Advertisement

Conduction Properties

  • Julien YvonnetEmail author
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 258)

Abstract

The objective of this chapter is to present the different basic concepts of computational homogenization through the simplest problem: defining the effective conductivity of a heterogeneous medium in steady-state regime. First, the notion of RVE is introduced. Then, the localization problems and the effective quantities are defined, and the numerical procedures using FEM to compute the effective conductivity tensor are presented.

References

  1. 1.
    Torquato S (2001) Random heterogeneous materials: microstructure and macroscopic properties. Springer, BerlinzbMATHGoogle Scholar
  2. 2.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679CrossRefGoogle Scholar
  3. 3.
    Gitman IM, Askes H, Sluys LJ (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534CrossRefGoogle Scholar
  4. 4.
    Monetto I, Drugan WJ (2009) A micromechanics-based non local constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities. J Mech Phys Solids 57:1578–1595MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pensée V, He Q-C (2007) Generalized self-consistent estimation of the apparent isotropic elastic moduli and minimum representative volume element size of heterogeneous media. Int J Solids Struct 44(7):2225–2243CrossRefGoogle Scholar
  6. 6.
    Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bulsara V, Talreja R, Qu J (1999) Damage initiation under transverse loading of unidirectional composites with arbitrarily distributed fibers. Compos Sci Technol 59:673–682CrossRefGoogle Scholar
  8. 8.
    Gonzalez C, LLorca J, (2007) Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos Sci Technol 67(13):2795–2806CrossRefGoogle Scholar
  9. 9.
    Rakow JF, Waas AM (2004) Size effects in metal foam cores for sandwich structures. AIAA J 42:7CrossRefGoogle Scholar
  10. 10.
    Swaminathan S, Ghosh S (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: II. with interfacial debonding. J Compos Mater 49:605–621CrossRefGoogle Scholar
  11. 11.
    Swaminathan S, Ghosh S, Pagano NJ (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: I. without damage. J Compos Mater 40:583–604CrossRefGoogle Scholar
  12. 12.
    Ranganathan IS, Ostoja-Starzewski M (2008) Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J Mech Phys Solids 56:2773–2791MathSciNetCrossRefGoogle Scholar
  13. 13.
    Elvin A, Sunder SS (1996) Microcracking due to grain boundary sliding in polycrystalline ice under uniaxial compression. Acta Mater 44(1):43–56CrossRefGoogle Scholar
  14. 14.
    Gusev AA (1997) Representative volume element size for elastic composites: a numerical study. J Mech Phys Solids 45:1449–1459CrossRefGoogle Scholar
  15. 15.
    Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probabilistic Eng Mech 21:112–132CrossRefGoogle Scholar
  16. 16.
    Ren ZY, Zheng QS (2002) A quantitative study of minimum sizes of representative volume elements of cubic polycrystals - numerical experiments. J Mech Phys Solids 50:881–893CrossRefGoogle Scholar
  17. 17.
    Zhodi TI, Wriggers P (2000) On the sensitivity of homogenized material responses at infinitesimal and finite strains. Commun Numer Methods Eng 16:657–670CrossRefGoogle Scholar
  18. 18.
    Du X, Ostoja-Starzewski M (2006) On the size of representative volume element for darcy law in random media. Proc R Soc A 462:2949–2963MathSciNetCrossRefGoogle Scholar
  19. 19.
    Grimal Q, Raum K, Gerisch A, Laugier P (2011) A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 10:925–937CrossRefGoogle Scholar
  20. 20.
    Valavala PK, Odegard GM, Aifantis EC (2009) Influence of representative volume element size on predicted elastic properties of polymer materials. Model Simul Mater Sci Eng 17:045004CrossRefGoogle Scholar
  21. 21.
    Salmi M, Auslender F, Bornert M, Fogli M (2012) Various estimates of representative volume element sizes based on a statistical analysis of the apparent behavior of random linear composites. Comptes Rendus de Mécanique 340:230–246CrossRefGoogle Scholar
  22. 22.
    Soize C (2008) Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probabilistic Eng Mech 23:307–323CrossRefGoogle Scholar
  23. 23.
    Sab K, Nedjar B (2005) Periodization of random media and representative volume element size for linear composites. Comptes Rendus de Mécanique 333:187–195CrossRefGoogle Scholar
  24. 24.
    Hoang TH, Guerich M, Yvonnet J (2016) Determining the size of rve for nonlinear random composites in an incremental computational homogenization framework. J Eng Mech 142(5):04016018CrossRefGoogle Scholar
  25. 25.
    Huet C (1990) Application of variational concepts to size effects in elastic heterogeneous bodies. J Mech Phys Solids 38(6):813–841MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yvonnet J, He Q-C, Zhu Q-Z, Shao J-F (2011) A general and efficient computational procedure for modelling the Kapitza thermal resistance based on XFEM. Comput Mater Sci 50(4):1220–1224CrossRefGoogle Scholar
  27. 27.
    Yvonnet J, He Q-C, Toulemonde C (2008) Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos Sci Technol 68(13):2818–2825CrossRefGoogle Scholar
  28. 28.
    Le-Quang H, Bonnet G, He Q-C (2010) Size-dependent Eshelby tensor fields and effective conductivity of composites made of anisotropic phases with highly conducting imperfect interfaces. Phys Rev B 81(6): 064203Google Scholar
  29. 29.
    Bertsekas PD (2014) Constrained optimization and Lagrange multiplier methods. Academic Press, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MSME LaboratoryUniversité Paris-Est Marne-la-ValléeMarne-la-Vallée Cedex2France

Personalised recommendations