2013) A nonlocal homogenization model for wave dispersion in dissipative composite materials. Int J Solids Struct 50:38–48CrossRefGoogle Scholar
  11. 11.
    Yvonnet J, Bonnet G (2014) Nonlocal/coarse graining homogenization of linear elastic media with non-separated scales using least-square polynomial filters. Int J Multiscale Comput Eng 12(5):375–395CrossRefGoogle Scholar
  12. 12.
    Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Presses des MINESGoogle Scholar
  13. 13.
    Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227MathSciNetCrossRefGoogle Scholar
  14. 14.
    Le Tallec P, De Roeck Y-H, Vidrascu M (1991) Domain decomposition methods for large linearly elliptic three-dimensional problems. J Comput Appl Math 34(1):93–117MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gosselet P, Rixen D, Roux F-X, Spillane N (2015) Simultaneous FETI and block FETI: robust domain decomposition with multiple search directions. Int J Numer Methods Eng 104(10):905–927MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MSME LaboratoryUniversité Paris-Est Marne-la-ValléeMarne-la-Vallée Cedex2France

Personalised recommendations